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Abstract: In this paper, Szabó’s algorithm is used as the main tool to find locally symmetric left invariant Riemannian
metrics on some 4 -dimensional Lie groups. Locally symmetric left invariant Riemannian Lie groups constitute an im-
portant subclass of Riemannian Lie groups with zero-divergence Weyl-tensor the so-called C-manifolds. Some properties
of the curvature operator of these 4-dimensional C-manifolds are studied.
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1. Introduction
A left invariant Riemannian metric on a connected Riemannian manifold is locally symmetric if the covariant
derivative of its Riemannian curvature tensor vanishes. It is well known that the class of locally symmetric Rie-
mannian metrics contains Riemannian metrics with constant sectional curvature, product of locally symmetric
Riemannian metrics, the left invariant Riemannian metrics induced by the opposite of the Killing form on a
connected compacts semisimple Lie groups and so on. A manifold endowed with a locally symmetric Riemannian
metric is a locally symmetric Riemannian space. Cartan in [3, 4] observes that irreducible globally symmetric
spaces are homogeneous spaces G/H where G is a connected simple Lie group, H a compact subgroup of G

and the Riemannian symmetric metric is the G -invariant Riemannian metric induced by the killing form of the
Lie algebra g of G . He used this insight to classify Riemannian symmetric spaces in connection with the theory
of Lie groups [9].

A Lie group G together with a left invariant Riemannian metric g is called a Riemannian Lie group. A
left invariant Riemannian metric g on G induces an inner product g(e) = ⟨ , ⟩ on the Lie algebra g of G and
conversely, any inner product on g gives rise to a unique left invariant Riemannian metric on G .

Let (G, g) be a connected n -dimensional Riemannian Lie group, endowed with Levi-Civita connection
∇ , with Lie algebra g . A R -bilinear function L is called Levi-civita product if

∀u, v ∈ g Luv := (∇ulvl)(e),

where ul and vl are left invariant vector fields associated to u and v . We defined by K the Riemannian
curvature tensor at the identity element e by

∀u, v, w ∈ g K(u, v)w = L[u,v]w − LuLvw + LvLuw.
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The algebraic condition of local symmetricity on (G, g) is therefore equivalent to

[Lem ,K(ei, ej)] = K(Lemei, ej) +K(ei, Lemej), (1.1)

where (e1, e2, · · · , en) is an g(e) -orthonormal basis of the Lie algebra g with respect to the inner product
and [ ] is the commutator.

The above equations induce a system of n3(n− 1)2

4
polynomial equations on the structure constants

of the Lie algebra g .
For connected Lie groups of dimension 1 or 2 , it follows from a direct computation that every left

invariant Riemannian metric is locally symmetric.
For connected Lie groups of dimension 3 , locally symmetric left invariant Riemannian metrics are well

known, see [14].
For 4 -dimensional Riemannian Lie groups, we have from Equation (1.1) a system of 144 polynomial

equations for each of the 12 nonisomorphic associated Euclidean Lie algebra. Those systems are not easy
to handle. In order to avoid the algebraic condition of local symmetricity for these Lie groups, we use the
Szabó’s algorithm as the main tool to split any left Riemannian metric of C -spaces [2] as a direct product of left
invariant metrics on Lie groups of lower dimension. In this paper, we are interested in finding locally symmetric
left invariant Riemannian metrics on some 4 -dimensional connected Lie groups.

The outline of this paper is as follows: Section 2 is devoted to some basic knowledge on the curvature
tensor. In Section 3 , we describe Szabó’s algorithm and recall some main results on locally symmetric
Riemannian Lie groups of dimension 3 . The Szabó’s algorithm is applied to some 4 -dimensional Euclidean Lie
algebra. In Section 4 , we prove Theorem 4.1.

2. Preliminaries
Let (G, g) be an n -dimensional connected Riemannian Lie group and denote by Hinf and H the infinitesimal
holonomy group and the primitive holonomy group at the identity element e of G , respectively. Their Lie
algebras are denoted by hinf and h , respectively. For more details about the holonomy group and his subgroups,
see [12].

