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Abstract: For any two non-empty (disjoint) chains X and Y , and for a fixed order-preserving transformation
θ : Y → X , let GO(X,Y ; θ) be the generalized order-preserving transformation semigroup. Let O(Z) be the order-
preserving transformation semigroup on the set Z = X∪Y with a defined order. In this paper, we show that GO(X,Y ; θ)

can be embedded in O(Z, Y ) = {α ∈ O(Z) : Zα ⊆ Y } , the semigroup of order-preserving transformations with
restricted range. If θ ∈ GO(Y,X) is one-to-one, then we show that GO(X,Y ; θ) and O(X, im(θ)) are isomorphic
semigroups. If we suppose that |X| = m , |Y | = n , and |im(θ)| = r where m,n, r ∈ N , then we find the rank of
GO(X,Y ; θ) when θ is one-to-one but not onto. Moreover, we find lower bounds for rank(GO(X,Y ; θ)) when θ is
neither one-to-one nor onto and when θ is onto but not one-to-one.

Key words: Generalized order-preserving transformation semigroup, the semigroup of order-preserving transformations
with restricted range, generating set, rank

1. Introduction
A full transformation on a non-empty set X is a self-mapping on X . The set of all transformations on X

forms a semigroup T (X) under the composition ◦ of transformations, which is called the (full) transformations
semigroup on X . For a non-empty chain X , a transformation α ∈ T (X) is called order-preserving if x1 ≤ x2

implies x1α ≤ x2α for all x1, x2 ∈ X . If we denote the set of all order-preserving transformations on X by
O(X) , then O(X) is a subsemigroup of T (X) , which is called the order-preserving transformations semigroup
on X . For non-empty (disjoint) sets X and Y , let T (Z) be the full transformation semigroup on the set
Z = X ∪ Y . Then it is clear that the set T (Z, Y ) = {α ∈ T (Z) : im(α) ⊆ Y } is a subsemigroup of T (Z) ,
which is called a semigroup of transformations with restricted range. T (Z, Y ) was introduced by Symons in
[20]. Since then, there have been many kinds of research on transformation semigroups with restricted range
(see, for examples [5, 14, 18]). Note that T (Z, Y ) is not regular in general. Sanwong and Sommanee proved in
[15] that the set F (Z, Y ) = {α ∈ T (Z) : im(α) = Y α} , is the largest regular subsemigroup of T (Z, Y ) , where
Y α = {yα : y ∈ Y } . For any non-empty (disjoint) sets X and Y , let GT (X,Y ) denote the set of all (full)
transformations from X to Y . For a fixed transformation θ : Y → X , Magill defined a so-called sandwich
operation ∗ on GT (X,Y ) as follows:

α ∗ β = α ◦ θ ◦ β for α, β ∈ GT (X,Y )
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in [13]. With this operation, GT (X,Y ) is also a semigroup which is called a generalized transformation
semigroup, and denoted by GT (X,Y ; θ) . It is well known the analogue of Cayley’s theorem for finite groups,
that is every finite semigroup is isomorphic to a subsemigroup of a suitable finite transformation semigroup.
Hence the transformation semigroups and their generalizations have an important role in Semigroup Theory.
As on T (X) , there have been many kinds of research on generalized transformation semigroups in the literature
(see, for examples [1, 11, 16, 17, 19]). For a fixed element a of a semigroup S , if we define a sandwich operation
⋆a by x ⋆a y = x · a · y for all x, y ∈ S , then (S, ⋆a) is a semigroup, and this semigroup is called the variant of
S with respect to a and denoted by Sa . In [1, Lemma 2.1], it is shown that GT (X,Y ; θ) can be embedded in
T (X ∪Y, Y ) = {α ∈ T (X ∪Y ) : (X ∪Y )α ⊆ Y } (see, for a different embedding [16, Theorem 2.3 ]). Moreover,
if θ : Y → X is one-to-one, it is shown that GT (X,Y ; θ) and T (X, im(θ)) are isomorphic semigroups in [1,
Theorem 2.2].

