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Abstract: Inequalities are frequently used in various fields of mathematics to prove theorems. The existence of
inequalities contributes significantly to the foundations of such branches. In this paper, we study the properties of order
relations in the system of dual numbers, which is inspired by order relations defined on real numbers. Besides, some
special inequalities that are used in various fields of mathematics, such as Cauchy-Schwarz, Minkowski, and Chebyshev
are studied in this framework. An example is also provided to validate our research findings.
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1. Introduction
As an area of study, inequalities do not have a long history. As a mathematical concept, however, they were
used by ancient mathematicians. For example, Euclid used the words “falls short” or “is in excess of” to mean
that one area is larger than another ([5, 8]). A number of studies on inequality and the history of inequality have
been written ([2, 9, 15]). Inequalities are basic tools in many areas of mathematics including algebra, geometry,
trigonometry, and modern calculus [5]. More specifically, in order to constitute the expression of metric, which
is one of the most basic structures of a space, the presence of inequalities is required. The ordering of numbers
that are used by way of inequalities finds applications in various theoretical and practical fields [10].

Dual numbers were defined by W. K. Clifford (1845-1879) as a tool for his geometrical studies and their
first applications were presented by Kotelnikov [12]. Eduard Study [17] used dual numbers and dual vectors in
his research on line geometry and kinematics. He proved that there exists a one-to-one correspondence between
the points of the dual unit sphere in D3 and the directed lines of Euclidean 3-space. These numbers play an
important role in field theory as well [7]. The most interesting use of dual numbers in field theory can be
shown in a series of articles by Wald et al. [19]. Dual numbers have modern application fields such as computer
modelling of rigid body, mechanism design, kinematics, modelling of human body, and dynamics([6, 13]).

This paper investigates the order relation on dual numbers. It is natural to ask how important the order
relation on dual numbers is. As it is well known, while the absolute value of a complex number and the norm of
a complex vector are real numbers, the absolute value of a dual number and the norm of a dual vector are dual
numbers. It is clear that the order relation on dual numbers is needed so as to carry out mathematical studies
in dual space. This paper is fundamental of the order relation on dual numbers and shows that dual numbers
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have their own structural system.
In this paper, the properties of the order relation on dual numbers are examined in detail. Then Cauchy-

Schwarz, Minkowski, Chebyshev, and arithmetic-geometric inequalities are investigated in the system of dual
numbers. In the last section, using the order relation <D , we obtain the topologies on Dn denoted by τd and
τ such that the spaces

(
Dn, τd

)
and (Dn, τ) are Hausdorff spaces. Also, the general solution of the set

U =
{
x ∈ D2 | ∥x∥D <D r, r ∈ D+

}
is obtained. A specific solution of this set was investigated in [1]. In this paper, an easier method is given in
order to find this specific solution.

2. Preliminaries
Let the set of the pair (γ, γ∗) be D = R×R = {γ = (γ, γ∗) | γ, γ∗ ∈ R} . For γ = (γ, γ∗) , δ = (δ, δ∗) ∈ D , the
equality and the two inner operations on D are defined as follows:

Equality : γ = δ ⇔ γ = δ and γ∗ = δ∗,

Addition : γ ⊕ δ = (γ + δ, γ∗ + δ∗) ,

Multiplication : γ ⊙ δ = (γδ, γδ∗ + δγ∗) .

If the equality and the two operators on D with a set of real numbers R are defined as above, the set D is
called the dual numbers system and the element γ = (γ, γ∗) is called a dual number. For γ = (γ, γ∗) , the real
number γ is called the real part of γ , and the real number γ∗ is called the dual part of γ. The dual number
(1, 0) = 1 is called the unit element of the multiplication operation in D . The dual number (0, 1) = ε is to be
called dual unit that satisfies the conditions that

ε ̸= 0, ε2 = 0, ε⊙ 1 = 1⊙ ε = ε.

Let us consider the element γ of the form γ = (γ, 0) . Then, the mapping ξ : D → R , ξ (γ, 0) = γ is an
isomorphism. In this case, we can write

γ = (γ, γ∗)

= (γ, 0)⊕ (0, γ∗)

= (γ, 0)⊕ (0, 1)⊙ (γ∗, 0)

= γ ⊕ ε⊙ γ∗.