2.1. The linear curvature operator

Let x, y, v, w ∈ g . We recall that on the set ∧2g of bivectors of g , the inner product denoted ⟨ , ⟩∧2g is defined
by

⟨x ∧ y, v ∧ w⟩∧2g = ⟨x, v⟩⟨y, w⟩ − ⟨x,w⟩⟨y, v⟩. (2.1)

Let K be the self-adjoint operator called the curvature operator, associated to the symmetric bilinear form K

(Riemannian curvature) on the euclidian space (∧2g, ⟨ , ⟩∧2g ):

⟨K(x ∧ y), v ∧ w⟩∧2g = K(x ∧ y, v ∧ w) := ⟨K(x, y)v, w⟩ = K(x, y, v, w). (2.2)

The relation (2.1) induces a linear isomorphism from the set ∧2g of bivectors to the set o(g) of skew-
symmetric endomorphisms, such that for v ∧ w ∈ ∧2g and x ∈ g ,

ṽ ∧ w(x) = ⟨v, x⟩w − ⟨w, x⟩v. (2.3)
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In the rest of this paper, the skew-symmetric endomorphism associated to a bivector h will be denoted h̃ .

Definition 2.1 [16] Let h be any arbitrary bivector of g .

1. The decomposition
g = U0 ⊕ U1 ⊕ · · · ⊕ Uq, (2.4)

where U0 is the kernel of h̃ and Uk , 1 ≤ k ≤ q are 2-dimensional invariant real planes of the real
operator h̃ , is the Jordan decomposition of the Lie algebra g with respect to h .

2. The number q in the Jordan decomposition is the rank of h .

Remark 2.2 q =
∑

mk where mk is the multiplicity of the nonzero eigenvalue λk = iνk, νk > 0 of h̃ .

Definition 2.3 [16] Let h be any arbitrary bivector. The decomposition

h =

q∑
k=1

vk ∧ wk, (2.5)

where vk, wk ∈ Uk and Uk are the 2-dimensional subspaces of the Jordan decomposition is the Darboux
decomposition or the Darboux normal form of the bivector h .

Remark 2.4 [16] If the multiplicity mk of nonzero eigenvalue λk = iνk of h̃ is greater than one, the Darboux
decomposition is not unique.

Definition 2.5 [16] The eigenvector h ∈ ∧2g of the curvature operator K is said to be irreducible if any
Darboux normal form of h does not split into two nontrivial summands such that they are also eigenvectors of
K .

Let V0 be the subspace of g such that the action of H on V0 is trivial. From [2, 16] the subspace V0
⊥

decomposes into orthogonal, invariant and irreducible subspaces Vi, i > 1 under the action of H such that

g = V0 ⊕ V1 ⊕ V2 ⊕ · · · ⊕ Vk. (2.6)

Here, irreducible means that there are no nontrivial invariant subspace of Vi .

Definition 2.6 [16] The V -decomposition of the Lie algebra g of a connected Riemannian Lie group (G, g) is
an g(e)-orthogonal and irreducible decomposition of g with respect to the primitive holonomy group at e ∈ G .

2.2. The C -spaces Riemannian Lie groups

Definition 2.7 [7, 15, 17] A Riemannian Lie group (G, g) of dimension ≥ 4 is called a C -space if its Weyl
tensor W satisfies divW = 0 .

In the literature, there are some classifications of the metrics Lie algebras of 4 -dimensional C -spaces (see
[7, 15, 17] for more details). Table 1 below gives the Lie algebras and the structure constants in an orthonormal
basis (e1, e2, e3, e4) , for 4 -dimensional Riemannian Lie groups with respect to their structure constants and the
spectrum of the curvature operator.
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2.3. Some main results on Riemannian Lie groups of dimension n ≤ 3

An Euclidian 4 -dimensional Lie algebra on which Szabò’s algorithm is effective, splits into a direct sum (as
linear spaces), of nontrivial Lie algebras both of dimension 2 or dimension 1 and 3 . Riemannian Lie groups of
dimension 1 and 2 are locally symmetric Riemannian manifolds. The structure constants of the Lie algebra of
a 3 -dimensional locally symmetric Riemannian Lie group satisfy the following conditions:

Proposition 2.8 [14] Let G be a connected 3-dimensional real unimodular Lie group with left-invariant
Riemannian metric. (G, g) is a locally symmetric Riemannian Lie group if and only if in the Lie algebra g

of G , there exists an g(e) = ⟨ , ⟩-orthonormal basis (e1, e2, e3) in which the brackets of the Lie algebra are
presented in Table 2 .