For any non-empty (disjoint) chains (X,≤1) and (Y,≤2) , a transformation α ∈ GT (X,Y ) is called
order-preserving if x1 ≤1 x2 implies x1α ≤2 x2α for all x1, x2 ∈ X . Let GO(X,Y ) denote the set of all order-
preserving transformations from X to Y . As above, for a fixed order-preserving transformation θ : Y → X , we
define a sandwich operation ∗ on GO(X,Y ) by α ∗ β = α ◦ θ ◦ β for all α, β ∈ GO(X,Y ) . With this operation,
it is clear that GO(X,Y ) is also a semigroup which is called a generalized order-preserving transformations
semigroup, and denoted by GO(X,Y ; θ) . If X = Y , then GO(X,Y ; θ) is denoted by O(X; θ) , and also if
θ ∈ O(X) is the identity transformation on X , then it is clear that O(X; θ) = O(X) . For a fixed order-
preserving transformation θ : Y → X , we define an order on the set Z = X ∪ Y as follows: For all z1, z2 ∈ Z ,

z1 ≤ z2 if and only if


z1 ≤1 z2 and z1, z2 ∈ X,
z1 ≤2 z2 and z1, z2 ∈ Y,
z1 ≤1 z2θ and z1 ∈ X, z2 ∈ Y,
z1θ ≤1 z2, z1θ ̸= z2 and z1 ∈ Y, z2 ∈ X.

(1.1)

Now it is clear that Z is a chain with this order, and denoted by (Z,≤) . For example, if X = {1 < 2 < 3 <

4 < 5} , Y = {6 < 7 < 8 < 9} and θ =

(
6 7 8 9
1 3 3 4

)
, then

Z = {1 < 6 < 2 < 3 < 7 < 8 < 4 < 9 < 5}.

Let O(Z) denote the full order-preserving transformations semigroup on the chain (Z,≤) . In this paper,
we are interested in generalized order-preserving transformations semigroup GO(X,Y ; θ) and semigroups of
order-preserving transformations with restricted range. In [12, Theorem 3.1], the regularity of the semigroup
GO(X,Y ; θ) is characterized. Further, they provided necessary and sufficient conditions for GO(X,Y ; θ) to be
isomorphic to O(X) and O(Y ) , respectively. For any non-empty (disjoint) chains (X,≤1) and (Y,≤2) , let
O(Z) be the order-preserving transformations semigroup on the chain Z = X ∪ Y with the order defined in
(1.1). Then the subsemigroup

O(Z, Y ) = {α ∈ O(Z) : Zα ⊆ Y }

is a semigroup of order-preserving transformations with restricted range. O(Z, Y ) is not regular in general.
Fernandes et al. proved in [6] that the set

FO(Z, Y ) = {α ∈ O(Z) : Zα = Y α},
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consisting of all regular elements in O(Z, Y ) , is the largest regular subsemigroup of O(Z, Y ) .
For any non-empty subset A of a semigroup S , the subsemigroup generated by A , that is the smallest

subsemigroup of S containing A , is denoted by ⟨A⟩ . If there exists a finite subset A of S such that ⟨A⟩ = S ,
then S is called a finitely generated semigroup. The rank of a finitely generated semigroup S is defined by

rank(S) = min{ |A| : ⟨A⟩ = S }.

One of the most important research areas in computational algebra is to find a (minimal) generating set for
some important algebraic structures such as regular semigroups and some transformation semigroups (see, for
examples [2–4, 7, 9, 15]). Let Y = {y1 < y2 < · · · < yn} be a finite chain, and let V be any subset of Y . Then
an element v of V is called captive if either v ∈ {y1, yn} or v = yi for 2 ≤ i ≤ n − 1 and yi−1, yi+1 ∈ V .
The set of all captive elements of V is denoted by V ♯ . For example, if Y = {1 < 2 < 3 < 4 < 5 < 6} , and
if U = {2 < 3 < 5} , V = {1 < 3 < 4 < 5} and W = {1 < 2 < 3 < 6} , then U ♯ = ∅ , V ♯ = {1, 4} and
W ♯ = {1, 2, 6} . In [6, Theorem 4.3], the rank of O(Z, Y ) was computed. In particular, if |Z| = m and |Y | = n ,
then the authors proved that