For convenience, throughout this paper, we will use + and · instead of ⊕ and ⊙ , respectively. Thus, the set
of all dual numbers is given by

D =
{
γ = γ + εγ∗ | γ, γ∗ ∈ R, ε2 = 0

}
.

The set D forms a commutative ring with unity according to the operations

(γ + εγ∗) + (δ + εδ∗) = (γ + δ) + ε (γ∗ + δ∗) ,

and
(γ + εγ∗) · (δ + εδ∗) = γδ + ε (γδ∗ + δγ∗) .
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For the dual numbers γ = γ + εγ∗ and δ = δ + εδ∗ , if δ ̸= 0, then the division γ

δ
is defined as follows [11]:

γ

δ
=

γ

δ
+ ε

(
γ∗δ − γδ∗

δ2

)
.

The set of dual vectors on Dn is represented by

Dn =
{−→
γ̃ = (γ1, ..., γn) | γi ∈ D, i = 1, ..., n

}
.

These vectors can be given in the form
−→
γ̃ =

(−→γ ,
−→
γ∗
)
= −→γ + ε

−→
γ∗ , where −→γ and −→

γ∗ are the vectors of Rn .

Let
−→
γ̃ = −→γ + ε

−→
γ∗ and

−→
δ̃ =

−→
δ + ε

−→
δ∗ be dual vectors of Dn , and let λ = λ+ ελ∗ be a dual number. Then, the

set Dn is a module over the ring D which is called dual space Dn according to the operations

−→
γ̃ +

−→
δ̃ =

(−→γ +
−→
δ
)
+ ε

(−→
γ∗ +

−→
δ∗
)
,

and
λ ·

−→
γ̃ = λ−→γ + ε

(
λ
−→
γ∗ + λ∗−→γ

)
.

For any
−→
γ̃ = −→γ + ε

−→
γ∗ and

−→
δ̃ =

−→
δ + ε

−→
δ∗ ∈ Dn , the dual inner product of

−→
γ̃ and

−→
δ̃ is defined by〈

−→
γ̃ ,

−→
δ̃

〉
D

= γ1δ1 + ...+ γnδn

=
〈−→γ ,

−→
δ
〉
+ ε

(〈−→γ ,
−→
δ∗
〉
+
〈−→
γ∗,

−→
δ
〉)

,

where ⟨, ⟩ is Euclid inner product on Rn . The dual norm
∥∥∥−→γ̃ ∥∥∥

D
of

−→
γ̃ = −→γ + ε

−→
γ∗ is given by

∥∥∥−→γ̃ ∥∥∥
D
=

√〈−→
γ̃ ,

−→
γ̃
〉
D
=


0 ,−→γ =

−→
0

∥−→γ ∥+ ε

〈−→γ ,
−→
γ∗
〉

∥−→γ ∥
,−→γ ̸= −→

0 .

Let x = x+ εx∗ be a dual variable. A dual variable function ξ : D → D is defined as follows:

ξ (x) = ξ (x, x∗) + εξ0 (x, x∗) ,

where ξ and ξ0 are real functions with two real variables x and x∗ . Dimentberg [3] investigated the properties
of dual functions. He showed that the analytic (differentiable) conditions of the dual functions are

∂ξ

∂x∗ = 0 and ∂ξ0

∂x∗ =
∂ξ

∂x
.

In this case, the general notation of dual analytic functions is as follows:

ξ (x) = ξ (x) + ε
(
x∗ξ′ (x) + ξ̃ (x)

)
,
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where ξ̃ is an arbitrary function of the real part of a dual variable. The derivative of the dual analytic function
ξ with respect to x is

dξ

dx
= ξ′ (x) + ε

(
x∗ξ′′ (x) + ξ̃′ (x)

)
.

This definition allows to write some well-known dual functions as follows ([3, 14]):

sin (x+ εx∗) = sinx+ εx∗ cosx.

cos (x+ εx∗) = cosx− εx∗ sinx.

n
√
x+ εx∗ = n

√
x+ ε

x∗

n
n
√
xn−1

, x ̸= 0.

Theorem 2.1 ([3]) Let x = x+ εx∗ be a dual variable. For n ∈ N ,

xn = xn + εx∗nxn−1.

Definition 2.2 ([16]) A relation C on the set A is called an order relation if it has the following properties:
1) For every γ and δ in A for which γ ̸= δ , either γCδ or δCγ .
2) For no γ in A does the relation γCγ hold.
3) If γCδ and δCω, then γCω .