Table 2. 3 -dimensional unimodular case.

Lie algebra Structure constants Restrictions
R3 [e1, e2] = [e2, e3] = [e1, e3] = 0

R2 o so(2) [e1, e2] = ae3, [e3, e1] = ae2 a > 0

su(2) [e1, e2] = ae3, [e2, e3] = ae1, [e3, e1] = ae2 a > 0

Proposition 2.9 [14] Let G be a connected 3-dimensional real nonunimodular Lie group with left-invariant
Riemannian metric. (G, g) is a locally symmetric Riemannian Lie group if and only if in the Lie algebra g

of G , there exist an g(e) = ⟨ , ⟩-orthonormal basis (e1, e2, e3) in which the brackets of the Lie algebra are
presented in Table 3 .

Table 3. 3 -dimensional nonunimodular case.

Lie algebra Structure constants Restrictions
gI [e1, e2] = ae2, [e1, e3] = ae3 a > 0

gD [e1, e2] = ae2 + be3, [e1, e3] = −be2 + ae3 a > 0, b > 0, D ̸= 0

g0 [e1, e2] = ae2 a > 0

For more details on locally symmetric left invariant 3 -dimensional riemannian Lie groups, see [14].

3. Szabó’s algorithm
3.1. Szabó’s algorithm proof

Let h be an irreducible eigenvector of K with nonnull eigenvalue. h̃ leaves the invariant and irreducible
subspaces of the orthogonal V -decomposition invariant. Thus, we have the following proposition:

Proposition 3.1 Let h be an irreducible eigenvector of a nonzero eigenvalue of K , the nontrivial invariant
subspace

H1 = U1 ⊕ U2 ⊕ · · · ⊕ Uq

of h̃ is contained in a unique invariant and irreducible subspace of the V -decomposition.
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Proof Let g = U0 ⊕ U1 ⊕ · · · · · · ⊕ Uq be the Jordan decomposition of g with respect to h̃ and g =

V0 ⊕ V1 ⊕ · · · · · · ⊕ Vk a V−decomposition of g such that U1 ⊂ V1 . Suppose that for j > 1, Uj is a subset of
one of the subspaces Vi, for some i > 1 . The equation λh = K(h) is equivalent to

λv1 ∧ w1 −K(v1 ∧ w1) = −λ

q∑
j=2

vj ∧ wj +

q∑
j=2

K(vj ∧ wj). (3.1)

The skew-symmetric linear operator associated to the left hand side and the right hand side of Equation (3.1)
satisfies the relation

λ ˜v1 ∧ w1 −K(v1, w1) = −λ

q∑
j=2

ṽj ∧ wj +

q∑
j=2

K(vj , wj). (3.2)

Let u =
k∑

s=0
us be the decomposition of u with respect to the V -decomposition. Since K(ui, wi) and ũi ∧ wi

are linear operators on Vi and K(ui, wi)(vj) = 0 for all ui, wi ∈ V i and vj ∈ Vj with i ̸= j , we have

K(v1, w1)(u) = K(v1, w1)(u1) ∈ V1, λ ˜v1 ∧ w1(u) ∈ V1,

λ

q∑
j=2

ṽj ∧ wj(u) = λ

q∑
j=2

(⟨vj , u⟩wj − ⟨wj , u⟩vj) ∈
q⊕

j=2

Vj

and
q∑

j=2

K(vj , wj)(u) =

q∑
j=2

K(vj , wj)(uj) ∈
q⊕

j=2

Vj .