rank(O(Z, Y )) =

(
m− 1
n− 1

)
+ |Y ♯|,

where Y ♯ denotes the set of all captive elements of Y (For unexplained terms in semigroup theory, see [8, 10].)
In the following section, for non-empty (disjoint) chains X and Y , we show that GO(X,Y ; θ) can

be embedded in O(X ∪ Y, Y ) . If θ : Y → X is one-to-one, we show that GO(X,Y ; θ) and O(X, im(θ))

are isomorphic semigroups. If |X| ≥ |Y | , then GO(X,Y ; θ) is isomorphic to O(X, im(ρ))Θ , the variant of
O(X, im(ρ)) with respect to Θ , defined in Equation (2.1).

For m,n, r ∈ N , let |X| = m , |Y | = n , and |im(θ)| = r . In the last section, if θ is neither onto nor
one-to-one, i.e. r < m and r < n , first we show that

rank(GO(X,Y ; θ)) ≥
min{m,n}∑
s=r+1

(
m− 1
s− 1

)(
n
s

)

Moreover, if θ is onto but not one-to-one, i.e. r = m < n , we show that

rank(GO(X,Y ; θ)) ≥
(

n
m

)
.

Finally, let θ : Y → X be one-to-one but not onto, i.e. r = n < m . Since we prove in Theorem 2.2 that
GO(X,Y ; θ) and O(X, im(θ)) are isomorphic, it follows from [6, Theorem 4.3] that

rank(GO(X,Y ; θ)) =

(
m− 1
r − 1

)
+ (imθ)♯

where (imθ)♯ is the set of all captive elements of imθ . Moreover, if θ : Y → X is both one-to-one and onto,
then since GO(X,Y ; θ)) and O(X) are isomorphic, we conclude that

rank(GO(X,Y ; θ)) = rank(O(X)) =|X|+ 1 = m+ 1

for m ≥ 2 .
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2. Some connections
For non-empty (disjoint) chains (X,≤1) and (Y,≤2) , let θ be any fixed order-preserving transformation from Y

to X . In this section, we investigate some connections between the generalized order-preserving transformations
semigroup GO(X,Y ; θ) and the semigroup of order-preserving transformations with restricted range O(Z, Y )

where Z = X ∪ Y is the chain with the order defined in (1.1). With these notations, since the proof is slightly
different we state and prove the following lemma which is similar to Lemma 2.1 in [1].

Lemma 2.1 GO(X,Y ; θ) can be embedded in O(X ∪ Y, Y ) .

Proof Let Z = X ∪ Y . For each α ∈ GO(X,Y ; θ) , consider the transformation α̂ ∈ O(Z, Y ) defined by

xα̂ =

{
xα if x ∈ X

(xθ)α if x ∈ Y.

For any x, y ∈ Z with x ≤ y , we show that α̂ is an order-preserving transformation in the following four cases.
Case 1: Suppose that both x, y ∈ X . Then, since x ≤1 y and α ∈ GO(X,Y ; θ) , we have xα̂ = xα ≤2 yα = yα̂ ,
and so from (1.1), xα̂ ≤ yα̂ .
Case 2: Suppose that both x, y ∈ Y . Then, since x ≤2 y and θ ∈ GO(Y,X) , we have xθ ≤1 yθ , and similarly,
xα̂ = (xθ)α ≤2 (yθ)α = yα̂ , and so from (1.1), xα̂ ≤ yα̂ .
Case 3: Suppose that x ∈ X and y ∈ Y . Similarly, we have x ≤1 yθ , and then, xα̂ = xα ≤2 (yθ)α = yα̂ , and
so xα̂ ≤ yα̂ .
Case 4: Suppose that y ∈ X and x ∈ Y . This time, we have xθ ≤1 y , xθ ̸= y , and then, xα̂ = (xθ)α ≤2 yα =

yα̂ , and so xα̂ ≤ yα̂ , as required.

