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Abstract: In this paper we generalize the notion of helix in the three-dimensional Euclidean space, which we define
as that curve α for which there is an F -constant vector field W along α that forms a constant angle with a fixed
direction V (called an axis of the helix). We find the natural equation and the geometric integration of helices α where
the F -constant vector field W is orthogonal to its axis.
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1. Introduction
Let α : I → R3 be a differentiable unit speed curve and let X(α) denote the set of differentiable vector fields
along the curve. Let F (s) = {F1(s), F2(s), F3(s)} be a moving orthonormal frame along α , so we can see F

as a differentiable map F : I → SO(3) . It is easy to show (see, e.g., [3, pp. 43–45]) that there exists a unique
vector field DF (s) along α satisfying the equations

F ′
1 = DF × F1, F ′

2 = DF × F2, F ′
3 = DF × F3, (1.1)

where ()′ is the usual derivative in R3 and × stands for the cross product. The vector field DF is called the
Darboux vector associated to the frame F .

From a physical point of view, along the curve α , we have two coordinate systems associated to two
references: (a) One is associated to the frame F , that may be imagined as being fixed on the curve. This
system rotates and is thus accelerating, it is a noninertial frame. (b) The other is the canonical rectangular
coordinates (x1, x2, x3) in R3 associated to the usual canonical basis {e1, e2, e3} that is fixed to the space and
is an inertial frame. Obviously, given a vector field W along α , the variation in s of its coordinate functions
in the two coordinate systems is not the same. In fact, they are related by the following equation:

W ′ =
dr
ds

(W ) +DF ×W,

where dr

ds (W ) denotes the rate of change of W as observed in the rotating coordinate system (i.e. in the frame
F ). The above equation is usually called the Transport Theorem in analytical dynamics (see [6, p. 11]). If we
think of W as a curve in the 3-space, then the above formula tells us that its (absolute) velocity in the inertial
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frame {e1, e2, e3} is equal to the velocity relative to the moving (rotating) frame {F1, F2, F3} plus the velocity
of the rotating coordinate system itself.

Motivated by the equations (1.1) and the Transport Theorem, we introduce the following definition.

Definition 1.1 A vector field W along α is said to be constant with respect to the frame F (or F -constant
vector field) if dr

ds (W ) = 0 (or, equivalently, W ′ = DF ×W ).

The set of F -constant vector fields along α will be denoted by XF (α) . In [5], this kind of vector fields are
said to be invariably attached to every point of the curve. If we think of the curve α as the trajectory of a
rigid body, then an F -constant vector can be imagined as a body-fixed vector [6]. The following result is a
straightforward computation.

Proposition 1.2 The following properties of F -constant vector fields hold:
1) If W is an F -constant vector field, then W has constant length.

2) If W1 and W2 are F -constant vector fields, then W1 +W2 is an F -constant vector field.

3) Let W be a nowhere zero F -constant vector field and h a differentiable function, then hW is an F -
constant vector field if and only if h is a constant function.

4) W is an F -constant vector field if and only if W = a1F1 + a2F2 + a3F3 , for certain constants ai ∈ R .
Hence, XF (α) is a 3-dimensional real vector space.

A special moving frame is the Frenet frame F = {Tα, Nα, Bα} , satisfying the well-known Frenet-Serret
equations

T ′
α(s) = κα(s)Nα(s), N ′

α(s) = −κα(s)Tα(s) + τα(s)Bα(s), B′
α(s) = −τα(s)Nα(s), (1.2)

where κα and τα stand for the curvature and torsion functions, respectively. The vector fields Tα, Nα, Bα

are trivial examples of F -constant vector fields. Throughout this paper, we will assume that our curves are
nonplanar, i.e. with nonzero torsion. For this frame, the Darboux vector is simply denoted by Dα and is given
by Dα = ταTα + καBα . This vector can be interpreted as the angular velocity of the Frenet frame as a whole.
In fact, the rate of change of the frame {Tα, Nα, Bα} with s can be characterized as an instantaneous rotation
about the vector Dα , with angular velocity equal to the total curvature specified by

ω = |Dα| =
√

κ2
α + τ2α.