For all u ∈ g , 
K(v1, w1)(u)− λ ˜v1 ∧ w1(u) ∈ V1 ∩

q⊕
j=2

Vj = {0}
q∑

j=2

K(vj , wj)(u)− λ
q∑

j=2

ṽj ∧ wj(u) ∈ V1 ∩
q⊕

j=2

Vj = {0}
,

thus 
K(v1 ∧ w1) = λ v1 ∧ w1

K(
q∑

j=2

vj ∧ wj) = λ
q∑

j=2

vj ∧ wj
. (3.3)

It follows that the eigenvector h splits into two nontrivial sum such that they are also eigenvectors of K . This
contradicts the irreducibility of h . 2

Let {h1, h2, · · · , hρ, hρ+1, · · · , hn(n−1)
2

} be a system of linearly independent irreducible eigenvectors of K

which form a basis of ∧2g and assume that just the first ρ vectors are corresponding to nonzero eigenvalues.
Therefore, h is the free Lie algebra on {h̃1, h̃2, · · · , h̃ρ} .

For irreducible bivectors hk , 1 ≤ k ≤ ρ , let us consider the Jordan decomposition

g = Uk0 ⊕ Uk1 ⊕ Uk2 ⊕ · · · ⊕ UkNk
,
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where Uk0 is the kernel of h̃k , Ukl, l ∈ {1, 2, · · · , Nk} ⊂ N the real h̃k invariant 2 -plan in the Jordan
decomposition and Nk the rank of hk . Let

H0
k = Uk0 and H1

k = Uk1 ⊕ Uk2 ⊕ · · · ⊕ UkNk
, (3.4)

We have
h̃kH

0
k = 0, and h̃kH

1
k ⊂ H1

k .

Let us choose an arbitrary vector hk1
, 1 ≤ k1 ≤ ρ , and consider its subspaces H0

k1
and H1

k1
constructed

above. H1
k is a nontrivial linear subspace of a unique Vi, i > 0 of the V -decomposition.

Proposition 3.2 If for any hi , i ̸= k1 the relation H1
k1

⊆ H0
i holds, then H1

k1
= Vi .

Proof For all real number t , exp

(
t

ρ∑
i=1

αih̃i

)
= Id+

∞∑
i=1

tk

k!

(
ρ∑

i=1

αih̃i

)k

∈ He.

By the above, the ( ·)-action of H on H1
k is completely determined by the action of the generators

h̃1, h̃2, · · · , h̃ρ of the free Lie algebra he on H1
k . The image of H1

k by
ρ∑

i=1

αih̃i is a linear subspace of H1
k ,

written
α1h̃1 ·H1

k + α2h̃2 ·H1
k + · · ·+ αkh̃k ·H1

k + · · ·+ αρh̃ρ ·H1
k ⊂ H1

k .

Suppose that αj h̃j ·H1
k is trivial with j ̸= k , i.e. H1

k ⊂ H0
j for j ∈ {1, 2, · · · , ρ} and j ̸= k . Then H1

k is one
of the subspace Vi, i > 0 of the V -decomposition. 2

Proposition 3.3 Let h1 and h2 be two irreducible eigenvectors with nonzero eigenvalue of K . If H1
1 * H0

2 ,
then H1

1 +H1
2 is contained in a unique invariant and irreducible subspace of the V−decomposition.

Proof Let h1 =
N1∑
i=1

vi ∧ wi and h2 =
N2∑
s=1

v′s ∧ w′
s be the Darboux normal form of h1 and h2 , respectively.

We suppose that
H1

1 ⊂ Vk and H1
2 ⊂ Vl with k ̸= l.

Let x =
N1∑
i=1

(αivi + βiwi) ∈ H1
1 , x is an element of Vk and we have:

h̃2(x) =

N2∑
s=1

N1∑
i=1

αiv
′
s ∧ w′

s(vi) +

N2∑
s=1

N1∑
i=1

βiv
′
s ∧ w′

s(wi)

=

N2∑
s=1

N1∑
i=1

αi(⟨v′s, vi⟩w′
s − ⟨w′

s, vi⟩v′s) +
N2∑
s=1

N1∑
i=1

βi(⟨v′s, wi⟩w′
s − ⟨w′

s, wi⟩v′s)

= 0.