As shown in the proof of Lemma 2.1 in [1], it is similar to show that α̂ ∗ β = α̂ ◦ β̂ for all α, β ∈
GO(X,Y ; θ) . Moreover, it is similar to show that the map ψ : GO(X,Y ; θ) → O(Z, Y ) defined by αψ = α̂ for
all α ∈ GO(X,Y ; θ) is a one-to-one homomorphism.□

Since the cardinalities of the semigroups GO(X,Y ; θ) and O(Z, Y ) are different in general, ψ is not onto.
We suppose that |X| ≥ |Y | for the rest of this section.

Theorem 2.2 If θ ∈ GO(Y,X) is one-to-one, then GO(X,Y ; θ) is isomorphic to O(X, im(θ)) . In particular,
if θ is both one-to-one and onto, then GO(X,Y ; θ) is isomorphic to O(X) .

Proof Let the map φ : GO(X,Y ; θ) → O(X, im(θ)) be defined by αφ = α ◦ θ for each α ∈ GO(X,Y ; θ) .
Suppose that for x, y ∈ X , x ≤1 y . Since α ∈ GO(X,Y ; θ) , we have xα ≤2 yα , and since θ ∈ GO(Y,X) , we
have (xα)θ ≤1 (yα)θ , and so αφ = α ◦ θ ∈ O(X, im(θ)) . Then, as shown in the proof of Theorem 2.2 in [1], it
is similar to show that φ is a one-to-one homomorphism.

Now consider the map θ̌ : Y → im(θ) defined by yθ̌ = yθ for all y ∈ Y . Then it is clear that θ̌ is one-to-
one, onto and order-preserving, and that the inverse θ̌−1 of θ̌ is also one-to-one, onto and order-preserving. For
each β ∈ O(X, im(θ)) and for all x, y ∈ X , if x ≤1 y , then we have xβ ≤1 yβ , and so (xβ)θ̌−1 ≤2 (yβ)θ̌−1 .
Thus β ◦ θ̌−1 ∈ GO(X,Y ) , and similarly, (β ◦ θ̌−1)φ = β . Therefore, φ is onto, and so an isomorphism. Since
O(X,X) = O(X) , the proof is completed. □

For any mapping θ : Y → X , it is shown in [1] that there exists a one-to-one mapping ρ : Y → X such
that im(θ) ⊆ im(ρ) . If both X and Y are infinite, this is not true for order-preserving cases in general. However,
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if Y is finite, there exists a one-to-one and order-preserving mapping ρ : Y → X such that im(θ) ⊆ im(ρ) .
Indeed, suppose that Y = {y1 < · · · < yn} and that |im(θ)| = r . Since r ≤ n ≤ |X| , there exist x1, . . . , xn ∈ X

such that x1 < · · · < xn and im(θ) ⊆ {x1, . . . , xn} . Now we fix {x1 < · · · < xn} which contains im(θ) and
define ρ : Y → X by yiρ = xi for every 1 ≤ i ≤ n . Then it is clear that ρ is one-to-one and order-preserving.
For example, let X = {1 < 2 < 3 < 4 < 5 < 6} (or the set of all positive integers with the usual order) and

Y = {7 < 8 < 9} . If θ1 =

(
7 8 9
1 1 4

)
, then we consider ρ1 =

(
7 8 9
1 4 5

)
, and if θ2 =

(
7 8 9
2 5 5

)
, then

we consider ρ2 =

(
7 8 9
2 3 5

)
. Suppose that Y = {y1 < · · · < yn} is a finite chain. For any θ ∈ GO(Y,X) , we

consider the one-to-one and order-preserving mapping ρ : Y → X such that im(θ) ⊆ im(ρ) = {x1 < · · · < xn} ,
which is defined above. Then we consider the transformation Θ ∈ T (X) defined by

xΘ =

 (x1ρ
−1)θ if x < x2

(xiρ
−1)θ if xi ≦ x < xi+1 for i = 2, . . . , n− 1

(xnρ
−1)θ if xn ≦ x

(2.1)

for each x ∈ X . Notice that the restriction of Θ to im(ρ) is equal to ρ−1θ , that is Θ|im(ρ)
= ρ−1θ . Then we show

that Θ is order-preserving. Since ρ : Y → X is one-to-one and order-preserving mapping, ρ−1 : im(ρ) → Y

exists and is order-preserving. Moreover, since θ : Y → X is order-preserving, it follows that Θ is order-
preserving. Now it is clear that Θ ∈ O(X, im(ρ)) . For example, according to the above examples, we have

Θ1 =

(
1 2 3 4 5 6
1 1 1 1 4 4

)
and Θ2 =

(
1 2 3 4 5 6
2 2 5 5 5 5

)
.