Definition 2.3 (Dictionary order relation) Given two words, one compares their first letters and orders the
words according to the order in which their first letters appear in the alphabet. If the first letters are the same,
one compares their second letters and orders accordingly [16].

Definition 2.4 Assume that A and B are two sets with order relations <Aand <B , respectively. For (γ1, δ1)

and (γ2, δ2) ∈ A×B = {(γ, δ) | γ ∈ A, δ ∈ B} , the relation (γ1, δ1) < (γ2, δ2) is defined as follows:
1) One compares the first components of these expressions and they must be γ1 <A γ2 ,
2) If their first components are the same, then one compares their second components and they must be

δ1 <B δ2 [16].

3. Dual absolute value and dual inequalities

Definition 3.1 ([18]) Let γ = γ + εγ∗ be a dual number. The absolute value of dual number γ is

|γ|D =

√
γ2 =

{
0 , γ = 0

|γ|+ εγ∗ γ

|γ|
, γ ̸= 0.

Theorem 3.2 For γ = γ + εγ∗, δ = δ + εδ∗ ∈ D and n ∈ N , the following properties are satisfied.
1) |−γ|D = |γ|D .

2)
∣∣γ · δ

∣∣
D
= |γ|D

∣∣δ∣∣
D
.

3)

∣∣∣∣γδ
∣∣∣∣
D

=
|γ|D∣∣δ∣∣

D

, for δ ̸= 0.

1321



AKTAŞ et al./Turk J Math

4) |γn|D = |γ|nD .

5)
∣∣γ−n

∣∣
D
= |γ|−n

D , for γ ̸= 0.

6) For γ ̸= 0 and δ ̸= 0 , if |γ|D =
∣∣δ∣∣

D
, then either γ = δ or γ = −δ.

Proof Using the definition 3.1, these equalities can be shown. 2

Definition 3.3 Let γ = γ + εγ∗ and δ = δ + εδ∗ be dual numbers. The relation γ <D δ
(
resp. γ ≤D δ

)
between these dual numbers is as follows:

1) Firstly, one compares the real parts of these dual numbers and they must be γ < δ (resp. γ < δ) .

2) If the real parts of these dual numbers are the same, one compares their dual parts and they must be
γ∗ < δ∗ (resp. γ∗ ≤ δ∗) .

Thus, considering the above definition, the following corollary can be given.

Corollary 3.4 Let γ = γ + εγ∗ and δ = δ + εδ∗ be dual numbers. The following statements hold.
1) γ <D δ if and only if γ < δ or (γ = δ and γ∗ < δ∗).

2) γ ≤D δ if and only if γ < δ or (γ = δ and γ∗ ≤ δ∗).

Theorem 3.5 Let γ = γ + εγ∗ , δ = δ + εδ∗ and ω = ω + εω∗ be dual numbers. The relations <D and ≤D

provide the following expressions.
1) If γ ̸= δ , then either γ <D δ or δ <D γ.

2) If γ <D δ , then γ ̸= δ.

3) If γ <D δ and δ <D ω, then γ <D ω.

4) γ ≤D γ.

5) If γ ≤D δ and δ ≤D γ , then γ = δ.

6) If γ ≤D δ and δ ≤D ω, then γ ≤D ω.

Proof Using the corollary 3.4, it can be shown that each dual inequality exists. 2

Definition 3.6 Let γ = γ + εγ∗ be a dual number. The sets

D+ = {γ = γ + εγ∗ ∈ D | γ > 0, γ∗ ∈ R} ,

D− = {γ = γ + εγ∗ ∈ D | γ < 0, γ∗ ∈ R} ,

D0+ = {γ = γ + εγ∗ ∈ D | γ = 0, γ∗ > 0} ,

D0− = {γ = γ + εγ∗ ∈ D | γ = 0, γ∗ < 0}

are called dual positive, dual negative, pure dual positive, and pure dual negative numbers, respectively.

Theorem 3.7 Assume that γ <D δ
(
resp. γ ≤D δ

)
. For ω ∈ D , we have γ±ω <D δ±ω

(
resp. γ ± ω ≤D δ ± ω

)
.
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Theorem 3.8 Let γ, δ ∈ D and ω ∈ D+ . Then, the following expressions hold.