In fact, ⟨u, v⟩ = 0 for all u ∈ Vk , v ∈ Vl , since the V -decomposition is an orthogonal decomposition. Thus,

x ∈ ker h̃2 and H1
1 ⊂ ker h̃2 = H0

2 . This contradicts the fact that H1
1 * H0

2 . Therefore Vk = Vl . 2
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Remark 3.4 The distribution (Vi) of g is not always involutive.

Let Vi, i > 0 be a linear subspace given by the V - decomposition . Let us consider for i > 0 , the subspaces

Zi = Span{u1, Lu1
u2, Lu1

Lu2
u3, · · · , Lu1

Lu2
· · ·Lul

ul+1, ui ∈ Vi, l ∈ N \ {0}}

of g and Z0 the complete subspace in g which is totally orthogonal to the space Z1 + Z2 + · · ·+ Zk.

Remark 3.5 Z0 ⊂ V0, Vi ⊂ Zi and HinfZi ⊂ Zi.

We have the orthogonal splitting

g = Z0 ⊕ Z1 ⊕ Z2 ⊕ · · · ⊕ Zk. (3.5)

See [16]. It is a decomposition of the Lie algebra g into invariant and irreducible subspaces with respect to the
infinitesimal holonomy group at e .

Definition 3.6 [16]
The splitting (3.5) is called a Z -decomposition of the Lie algebra g of a connected Riemannian Lie group

(G, g) .

Proposition 3.7 [16] The subspaces Zi induce on G a totally parallel distribution. Thus they are involutive,
and the integral manifolds are totally geodesic.

Remark 3.8

1. If (G, g) is locally symmetric Riemannian Lie group, then Vi = Zi , since Hinf = H and Vi is a nonnull
H -invariant subspace of H -irreducible subspace Zi ;

2. Zj , j ≥ 0 is a Lie subalgebra of g .

Proposition 3.9 [1, 5, 10, 12] If an Euclidean Lie algebra g admits a Z -decomposition, then the associated
connected Riemannian Lie group (G, g) splits into a direct product of Riemannian immersed Lie subgroups of
G .

3.2. Steps of Szabó’s algorithm
Step 1: V-decomposition of the Euclidean Lie algebra g

1. i) HH1
k1

⊆ H1
k1

so that H1
k1

is a nontrivial H -invariant subspace of Vk;

ii) H acts irreducibly on Vk .

Therefore H1
k1

= Vk, k > 0 is one of the subspaces of the V -decomposition.

2. If there exist vectors hk2
, hk3

, · · · , hkl
with 1 ≤ ki ≤ ρ , such that H1

k1
* H0

ki
holds for each ki ,

(a) either , if for any hi , i /∈ {k2, k3, · · · , kl} , the relation H1
k1

+H1
k2

+ · · · +H1
kl

⊆ H0
i holds. Then

H1
k1

+H1
k2

+ · · ·+H1
kl

is the subspace Vk of the V -decomposition,
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(b) or, there exist hi, i /∈ {k2, k3, · · · , kl} such that H1
k1
+H1

k2
+ · · ·+H1

kl
* H0

i . Therefore, we extend
the system H1

k1
+H1

k2
+ · · ·+H1

kl
with the elements H1

i .

This process can be repeated for H1
k1

+ H1
k2

+ · · · + H1
kl

+ H1
i until we obtain the maximal system

hk1
, hk2

, · · · , hkj
such that:

• For every index i, 1 ≤ i ≤ j , there is another index i′, 1 ≤ i′ < i with H1
ki′

* H0
ki

.

• For every index i /∈ {k1, k2, · · · , kj} , we get the relation H1
ks

⊆ H0
i s ∈ {1, 2, · · · , j} .

Then Vk = H1
k1

+H1
k2

+ · · ·+H1
kj
, k > 0 .