A non-empty subset A of a chain X is called convex if for all a, b ∈ A and x ∈ X , a ≤ x ≤ b implies x ∈ A .
A (finite) partition P = {A1, . . . , An} of a chain X is called an ordered partition if a < b for all a ∈ Ai and
b ∈ Ai+1 (1 ≤ i ≤ n − 1). In addition, if for every 1 ≤ i ≤ n , Ai is convex, P is called an ordered convex
partition of X . Recall that for a finite chain Y , the set of all kernel classes of an order-preserving transformation
β : X → Y is a finite ordered convex partition of X (see, for example, [8]).

With these notations we have the following result:

Theorem 2.3 If |X| ≥ |Y | and Y is finite, then GO(X,Y ; θ) is isomorphic to O(X, im(ρ))Θ , the variant of
O(X, im(ρ)) with respect to Θ .

Proof For each α ∈ GO(X,Y ; θ) , define the following transformation:

α̃ = α ◦ ρ. (2.2)

Since both α and ρ are order-preserving, it is clear that α̃ ∈ O(X, im(ρ)) . For any α, β ∈ GO(X,Y ; θ) , since all
of α , β , θ and ρ are order-preserving, it follows from the multiplication defined on GO(X,Y ; θ) and Equation
(2.2) that

α̃ ∗ β = ˜α ◦ θ ◦ β = α ◦ θ ◦ β ◦ ρ

is order-preserving. In addition, since im(α ◦ ρ) ⊆ im(ρ) and Θ|im(ρ)
= ρ−1θ from Equation (2.1) it follows

that
α̃ ∗ β = α ◦ (ρ ◦ ρ−1) ◦ θ ◦ β ◦ ρ ≡ (α ◦ ρ) ◦ (ρ−1 ◦ θ) ◦ (β ◦ ρ) = α̃ ◦Θ ◦ β̃ = α̃ ⋆Θ β̃.
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Now it is clear that the mapping φ : GO(X,Y ; θ) → O(X, im(ρ))Θ defined by αφ = α̃ for all α ∈ GO(X,Y ; θ)

is a homomorphism. Since ρ is one-to-one, it is also clear that φ is one-to-one.
For each β ∈ O(X, im(ρ)) , notice that {xβ−1 : x ∈ im(β) } is a finite ordered convex partition of X .

Now it is clear that the mapping β̆ : X → Y defined by (xβ−1)β̆ = xρ−1 for each x ∈ im(β) is order-preserving,
and so β̆ ∈ GO(X,Y ; θ) . Moreover, we have the identities β̆φ = β and im(φ) = O(X, im(ρ)) , as required. □

3. Generating sets and ranks

For any non-empty (disjoint) chains X and Y , let a, b ∈ X . Then we define the following convex subsets of
X :

(−, a) = {x ∈ X : x < a}, (−, a] = {x ∈ X : x ≦ a},

(b,−) = {x ∈ X : b < x}, [b,−) = {x ∈ X : b ≦ x}, (3.1)

(a, b) = {x ∈ X : a < x < b}, (a, b] = {x ∈ X : a < x ≦ b},

[a, b) = {x ∈ X : a ≦ x < b} and [a, b] = {x ∈ X : a ≦ x ≦ b}.