1) If γ <D δ , then γ · ω <D δ · ω and γ

ω
<D

δ

ω
.

2) If γ ≤D δ , then γ · ω ≤D δ · ω and γ

ω
≤D

δ

ω
.

Proof 1) Suppose that γ <D δ and ω = ω + εω∗ ∈ D+ . If γ < δ , then we have γω < δω and γ

ω
<

δ

ω
such

that γ · ω <D δ · ω and γ

ω
<D

δ

ω
. Now, assume that γ = δ . Under the condition stated in γ <D δ , we have

γ∗ < δ∗ . From the hypothesis, the real parts of γ · ω and δ · ω
(

resp. γ

ω
and δ

ω

)
are equal to each other and

there is the relationship γω∗ + γ∗ω < δω∗ + δ∗ω

(
resp. γ∗

ω
− γω∗

ω2
<

δ∗

ω
− δω∗

ω2

)
between the dual parts of

these numbers, too. Considering the order relation <D , we get γ · ω <D δ · ω and γ

ω
<D

δ

ω
.

2) The proof for this case is easily made as in case 1. 2

Theorem 3.9 Let γ, δ ∈ D and ω ∈ D− . Then, the following statements are obtained.

1) If γ <D δ , then γ · ω >D δ · ω and γ

ω
>D

δ

ω
.

2) If γ ≤D δ , then γ · ω ≥D δ · ω and γ

ω
≥D

δ

ω
.

Theorem 3.10 Let γ, δ ∈ D , ω ∈ D0+ and γ <D δ.

1) Assume that γ < δ . In this case, we have γ · ω <D δ · ω.

2) Assume that γ = δ and γ∗ < δ∗ . In this case, we have γ · ω ≤D δ · ω.

Proof 1) Let us take γ < δ and ω ∈ D0+ . Considering the expressions γ · ω and δ · ω together with the
hypothesis, we can write γω = δω = 0 and γω∗ + γ∗ω < δω∗ + δ∗ω such that γ · ω <D δ · ω .
2) Suppose that γ = δ . Since ω ∈ D0+ , this allows us to write γω = δω = 0 and γω∗ + γ∗ω ≤ δω∗ + δ∗ω .
From the partial order relation on dual numbers, we have γ · ω ≤D δ · ω . 2

Theorem 3.11 Let γ, δ ∈ D , ω ∈ D0− and γ <D δ.

1) Assume that γ < δ. In this case, we have γ · ω >D δ · ω.

2) Assume that γ = δ and γ∗ < δ∗ . In this case, we have γ · ω ≥D δ · ω.

Theorem 3.12 Let γ, δ ∈ D and ω ∈ D0+
(
resp. ω ∈ D0−

)
. If γ ≤D δ , then γ·ω ≤D δ·ω

(
resp. γ · ω ≥D δ · ω

)
.

Theorem 3.13 For all γ, δ ∈ D+ , we assume 0 <D γ <D δ. For 1 ≤ n ∈ N , the following statements hold.

1) 0 <D γ2n <D δ
2n
.

2) 0 <D γ2n+1 <D δ
2n+1

.
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3)
1

γ
>D

1

δ
>D 0.

Proof Let γ, δ ∈ D+ and 0 <D γ <D δ . For each dual inequality, there exist two situations due to the order
relation on dual numbers.
1) If 0 < γ < δ , we say that 0 < γ2n < δ2n . This immediately implies that 0 <D γ2n <D δ

2n . Assume
that 0 < γ = δ . Since γ∗ < δ∗ and 2nγ2n−1 = 2nδ2n−1 > 0 , it is obvious that γ∗2nγ2n−1 < δ∗2nδ2n−1 .

Considering the order relation on dual numbers, we have 0 <D γ2n <D δ
2n .

2) The proof for this case is as in the case 1.

3) Assume that 0 < γ < δ . Since 1

γ
>

1

δ
> 0 , this gives 1

γ
>D

1

δ
>D 0 . Now, suppose that 0 < γ = δ . Since

γ∗ < δ∗ and 1

γ
=

1

δ
> 0 , we can write −γ∗

γ2
> −δ∗

δ2
such that 1

γ
>D

1

δ
>D 0 . 2

Theorem 3.14 For all γ, δ ∈ D− , we assume γ <D δ <D 0. For 1 ≤ n ∈ N , the following statements hold.