3. By continuing the procedure we can construct all other invariant subspaces Vk, k > 0 .

Step 2: Z-decomposition of the Euclidean Lie algebra g

Construct all the invariant subspaces Zk, k ≥ 0 .

4. Applications of Szabó’s algorithm
We apply Szabó’s algorithm on the euclidian Lie algebras of 4 -dimensional C - spaces Riemannian Lie groups.
Precisely we have the following.

Theorem 4.1 Let (G, g) be a 4-dimensional connected Riemannian Lie group. If the metric Lie algebra
(g, g(e) = ⟨ , ⟩) belongs to Table 4 below, then g is locally symmetric.

Proof According to the classification table of 4 -dimensional Riemannian Lie groups with nonnull harmonic
Weyl tensor, see Table 1, we compute the matrix of the curvature tensor in the basis (e1∧e2, e1∧e3, e1∧e4, e2∧
e3, e2 ∧ e4, e3 ∧ e4) , where (e1, e2, e3, e4) is an orthonormal basis of g .

1. The Lie algebra A2 ⊕ 2A1 .

For this Lie algebra, the nonnull components of the curvature tensors are:

K(e1, e2)e1 = −(a2 + 3
4b

2)e2, K(e1, e4)e1 = 1
4b

2e4, K(e2, e4)e2 = 1
4b

2e4,
K(e1, e2)e2 = (a2 + 3

4b
2)e1, K(e1, e4)e4 = − 1

4b
2e1, K(e2, e4)e4 = − 1

4b
2e2

.

Linear curvature operator K is diag
(
−(a2 + 3

4b
2), 0, 1

4b
2, 0, 1

4b
2, 0

)
.

Case I : b ̸= 0

The eigenvectors h1 = e1 ∧ e2, h2 = e1 ∧ e4, h3 = e2 ∧ e4 associated respectively to nonnull
eigenvalues −(a2 + 3

4b
2), 1

4b
2, 1

4b
2 are irreducible. H0

1 = Span{e3, e4}, H1
1 = Span{e1, e2} ,

H0
2 = Span{e2, e3} , H1

2 = Span{e1, e4} , H0
3 = Span{e1, e3} and H1

3 = Span{e2, e4} .

H1
1 * H0

2 and H1
1 * H0

3 . The subspace V1 = H1
1 + H1

2 + H1
3 = Span{e1, e2, e4} is one of subspaces

Vj , j > 0 and the V -decomposition of A2 ⊕ 2A1 is A2 ⊕ 2A1 = V0 ⊕ V1, where V0 = Span{e3} . The
Z -decomposition of A2 ⊕ 2A1 with b ̸= 0 is

A2 ⊕ 2A1 = Z0 ⊕ Z1,
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Table 4. Szabó’s decomposition Lie Algebra.

Lie algebras Structure constants Results obtained

A2 ⊕ 2A1 C2
1,2 = a, a > 0

Szabó’s algorithm effective
locally symmetric

2A2
C2

1,2 = a, C4
3,4 = b

a > 0, b > 0

Szabó’s algorithm effective
locally symmetric

Aα,β
4,6

Weyl tensor W ̸= 0

α ̸= 0, β ≥ 0, α ̸= 1, a > 0

C1
1,4 = αa, C3

2,4 = −C2
3,4 = −a

Szabó’s algorithm effective
locally symmetric

A3,9 ⊕ A1

a > 0

C2
1,3 = a

√
1 +m2

C3
1,2 = C1

2,3 = −a
√
1 +m2

C1
2,4 = −C2

1,4 = am
√
1 +m2

Szabó’s algorithm effective
locally symmetric

A3,3 ⊕ A1

a > 0
C1

1,3 = C2
2,3 = a

Szabó’s algorithm effective
locally symmetric

Aα
3,7 ⊕ A1

a > 0, α > 0

C1
1,3 = C2

2,3 = αa

C1
2,3 = −C2

1,3 = a

Szabó’s algorithm effective
locally symmetric

A4,12

a > 0, d > 0

C1
1,3 = C2

2,3 =
√
a2 + b2

C1
2,4 = −C2

1,4 = a d√
a2+b2

C1
2,3 = −C2

1,3 = b d√
a2+b2

Szabó’s algorithm effective
locally symmetric

where Z1 = Span{e1, e2, e4} and Z0 = Span{e3} .