Let W be a nonzero differentiable vector field along the curve α . W is said to be a normal vector
field if W (s) belongs to the normal plane for every s ; similarly, we have rectifying or osculating vector fields,
depending on whether W (s) belongs to the rectifying or osculating plane, respectively.

The term helix (or general helix, or cylindrical helix, or curve of constant slope) has traditionally been
used to define curves whose tangent vector field Tα forms a constant angle with a fixed direction in the 3-space,
[7, p. 33]. The concept of helix has been extended by considering vector fields other than the tangent vector
field Tα , such as the principal normal vector field Nα (thus giving rise to slant helices, [2, 4]). In this paper,
we propose a new extension of the concept by considering F -constant vector fields.

1159



LUCAS and ORTEGA-YAGÜES/Turk J Math

Definition 1.3 A curve α is said to be a helix if there exists an F -constant vector field W along α that forms
a constant angle with a fixed direction V , called an axis of the helix.

Without loss of generality, we can assume that W is a unit vector field. In the particular case that W is a
normal (osculating or rectifying, resp.) vector field then α is called a normal (osculating or rectifying, resp.)
helix. Note that we recover the notion of cylindrical helix or slant helix when the F -constant vector field W

is given by Tα or Nα , respectively. Note also that the term osculating helix has been previously used to refer
to the circular helix passing through a point of a curve, having the same tangent, curvature vector and torsion,
[7, p. 42].

In this paper, we solve the following problem:

How are the helices α characterized when the F -constant vector field W is orthogonal to its axis
V ?

Note that when the vector field W is Tα , Nα , or Bα , then the curve α is nothing but a plane curve or a
cylindrical helix. Therefore, in the following sections, we will address the question when the vector field W is
expressed as a linear combination of at least two vector fields of the Frenet frame.

2. Normal helices
2.1. Natural equation of normal helices

Let α be a nonplanar curve in R3 with Frenet apparatus {κα, τα;Tα, Nα, Bα} , and assume that α is a normal
helix with axis V , V being a constant vector. Suppose that there is a nonzero constant angle θ ∈ (−π/2, π/2)

such that W = cos θ Nα + sin θ Bα is orthogonal to V . Hence, we can write

V = λTα + µ(sin θ Nα − cos θ Bα), (2.1)

for certain differentiable functions λ and µ . By taking derivative in (2.1), we get

λ′ − µ sin θ κα = 0, (2.2)

sin θ µ′ + λκα + µ cos θ τα = 0, (2.3)

− cos θ µ′ + µ sin θ τα = 0. (2.4)

From equation (2.4), we have

µ = etan θ
∫
τα , (2.5)

that jointly with (2.3) leads to

λ = − sec θ ρ etan θ
∫
τα , (2.6)

where ρ = τα/κα is called the Lancret curvature. Finally, putting equations (2.5) and (2.6) in (2.2) yields

− sec θ(ρ′ + tan θ τα ρ) = sin θ κα, (2.7)

and then
−ρ′ = sin θ cos θ κα + tan θ τα ρ. (2.8)
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Therefore,
κα

cos2 θ κ2
α + τ2α

(
τα
κα

)′

= − tan θ. (2.9)

Conversely, let α be a curve in R3 satisfying equation (2.9), for a nonzero constant θ ∈ (−π/2, π/2) . Let V

be the vector field given in (2.1), where µ and λ are defined by equations (2.5) and (2.6), respectively. Then
equations (2.3) and (2.4) are satisfied. On the other hand, from equation (2.9), we easily get (2.7), and then we
deduce (2.2) since

µ sin θ κα = − sec θ
(
ρ′µ+ tan θ τα ρµ

)
= λ′.

Hence, there is a constant θ such that the vector field cos θ Nα + sin θ Bα is orthogonal to a constant direction
V , so α is a normal helix.

Summing up, we have shown the following result (we also include the case θ = 0).