1) γ2n >D δ
2n

>D 0.

2) γ2n+1 <D δ
2n+1

<D 0.

3) 0 >D
1

γ
>D

1

δ
.

Theorem 3.15 Let γ = γ + εγ∗ be a dual number. In this case, 0 <D γ <D 1 if and only if γ >D γ2 .

Proof Let γ = γ + εγ∗ and 0 <D γ <D 1 . The solution set of this dual inequality is as below:

S = S1 ∪ S2 ∪ S3,

where

S1 = {γ = γ + εγ∗ ∈ D | 0 < γ < 1, γ∗ ∈ R} ,

S2 = {γ = γ + εγ∗ ∈ D | γ = 0, γ∗ > 0} ,

S3 = {γ = γ + εγ∗ ∈ D | γ = 1, γ∗ < 0} .

i) For γ ∈ S1 , since γ > γ2, we have γ >D γ2 .
ii) For γ ∈ S2 , since γ2 = 0 + ε0 and γ∗ > 0, we have γ >D γ2 .
iii) For γ ∈ S3 , since γ2 = 1 + 2εγ∗ and γ∗ < 0, we have γ >D γ2 .
Conversely, suppose that γ >D γ2 . From the order relation on dual numbers, it is clear that 0 <D γ <D 1 .
Thus, the proof is completed. 2

Corollary 3.16 Let γ and δ be dual numbers. Using the order relation on dual numbers, there exist the
following situations:

1) If γ, δ ∈ D+ , then γ · δ >D 0.

2) If γ ∈ D+ and δ ∈ D0+ , then γ · δ >D 0.

3) If γ ∈ D0+ and δ ∈ D0+ , then γ · δ = 0.
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4) If γ, δ ∈ D− , then γ · δ >D 0.

5) If γ ∈ D− and δ ∈ D0− , then γ · δ >D 0.

6) If γ ∈ D0− and δ ∈ D0− , then γ · δ = 0.

7) If γ ∈ D+ and δ ∈ D− , then γ · δ <D 0.

8) If γ ∈ D0+ and δ ∈ D− , then γ · δ <D 0.

9) If γ ∈ D0− and δ ∈ D+ , then γ · δ <D 0.

10) If γ ∈ D0− and δ ∈ D0+ , then γ · δ = 0.

Corollary 3.17 1) For any dual number γ = γ + εγ∗ and ς = ς + ες∗ ∈ D+ , we have

|γ|D <D ς if and only if − ς <D γ <D ς.

2) For any dual number γ = γ + εγ∗ with the exception of γ = 0 and ς = ς + ες∗ ∈ D+, we have

|γ|D >D ς if and only if γ >D ς or γ <D −ς.

Theorem 3.18 (Dual Cauchy-Schwarz inequality) Let {γ1, ..., γn} and
{
δ1, ..., δn

}
be any two sets of dual

numbers, where γi = γi + εγ∗
i , δi = δi + εδ∗i and 1 ≤ i ≤ n . Then, we have

(
γ1δ1 + ...+ γnδn

)2 ≤D

(
γ2
1 + ...+ γ2

n

) (
δ
2

1 + ...+ δ
2

n

)
,

or, equivalently, 〈
−→
γ̃ ,

−→
δ̃

〉2

D

≤D

〈−→
γ̃ ,

−→
γ̃
〉
D

〈−→
δ̃ ,

−→
δ̃

〉
D

,

where
−→
γ̃ = (γ1, ..., γn) =

−→γ + ε
−→
γ∗ and

−→
δ̃ =

(
δ1, ..., δn

)
=

−→
δ + ε

−→
δ∗ .