For the Lie algebra Z1, the Lie brackets are

[e2, e1] = −ae1 − be4, [e2, e4] = 0, [e1, e4] = 0.

Moreover [Z0, Z1] = {0} .

For this decomposition, left invariant Riemannian metric induced by the restriction of the inner product
⟨ , ⟩ on the 3 -dimensional Lie algebra Z1 is not locally symmetric by proposition 2.8 or 2.9.

Therefore if b ̸= 0 , then A2 ⊕ 2A1 does not admit locally symmetric metric.

Case II : b = 0 .

The eigenvector h1 = e1 ∧ e2 associated to the nonnull eigenvalue −a2 is irreducible. H0
1 = Span{e3, e4}

and H1
1 = Span{e1, e2} . The subspace V1 = Span{e1, e2} is one of the subspaces Vj , j > 0 . The V -

decomposition is A2 ⊕ 2A1 = V0 ⊕ V1, where V0 = Span{e3, e4} . The Z -decomposition of A2 ⊕ 2A1 with
b = 0 is

A2 ⊕ 2A1 = Z0 ⊕ Z1,

where Z1 = Span{e1, e2} and Z0 = Span{e3, e4} .

In addition, Z0 is a 2 -dimensional abelian Lie algebra and [Z0, Z1] = {0} .

For this decomposition, left invariant Riemannian metrics induced by the restriction of the inner product
⟨ , ⟩ on the 2 -dimensional Lie algebras Z0 and Z1 are locally.
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Therefore if b = 0 , then A2 ⊕ 2A1 admit locally symmetric metric.

2. The Lie algebra 2A2 .

The matrix of the curvature operator is [K] = diag(−a2, 0, 0, 0, 0,−b2). For the nonnull eigenvalue −a2

and −b2 of [K] , the associated and irreducible eigenvectors are h1 = e1 ∧ e2 and h2 = e3 ∧ e4 . Therefore
H0

1 = Span{e3, e4} , H1
1 = Span{e1, e2} , H0

2 = Span{e1, e2} , and H1
2 = Span{e3, e3} .

i) H1
1 ⊂ H0

2 ; therefore, H1
1 is one of the subspaces Vj , j > 0 in the V -decomposition.

ii) H1
2 ⊂ H0

1 ; hence, H1
2 is one of the subspaces Vi, i > 0 in the V -decomposition.

Setting V1 = H1
1 and V2 = H1

2 , the V -decomposition of 2A2 is 2A2 = V1 ⊕ V2 and the Z -decomposition
is

2A2 = Z1 ⊕ Z2,

where Z1 = Span{e1, e2} and Z2 = Span{e3, e4}.

The components Z1 and Z2 of the Z -decomposition satisfy [Z1, Z2] = {0} . Moreover, the left invariant
Riemannian metrics induced by the restriction on Zi, i ∈ {1, 2} of the inner product ⟨ , ⟩ are locally
symmetric since dimZ1 = dimZ2 = 2 . Thus, the metric g is locally symmetric.

3. The Lie algebra Aα,β
4,6 , α ̸= 1 .

The nonnull structure constants are C1
1,4 = αa, C3

2,4 = −a, C2
3,4 = a, a > 0 and the matrix of the

curvature tensor linear operator is [K] = diag(0, 0,−(αa)2, 0, 0, 0). For the nonnull eigenvalue −(αa)2 of
[K] , the associated irreducible eigenvector is h1 = e1 ∧ e4 . The Z -decomposition is

g = Z0 ⊕ Z1,

where Z1 = Span{e1, e4} and Z0 = Span{e2, e3} . On the other hand, the left invariant Riemannian
metrics induces by the restriction on Zi, i ∈ {0, 1} of the inner product ⟨ , ⟩ are locally symmetric, since
dimZ0 = dimZ1 = 2 . Therefore, the metric g is locally symmetric. Also [Z0, Z1] = Z0 and Z0 is an
abelian Lie algebra.