Theorem 2.1 Let α be a nonplanar arclength parametrized curve in R3 , with curvature κα > 0 and torsion
τα . Then α is a normal helix (with W orthogonal to V ) if and only if the following equation holds

κα

cos2 θ κ2
α + τ2α

(
τα
κα

)′

= − tan θ,

for a certain constant θ ∈ (−π/2, π/2) .

2.2. Geometric interpretation of normal helices
Let α be a normal helix with axis V , and assume that V is orthogonal to the F -constant vector field W =

cos θ Nα+sin θ Bα , θ being a constant. Let us consider Cα,V the cylinder parametrized by X(t, z) = α(t)+z V ,
then we have N = Xt ×Xz = Tα ×V = cos θ Nα +sin θ Bα , up to a sign. This shows that the principal normal
vector field Nα of the curve α makes a constant angle θ with the unit vector field N normal to the cylinder
Cα,V . It is not difficult to see that this condition characterizes the normal helices.

Let M = Cβ,V be a general cylinder parametrized by X(t, z) = β(t) + zV , where β is a unit planar
curve and V is a unit vector orthogonal to that plane. If {Tβ , Nβ} is the Frenet frame of β , assume that
the unit normal vector to the cylinder is given by N(t, z) = Tβ(t) × V = Nβ(t) . Let us assume that
α(s) = X(t(s), z(s)) , s ∈ I , is an arclength parametrized curve in M such that Nα makes a constant angle θ

with N . A straightforward computation yields

Tα(s) = cosφ(s)Tβ(t(s)) + sinφ(s)V, (a)

Nα(s) = sin θ
(
− sinφ(s)Tβ(t(s)) + cosφ(s)V

)
+ cos θ N, (b) (2.10)

Bα(s) = − cos θ
(
− sinφ(s)Tβ(t(s)) + cosφ(s)V

)
+ sin θ N, (c)

where φ ∈ C∞(I) is a differentiable function with t′(s) = cosφ(s) and z′(s) = sinφ(s) . It is easy to see that

V = sinφ(s)Tα(s) + cosφ(s)
(
sin θ Nα(s)− cos θ Bα(s)

)
, (2.11)

and then we can define the F -constant vector field W = cos θ Nα + sin θ Bα satisfying ⟨W,V ⟩ = 0 , showing
that α is a normal helix. Therefore, we have proven the following result.
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Theorem 2.2 A curve α in R3 is a normal helix with axis V if and only if α lies on a cylinder C and its
principal normal vector field makes a constant angle with the normal vector field to the cylinder.

Note that when θ = 0 , then α is a geodesic of the cylinder, and so it is a cylindrical helix. Hence,
Theorem 2.2 is an extension of the well-known theorem of Lancret that characterizes the cylindrical helices as
the geodesics of the cylinders.

We finish this section with the following result about curves α(s) in a cylinder Cβ,V . By taking derivative
in equations (a) and (c) of (2.10), we get

κα(s)Nα(s) = φ′(s)(− sinφ(s)Tβ(t(s)) + cosφ(s)V ) + cos2 φ(s)κβ(t(s))Nβ(t(s)),

−τα(s)Nα(s) = φ′(s) cos θ(cosφ(s)Tβ(t(s)) + sinφ(s)V )+

+ cosφκβ(− sin θ Tβ(t(s)) + cos θ sinφNβ(t(s))).

These two equations lead to the following result.

Proposition 2.3 Let α(s) = X(t(s), z(s)) be an arclength parametrized curve in a cylinder Cβ,V . The principal
normal vector field Nα makes a constant angle θ with the normal to the cylinder if and only if there is a
differentiable function φ such that the following equations hold:

t′(s) = cosφ(s), (2.12)

z′(s) = sinφ(s), (2.13)

φ′(s) = tan θ cos2(φ(s))κβ(t(s)). (2.14)

Moreover, the curvature and torsion of α are given by

κα(s) =
cos2 φ(s)

cos θ
κβ(t(s)), τα(s) = − sinφ(s) cosφ(s)κβ(t(s)). (2.15)

On the other hand, from (2.15), we get

τα
κα

(s) = − cos θ tanφ(s),

and since (tanφ)′(s) = tan θ κβ(t(s)) , we have that only in circular cylinders there exist normal helices that
are also rectifying curves, see [1].