Proof For λ ∈ D , assume that
−→
γ̃ = λ

−→
δ̃ . In this case, using the definition of dual inner product, we

easily obtain
〈
−→
γ̃ ,

−→
δ̃

〉2

D

=
〈−→
γ̃ ,

−→
γ̃
〉
D

〈−→
δ̃ ,

−→
δ̃

〉
D

such that
〈
−→
γ̃ ,

−→
δ̃

〉2

D

≤D

〈−→
γ̃ ,

−→
γ̃
〉
D

〈−→
δ̃ ,

−→
δ̃

〉
D

. If at least

one of the vectors −→γ and −→
δ is zero vector, then we get

〈
−→
γ̃ ,

−→
δ̃

〉2

D

=
〈−→
γ̃ ,

−→
γ̃
〉
D

〈−→
δ̃ ,

−→
δ̃

〉
D

= 0 such that〈
−→
γ̃ ,

−→
δ̃

〉2

D

≤D

〈−→
γ̃ ,

−→
γ̃
〉
D

〈−→
δ̃ ,

−→
δ̃

〉
D

. Now, assume that −→γ ̸= −→
0 and −→

δ ̸= −→
0 . If −→γ and −→

δ are linearly

independent, since
〈−→γ ,

−→
δ
〉2

< ⟨−→γ ,−→γ ⟩
〈−→
δ ,

−→
δ
〉

, from the order relation on dual numbers, it is clear that〈
−→
γ̃ ,

−→
δ̃

〉2

D

≤D

〈−→
γ̃ ,

−→
γ̃
〉
D

〈−→
δ̃ ,

−→
δ̃

〉
D

. If −→γ and −→
δ are linearly dependent, i.e. −→γ = µ

−→
δ , for µ ∈ R−{0} , then

we get 〈−→γ ,
−→
δ
〉2

= ⟨−→γ ,−→γ ⟩
〈−→
δ ,

−→
δ
〉
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and 〈−→γ ,
−→
δ
〉(〈−→γ ,

−→
δ∗
〉
+
〈−→
γ∗,

−→
δ
〉)

≤ ⟨−→γ ,−→γ ⟩
〈−→
δ ,

−→
δ∗
〉
+
〈−→
δ ,

−→
δ
〉〈−→γ ,

−→
γ∗
〉
.

Considering the partial order relation on dual numbers, we attain〈
−→
γ̃ ,

−→
δ̃

〉2

D

≤D

〈−→
γ̃ ,

−→
γ̃
〉
D

〈−→
δ̃ ,

−→
δ̃

〉
D

.

Thus, the proof is completed. 2

Corollary 3.19 Let
−→
γ̃ and

−→
δ̃ be any two dual vectors of Dn . Then, the following dual inequality exists:∣∣∣∣〈−→γ̃ ,

−→
δ̃

〉
D

∣∣∣∣
D

≤D

∥∥∥−→γ̃ ∥∥∥
D

∥∥∥∥−→δ̃ ∥∥∥∥
D

.

Theorem 3.20 (Dual Minkowski’s inequality) Let {γ1, ..., γn} and
{
δ1, ..., δn

}
be any two sets of dual num-

bers, where γi = γi + εγ∗
i , δi = δi + εδ∗i and 1 ≤ i ≤ n . For 1 ≤ p ∈ N, there are two situations:

1) If ∀γi = 0, ∃δi ̸= 0 and
〈(

δt1 |δt1 |
p−2

, ..., δtn |δtn |
p−2
)
,
(
γ∗
t1 , ..., γ

∗
tn

)〉
≥ 0 , then we get

(
n∑

k=1

∣∣γk + δk
∣∣p
D

) 1
p

≥D

(
n∑

k=1

|γk|
p
D

) 1
p

+

(
n∑

k=1

∣∣δk∣∣pD
) 1

p

. (3.1)

Furthermore, this dual inequality is also true if

∀δi = 0, ∃γi ̸= 0 and
〈(

γt1 |γt1 |
p−2

, γt2 |γt2 |
p−2

, ..., γtn |γtn |
p−2
)
,
(
δ∗t1 , ..., δ

∗
tn

)〉
≥ 0, where 1 ≤ t1, ..., tn ≤ n ,

∀δti ̸= 0 and ∀γti ̸= 0 .
2) In all other cases, the following dual inequality holds.(

n∑
k=1

∣∣γk + δk
∣∣p
D

) 1
p

≤D

(
n∑

k=1

|γk|
p
D

) 1
p

+

(
n∑

k=1

∣∣δk∣∣pD
) 1

p

. (3.2)

Proof Firstly, let ∀γi = 0 and ∃δi ̸= 0 . For 1 ≤ t1, ..., tn ≤ n , we find(
n∑

k=1

∣∣γk + δk
∣∣p
D

) 1
p

= (|δt1 |
p
+ ...+ |δtn |

p
)