(We suppose a < b in the last four subsets above). Similarly, we define the convex subsets for Y . In this section
we suppose that θ : Y → X has a finite height, that is the cardinality of im(θ) is finite. Let P = {A1, . . . , Ar}
be a finite partition of X , if P is ordered, say A1 < · · · < Ar , then we write P = (A1 < · · · < Ar) .
For any α ∈ GO(X,Y ; θ) with a finite height s , there exists a subchain {y1 < · · · < ys} of Y such that
im(α) = {y1, . . . , ys} . In this case, we write as im(α) = {y1 < · · · < ys} . Moreover, if we let Ai = yiα

−1 for
each 1 ≤ i ≤ s , then the set of kernel classes {A1, . . . , As} of α is an ordered convex partition of X . In this
case, Ker (α) = (A1 < · · · < As) , and moreover, α can be represented by the following tabular form:

α =

(
A1 A2 · · · As

y1 y2 · · · ys

)
.

For any semigroup S , let S2 = { st : s, t ∈ S } . With the above notations, we have the following lemma:

Lemma 3.1 For S = GO(X,Y ; θ) , if |im(θ)| = r is finite, then

S2 = {α ∈ S : |im(α)| ≤ r }.

Proof Suppose that im(θ) = {x1 < · · · < xr} and T = {α ∈ S : |im(α)| ≤ r } . Thus Ker (θ) = (x1θ
−1 <

· · · < xrθ
−1) is an ordered convex partition of Y . Since, for all α, β ∈ S , |im(α ∗ β)| = |im(α ◦ θ ◦ β)| ≤

|im(θ)| ≤ r , it follows that S2 ⊆ T .
For any α ∈ T , let im(α) = {y1 < · · · < ys} (1 ≤ s ≤ r ), and let Ai = yiα

−1 for every 1 ≤ i ≤ s . Then
we choose a unique element zi ∈ xiθ

−1 for every 1 ≤ i ≤ s , and so we have a subchain {z1 < · · · < zs} of Y .
Moreover, as defined in Equations (3.1), we define the following convex subsets of X :

B1 = (−, x1], Bi = (xi−1, xi] (2 ≤ i ≤ s− 1) and Bs = (xs−1,−).

Then it is clear that (B1 < · · · < Bs) is an ordered convex partition of X . Finally, we define the following
transformations

β =

(
A1 · · · As

z1 · · · zs

)
and γ =

(
B1 · · · Bs

y1 · · · ys

)
.
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Then it is clear that β, γ ∈ S . Moreover, since α = β ◦ θ ◦ γ = β ∗ γ ∈ S2 , it follows that T ⊆ S2 . Therefore,
we have the identity T = S2 . □

In the rest of this section, for finite positive integers m and n , we suppose that |X| = m and |Y | = n .
Moreover, without loss of generality, we take X = Xm = {1 < 2 < · · · < m} and Y = {y1 < y2 < · · · < yn} .
Thus, for every α ∈ GO(X,Y ; θ) , we notice that |im(α)| ≤ min {m,n} , and so for every 1 ≤ s ≤ min {m,n} ,
we have the following sets:

Ds = {α ∈ GO(X,Y ; θ) : |im(α)| = s }.

Proposition 3.2 With above notations, for every 1 ≤ s ≤ min{m,n} ,

|Ds| =
(
m− 1
s− 1

)(
n
s

)
.

Proof For every α ∈ Ds , recall that Ker (α) = (A1 < A2 < · · · < As) is an ordered convex partition of
X with s terms, and that im(α) = {y1 < y2 < · · · < ys} is a subchain of Y with s terms. Conversely, if
P = (A1 < A2 < · · · < As) is an ordered convex partition of X with s terms, and if V = {y1 < y2 < · · · < ys}
is a subchain of Y with s terms, there exists a unique α ∈ Ds such that Ker (α) = P and im(α) = V , namely

α =

(
A1 A2 · · · As

y1 y2 · · · ys

)
. Since there exist

(
m− 1
s− 1

)
many ordered convex partitions of X with s terms,

and
(
n
s

)
many subchains of Y with s terms, it follows that |Ds| =

(
m− 1
s− 1

)(
n
s

)
, as required. □

For any semigroup S , if A is any generating set of S , then it is clear that A must contain S \ S2 , and
so |A| ≥ |S \ S2| . Therefore, we have the following immediate corollary:

Corollary 3.3 For m,n, r ∈ Z+ , let |X| = m , |Y | = n , and |im(θ)| = r . If θ is neither onto nor one-to-one,
or equivalently, if min{m,n} > r , then

rank(GO(X,Y ; θ)) ≥
min{m,n}∑
s=r+1

(
m− 1
s− 1

)(
n
s

)
.