2.3. An example: normal helices in circular cylinders

Let Cβ,V be a cylinder over a circle β of radius one. Then from Proposition 2.3 we get

φ(s) = arctan(tan(θ)s),

t(s) = cot(θ) sinh−1(tan(θ)s) + t0,

z(s) = cot(θ)
√

1 + tan2(θ)s2 + z0,
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where θ, t0, z0 are constants. Hence, a family of normal helices in the cylinder is given by

α(s) =
(
cos(cot(θ) sinh−1(tan(θ)s) + t0),

sin(cot(θ) sinh−1(tan(θ)s) + t0),

cot(θ)
√
1 + tan2(θ)s2 + z0

)
.

Moreover, from (2.15), we obtain that the curvature and torsion of α are given by

κα(s) =
cos θ

cos2 θ + sin2(θ) s2
, τα(s) =

− sin θ cos(θ) s

cos2 θ + sin2(θ) s2
. (2.16)

Note that these curves verify that τα/κα(s) = − sin(θ)s , so they are rectifying curves.
We can reparametrize the curves α to obtain a simpler expression. Indeed, let us consider the change of

parameter tan(θ)s = sinh(tan(θ)t) , then

α(t) =
(
cos(t+ t0), sin(t+ t0), cot(θ) cosh(tan(θ)t) + z0

)
,

and the curvature and torsion can be computed as follows:

κα(t) =
sec θ

cosh2(tan(θ)t)
, τα(t) =

− sinh(tan(θ)t)

cosh2(tan(θ)t)
. (2.17)

A picture of a normal helix is shown in Figure.

Figure. A normal helix with θ = π/36 in a circular cylinder.

3. Osculating helices
3.1. Natural equation of osculating helices
Let α be a nonplanar osculating helix with axis V . Then there is an osculating vector field W = cos θ Tα +

sin θ Nα , for a nonzero constant angle θ ∈ (−π/2, π/2) , which is orthogonal to V . Hence, we can write

V = µ(− sin θ Tα + cos θ Nα) + λBα, (3.1)

for certain differentiable functions λ and µ . By derivating here we obtain the following equations:

− sin θ µ′ − µ cos θ κα = 0, (3.2)

cos θ µ′ − λ τα − µ sin θ κα = 0, (3.3)

λ′ + µ cos θ τα = 0. (3.4)
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From equation (3.2), we get

µ = e− cot θ
∫
κα , (3.5)

that jointly with (3.3) yields

λ =
−1

sin θρ
e− cot θ

∫
κα , (3.6)

where ρ is the Lancret curvature. On the other hand, by putting equations (3.5) and (3.6) in (3.4), we get

1

sin θ

(
ρ′

ρ2
+ cot θ κα

ρ

ρ2

)
= − cos θ τα,

and then
−ρ′ = sin θ cos θ ταρ

2 + cot θ κα ρ,

which can be rewritten as
κ2
α

κ2
α + sin2 θ τ2α

(
τα
κα

)′

= − cot θ τα. (3.7)

Note that this equation is equivalent to

τα

κ2
α + sin2 θ τ2α

(
κα

τα

)′

= cot θ. (3.8)

Now, we will see that this equation characterizes the osculating helices. Indeed, let α be a curve in R3 satisfying
(3.8) for a nonzero constant θ ∈ (−π/2, π/2) . Let us define a vector field V as in (3.1), where λ and µ are given
by (3.6) and (3.5), respectively. Then equations (3.2) and (3.3) are satisfied. Finally, it is straightforward to see
that equation (3.8) leads to (3.4). Then there exists a constant θ such that cos θ Tα + sin θ Nα is orthogonal to
the constant direction V , that is, α is an osculating helix.

We have proven the following characterization of the osculating helices (we also include the cases θ =

±π/2).