1
p

+ε

δt1 |δt1 |
p−2 (

γ∗
t1 + δ∗t1

)
+ ...+ δtn |δtn |

p−2 (
γ∗
tn + δ∗tn

)
p

√
(|δt1 |

p
+ ...+ |δtn |

p
)
p−1


and (

n∑
k=1

|γk|
p
D

) 1
p

+

(
n∑

k=1

∣∣δk∣∣pD
) 1

p

= (|δt1 |
p
+ ...+ |δtn |

p
)

1
p

+ε

δt1δ
∗
t1 |δt1 |

p−2
+ ...+ δtnδ

∗
tn |δtn |

p−2

p

√
(|δt1 |

p
+ ...+ |δtn |

p
)
p−1

 ,
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where ∀δti ̸= 0 . If the condition〈(
δt1 |δt1 |

p−2
, ..., δtn |δtn |

p−2
)
,
(
γ∗
t1 , ..., γ

∗
tn

)〉
≥ 0

is valid, we have the dual inequality (3.1) . If there exists the inequality〈(
δt1 |δt1 |

p−2
, ..., δtn |δtn |

p−2
)
,
(
γ∗
t1 , ..., γ

∗
tn

)〉
≤ 0,

then we get the dual inequality (3.2) . Now, suppose that ∀δi = 0 , ∃γi ̸= 0 and〈(
γt1 |γt1 |

p−2
, ..., γtn |γtn |

p−2
)
,
(
δ∗t1 , ..., δ

∗
tn

)〉
≥ 0.

In this case, it is clear that

(
n∑

k=1

∣∣γk + δk
∣∣p
D

) 1
p

= (|γt1 |
p
+ ...+ |γtn |

p
)

1
p

+ε

γt1 |γt1 |
p−2 (

γ∗
t1 + δ∗t1

)
+ ...+ γtn |γtn |

p−2 (
γ∗
tn + δ∗tn

)
p

√
(|γt1 |

p
+ ...+ |γtn |

p
)
p−1


≥D (|γt1 |

p
+ ...+ |γtn |

p
)

1
p

+ε

γt1γ
∗
t1 |γt1 |

p−2
+ ...+ γtnγ

∗
tn |γtn |

p−2

p

√
(|γt1 |

p
+ ...+ |γtn |

p
)
p−1



=

(
n∑

k=1

|γk|
p
D

) 1
p

+

(
n∑

k=1

∣∣δk∣∣pD
) 1

p

,

where ∀γti ̸= 0 . If
〈(

γt1 |γt1 |
p−2

, ..., γtn |γtn |
p−2
)
,
(
δ∗t1 , ..., δ

∗
tn

)〉
≤ 0 , then we obtain the dual inequality (3.2) .

Considering all the other states of γi and δi , we attain the dual inequality (3.2) . 2

Theorem 3.21 (Dual Chebyshev’s inequality) Let {γ1, ..., γn} and
{
δ1, ..., δn

}
be any two sets of dual numbers,

where γi = γi + εγ∗
i , δi = δi + εδ∗i and 1 ≤ i ≤ n , such that either γ1 ≥D γ2 ≥D ... ≥D γn and

δ1 ≥D δ2 ≥D ... ≥D δn , or γ1 ≤D γ2 ≤D ... ≤D γn and δ1 ≤D δ2 ≤D ... ≤D δn ; then

(
γ1 + γ2 + ...+ γn

n

)(
δ1 + δ2 + ...+ δn

n

)
≤D

1

n

n∑
k=1

γkδk.

Theorem 3.22 (Dual arithmetic-geometric inequality) Let {γ1, ..., γn} be any set of dual positive numbers,
where γi = γi + εγ∗

i and γi > 0 , with (dual) arithmetic mean

An =

(
γ1 + γn + ...+ γn

n

)
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and (dual) geometric mean

Gn = (γ1γ2...γn)
1
n ;

then An ≥D Gn .

Proof Expanding the expressions An and Gn , we have

An =

(
γ1 + γ2 + ...+ γn

n

)
+ ε

(
γ∗
1 + γ∗

2 + ...+ γ∗
n

n

)
and

Gn = n
√
γ1γ2...γn + ε

γ∗
1γ2γ3...γn + γ∗

2γ1γ3...γn + ...+ γ∗
nγ1γ2...γn−1

n
n

√
(γ1γ2...γn)

n−1

 .