4. The Lie algebra A3,3 ⊕ A1 :

The matrix of the linear curvature operator K is diag(−a2, −a2, 0, −a2, 0, 0, ) . The eigenvectors
h1 = e1∧e2, h2 = e1∧e3, h3 = e2∧e3 associated respectively to nonzero eigenvalues −a2, −a2, −a2

are irreducible. By direct computation, the Z -decomposition of A3,3 ⊕ A1 is

A3,3 ⊕ A1 = Z0 ⊕ Z1,

where Z1 = Span{e1, e2, e3} Z0 = Span{e4} .

For the Lie algebra Z1, the Lie brackets are

[e3, e1] = −ae1 + 0e2, [e3, e2] = 0e1 − ae2, and [e1, e2] = 0.

Furthermore, [Z0, Z1] = {0} .
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The restriction of the inner product ⟨ , ⟩ on Z1 induces a locally symmetric left invariant Riemannian
metric by proposition 2.8. Therefore the inner product ⟨ , ⟩ on A3,3 ⊕A1 is locally symmetric as product
of locally symmetric left invariant metrics.

For other Lie algebras, A3,9 ⊕ A1 , Aα
3,7 ⊕ A1 , and A4,12, the irreducible eigenvectors associated to

nonnull eigenvalues are h1 = e1 ∧ e2, h2 = e1 ∧ e3 and h3 = e2 ∧ e3. By direct computation, the
Z -decomposition is

g = Z0 ⊕ Z1,

where Z0 = {e4} and Z1 = Span{e1, e2, e3} . The Lie brackets on the 3 -dimensional components Z1 of
the above Lie algebras are as follows:

(a) For A3,9 ⊕ A1 ,

[e1, e2] = −a
√
1 +m2 e3, [e2, e3] = −a

√
1 +m2 e1, [e3, e1] = −a

√
1 +m2 e2.

Moreover, [Z0, Z1] ⊂ Z1 .

(b) For Aα
3,7 ⊕ A1 ,

[e3, e1] = −αa e1 + a e2, [e3, e2] = −ae1 − αae2, [e1, e2] = 0.

and it holds that [Z0, Z1] = {0} .

(c) For A4,12 ,

[e3, e1] = −
√

a2 + b2 e1 +
bd√

a2 + b2
e2, [e3, e2] = − bd√

a2 + b2
e1 −

√
a2 + b2e2,

[e1, e2] = 0.

We also have [Z0, Z1] ⊂ Z1 .
For each of these Lie algebras, the left invariant Riemannian metrics induced by the restriction of the
inner product ⟨ , ⟩ on Z1 are locally symmetric by Propositions 2.8 and 2.9. Therefore, the metrics
g are locally symmetric.

2

5. Conclusion
We point out a rich and complete important class of examples of 4 -dimensionnal locally symmetric Riemannian
manifolds: the 4 -dimensional locally symmetric Riemannian Lie groups which are decomposable with respect
to the infinitesimal holonomy group into a product of locally symmetric Riemannian Lie groups of lower
dimension. For 4 -dimensionnal metric Lie algebras Aα,β

4,5 (αβ ̸= 0 , −1 ≤ α ≤ β ≤ 1),Aα,β
4,6 (α ̸= 0 , β > 0

and W ̸= 0),A3,6 ⊕ A1 and 4A1 of C -spaces Riemannian Lie groups, the Szabó’s algorithm is not effective.
But, the associated left invariant Riemannian metrics are locally symmetric since their sectional curvatures
are constants. For the remaining metric Lie algebras Aβ

4,9 , Aα,
4,11 (α > 0) and A3,3 ⊕ A1 (b ̸= 0) of C -

spaces Riemannian Lie groups, only the direct computation of algebraic condition of locally symmetricity seems
afordable. But this method is very tedious.
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