Theorem 3.1 Let α be a nonplanar arclength parametrized curve in R3 , with curvature κα > 0 and torsion
τα . Then α is an osculating helix (with W orthogonal to V ) if and only if the following equation holds

τα

κ2
α + sin2 θ τ2α

(
κα

τα

)′

= cot θ,

for a nonzero constant angle θ ∈ [−π/2, π/2] .

3.2. Normal helices and osculating helices

Let α(s) be a normal helix with Frenet apparatous {κα, τα;Tα, Nα, Bα} . Then the curve

α(s) =

∫ s

s0

Bα(t) dt (3.9)

is an arclength parametrized curve, and without loss of generality, its Frenet frame is given by

Tα = Bα, Nα = −Nα, Bα = Tα.
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Hence, their curvature and torsion are given by κα = τα and τα = κα . It is straightforward to see that α

satisfies (3.8), and so it is an osculating helix.
On the other hand, and following a similar reasoning, it can be proven that if α is an osculating helix,

then the curve

α(s) =

∫ s

s0

Bα(t) dt (3.10)

is a normal helix. Therefore, and in a certain sense, normal helices and osculating helices can be considered
duals of each other.

4. Rectifying helices

Let α be a nonplanar curve in R3 with Frenet apparatous {κα, τα;Tα, Nα, Bα} , and assume that α is a
rectifying helix with axis V , V being a constant vector. Let us suppose there is a constant angle θ such that
the rectifying vector field W = cos θ Bα + sin θ Tα is orthogonal to V . Hence, we can write

V = λNα + µ(sin θ Bα − cos θ Tα),

for certain differentiable functions λ and µ . By taking derivative there, we get

−λκα − µ′ cos θ = 0,

λ′ − µ cos θ κα − µ sin θ τα = 0,

λ τα + µ′ sin θ = 0.

From these equations, we easily deduce that τα/κα is constant, and so α is a cylindrical helix. Since every
cylindrical helix is also a rectifying helix, then we have proven the following result.

Theorem 4.1 Let α be an arclength parametrized curve in R3 with curvature κα > 0 . Then α is a rectifying
helix (with W orthogonal to V ) if and only if it is a cylindrical helix.

5. The general case
Let us assume, in this section, that the unit F -constant vector field W along α is given by W = aTα+bNα+cBα ,
where a, b, c are nonzero constants with a2 + b2 + c2 = 1 (the other cases have already been analyzed in the
preceding sections). Since we are assuming that ⟨W,V ⟩ = 0 , then there exists two differentiable functions λ, µ

such that
V = λ(−cTα + aBα) + µ(−cNα + bBα), (5.1)

and by derivating here we obtain the following equations:

0 = λ′ − µκα, (5.2)

0 = cµ′ + λ(cκα + aτα) + bµτα, (5.3)

0 = aλ′ + bµ′ − cµτα. (5.4)

From (5.2) and (5.4), we get

µ′ =
1

b
(cτα − aκα)µ, (5.5)
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that jointly with (5.3) leads to

cµ(cτα − aκα) + λb(cκα + aτα) + b2µτα = 0.

Then

λ = gµ, with g =
acκα − (b2 + c2)τα

b(cκα + aτα)
. (5.6)

Now, by using (5.2) and (5.5), we obtain

bκα = bg′ + g(cτα − aκα). (5.7)

Since g′ is given by

g′ =
−cκ2

α

b(cκα + aτα)2

(
τα
κα

)′

,

a straightforward computation from (5.7) yields

κ2
α

cκα

(
(1− c2)κ2

α + (1− 3a2)τ2α
)
+ aτα

(
(1− a2)τ2α + (1− 3c2)κ2

α

) ( τα
κα

)′

= −1

b
. (5.8)

Conversely, let α be a curve satisfying (5.8) for certain nonzero constants a, b, c . Let V be the nonzero vector
field given in (5.1), where µ and λ are given by (5.5) and (5.6), respectively. As in the preceding sections, it is a
straightforward (if somewhat laborious) calculation to check that equations (5.2)–(5.4) are satisfied. Therefore,
we have found an F -constant vector field W = aTα + bNα + cBα which is orthogonal to the fixed direction V .