Proof Suppose that θ is neither onto nor one-to-one, or that min{m,n} > r . Then it follows from Proposition
3.2 that

rank(GO(X,Y ; θ)) ≥ |S \ S2| =

∣∣∣∣∣∣
min{m,n}⋃
s=r+1

Ds

∣∣∣∣∣∣ =
min{m,n}∑
s=r+1

|Ds|

=

min{m,n}∑
s=r+1

(
m− 1
s− 1

)(
n
s

)
,

as required. □
Suppose that X = Xm = {1 < 2 < · · · < m} and Y = {y1 < y2 < · · · < yn} are finite chains, and that

θ : Y → X is onto but not one-to-one. Thus |Y | = n ≥ m+ 1 , and from Proposition 3.2, the cardinality of

Dm =

{(
1 2 · · · m
v1 v2 · · · vm

)
: {v1 < v2 < · · · < vm} is a subchain of Y

}
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is
(

n
m

)
. Moreover, every element of Dm is one-to-one.

Lemma 3.4 For m,n ∈ Z+ with m < n , let |X| = m , |Y | = n and θ ∈ GO(Y,X) . If θ is onto, but not
one-to-one, then

rank(GO(X,Y ; θ)) ≥
(

n
m

)
.

Proof Let A be a generating set of GO(X,Y ; θ) . Then, for any α ∈ Dm , there exist α1, . . . , αq ∈ A such
that α1 · · ·αq = α . Since |im(αq)| ≤ m = |im(α)| , and im(α) ⊆ im(αq) , we have im(αq) = im(α) . Moreover,
since both α and αq are one-to-one and order-preserving, it follows that αq = α , and so α ∈ A . Therefore,

Dm ⊆ A , and so |A| ≥ |Dm| =
(

n
m

)
, as required. □

Finally, if θ : Y → X is one-to-one order-preserving transformation, then it follows from Theorem 2.2
that GO(X,Y ; θ) and O(X, im(θ)) are isomorphic. In addition, if θ is also onto, then GO(X,Y ; θ) and O(X)

are isomorphic. For |X| ≥ 2 , it is proved in [9, Theorem 2.7] that the rank of O(X) \ {1X} , where 1X is the
identity element of O(X) , is |X| . Moreover, since O(X) \ {1X} is an ideal of O(X) , every generating set of
O(X) must contain 1X and a generating set of O(X) \ {1X} , and so rank(O(X)) =|X| + 1 . Thus, if θ is
one-to-one and onto, we have

rank(GO(X,Y ; θ)) = rank(O(X)) =|X|+ 1 = m+ 1

for m ≥ 2 .
For |X| = m and for a subset Y of X with r elements, it is proved in [6, Theorem 4.3] that

rank(O(X,Y )) =

(
m− 1
r − 1

)
+ |Y ♯|.

When θ is one-to-one but not onto, since im(θ) is a subset of X with r elements, from Theorem 2.2 we have
the following result:

Corollary 3.5 Let |X| = m and |im(θ)| = r where 1 ≤ r ≤ m− 1 . If θ is one-to-one but not onto, then

rank(GO(X,Y ; θ)) =

(
m− 1
r − 1

)
+ |(im(θ))♯|

where (im(θ))♯ is the set of all captive elements of im(θ) .□ □

According to the experience, we have obtained during this work, the set S \ S2 is not a (minimum)
generating a set of GO(X,Y ; θ) , as in [1, Lemma 3.3, Theorem 3.6]. In addition, the method used in [6]
looks impossible to apply for finding a generating set of GO(X,Y ; θ) . That is why we have the following open
problem:

Open Problem: For m,n, r ∈ Z+ , let |X| = m , |Y | = n , and |im(θ)|= r . If θ is not one-to-one, then
what is the rank of GO(X,Y ; θ)?
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