To finish this section, and in order to consider also the cases in which any of the constants a , b , or c

could be zero, let us note that equation (5.8) can be rewritten as

−bκ2
α

(
τα
κα

)′

= cκα

(
(1− c2)κ2

α + (1− 3a2)τ2α
)
+ aτα

(
(1− a2)τ2α + (1− 3c2)κ2

α

)
, (5.9)

and then we have all the cases previously analyzed:

W α is a Eq. (5.9) reduces to

Tα plane curve ρ = 0

Nα cylindrical helix ρ′ = 0

Bα plane curve ρ = 0

bNα + cBα normal helix Eq. (2.9)
aTα + bNα osculating helix Eq. (3.8)
aTα + cBα rectifying helix ρ′ = 0

aTα + bNα + cBα helix Eq. (5.8)

In conclusion, we have shown the following result.

Theorem 5.1 Let α be a nonplanar arclength parametrized curve in R3 with curvature κα > 0 and torsion
τα . Then α is a helix (associated to the unit F -constant vector field W = aTα + bNα + cBα orthogonal to the
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axis) if and only if the following equation holds

−bκ2
α

(
τα
κα

)′

= cκα

(
(1− c2)κ2

α + (1− 3a2)τ2α
)
+ aτα

(
(1− a2)τ2α + (1− 3c2)κ2

α

)
,

with a2 + b2 + c2 = 1 .

We finish this section with the geometric interpretation of helices in the general case.

Theorem 5.2 Let α be a nonplanar arclength parametrized curve in R3 with curvature κα > 0 and torsion
τα . Then α is a helix (associated to the unit F -constant vector field W = aTα + bNα + cBα orthogonal to the
axis V ) if and only if α is contained in a cylinder Cβ,V and satisfies the following equation:

a tanφ+ b sin θ − c cos θ = 0, (5.10)

where a, b, c are real constants and the angles φ and θ are given by

sinφ = ⟨Tα, V ⟩ , sin θ ⟨Bα, V ⟩+ cos θ ⟨Nα, V ⟩ = 0.

Proof We will follow the same reasoning as for proving Theorem 2.2. Let us first prove the reciprocal part.
Let X(t, z) = β(t)+ zV be the canonical parametrization of Cβ,V and suppose α(s) = X(t(s), z(s)) . Although
equations (2.10) and (2.11) have been obtained for the case where θ is constant, they also remain valid in the
nonconstant case, and so the F -constant vector field W = aTα + bNα + cBα satisfies ⟨V,W ⟩ = 0 . Hence, α is
a helix with axis V and F -constant vector field W orthogonal to it.

Now, let us consider α a helix with axis V , and suppose there is an F -constant vector field W =

aTα + bNα + cBα satisfying ⟨V,W ⟩ = 0 . Then α is contained in the cylinder Cα,V , which can be locally
parametrized by X(t, z) = β(t) + zV , where β(t) is a plane curve in Cα,V orthogonal to V . Then equations
(2.10) and (2.11) are satisfied, and the condition ⟨V,W ⟩ = 0 implies equation (5.10), since cosφ ̸= 0 (otherwise,
α would be a plane curve). 2

Following a reasoning similar to the one used to prove Proposition 2.3, we can obtain from Theorem 5.2
the following result (which generalizes Proposition 2.3 to the case where θ is not constant). We leave the proof
to the reader.

Proposition 5.3 Let α(s) = X(t(s), z(s)) be an arclength parametrized curve in a cylinder Cβ,V . Then α

satisfies equation (5.10), for a nonconstant function θ ≡ θ(s) , if and only if

t′(s) =
a√

a2 + (−b sin θ + c cos θ)2
,

z′(s) =
−b sin θ + c cos θ√

a2 + (−b sin θ + c cos θ)2
,

κβ(t(s)) = − (b cos θ + c sin θ)θ′

a tan θ
.
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