If at least two of the numbers γi are different from each other, then we get
(
γ1+γ2+...+γn

n

)
> n

√
γ1γ2...γn such

that An ≥D Gn . If all of the numbers γi are equal, then we obtain(
γ1 + γ2 + ...+ γn

n

)
= n

√
γ1γ2...γn

and (
γ∗
1 + γ∗

2 + ...+ γ∗
n

n

)
≥

γ∗
1γ2γ3...γn + γ∗

2γ1γ3...γn + ...+ γ∗
nγ1γ2...γn−1

n
n

√
(γ1γ2...γn)

n−1

 .

Considering the partial order relation on dual numbers, we attain An ≥D Gn . 2

Now, using the order relation <D , let us show that the topologies can be constructed on Dn . For the
dual point p = p+ εp∗ ∈ Dn and r = r + εr∗ ∈ D+ , let us take

B (p, r) = {x = x+ εx∗ ∈ Dn | ∥x− p∥ < r, x∗ ∈ Rn}

∪
{
x = x+ εx∗ ∈ Dn | ∥x− p∥ = r and ⟨x− p, x∗ − p∗⟩

∥x− p∥
< r∗

}
= U1 ∪ U2

= U1 ∪ C1 ∪ ... ∪ Cl (l ∈ I = {1, 2, ...})

and
U3 =

{
x ∈ Dn | x = constant, m < x∗

1 < n, x∗
j+1 = aj ∈ R, m, n ∈ [−∞,∞]

}
,

where for all cl ∈ {x ∈ Rn | ∥x− p∥ = r} ,

Cl =

{
x = cl + εx∗ ∈ Dn | ∥cl − p∥ = r and ⟨cl − p, x∗ − p∗⟩

∥cl − p∥
< r∗

}
.

Thus, a collection of all the sets U1, U3, C1, ..., Cl (l ∈ I) forms a base on Dn . Let τd denote the topology
obtained from this base [4]. Also, assume that d1 and d2 are two metrics on Rn and x = x+εx∗, y = y+εy∗ ∈
Dn . In this case, the function

d : Dn ×Dn → D,
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d (x, y) = d1 (x, y) + εd2 (x
∗, y∗)

can be defined. Considering the partial order relation ≤D , the function d provides the following properties:
i) For all x, y ∈ Dn, d (x, y) ≥D 0.

ii) For all x, y ∈ Dn, d (x, y) = 0 ⇔ x = y.

iii) For all x, y ∈ Dn, d (x, y) = d (y, x) .

iv) For all x, y, z ∈ Dn, d (x, y) ≤D d (x, z) + d (z, y) .

Now, for the dual point p = p+ εp∗ ∈ Dn and dual number r = r + εr∗ , where r, r∗ ∈ R+ , we have

Φ =
{
x = x+ εx∗ ∈ Dn | d (x, p) <D r

}
= {x = x+ εx∗ ∈ Dn | d1 (x, p) < r, x∗ ∈ Rn}

∪ {x = x+ εx∗ ∈ Dn | d1 (x, p) = r and d2 (x
∗, p∗) < r∗} .

Considering the set Φ , we can give the following theorem:

Theorem 3.23 Suppose that d1 and d2 are two metrics on Rn, p = p+ εp∗ ∈ Dn and r = r+ εr∗ ∈ D , where
r, r∗ ∈ R+ . If we take

φ1 = {x = x+ εx∗ ∈ Dn | d1 (x, p) < r, x∗ ∈ Rn}

and
φ2 = {x = x+ εx∗ ∈ Dn | x = constant, d2 (x∗, p∗) < r∗} ,

then a collection of all the sets φ1 and φ2 forms a base Ψ on Dn .

Corollary 3.24 From Theorem 3.23, we have the following topology:

τ =

{
∪
i∈I

Ωi | Ωi ∈ Ψ

}
,

and it is clear that Φ ∈ τ .

Theorem 3.25 (Dn, τ) topological space is Hausdorff space.

Proof For all p, q ∈ Dn satisfying the condition p ̸= q , there exist two situations. If p ̸= q , then we get

p ∈ φ1 =
{
x = x+ εx∗ ∈ Dn | d1 (x, p) < r1, x∗ ∈ Rn, r1 ∈ R+

}
∈ τ

and
q ∈ φ2 =

{
x = x+ εx∗ ∈ Dn | d1 (x, q) < r2, x∗ ∈ Rn, r2 ∈ R+

}
∈ τ

such that φ1 ∩ φ2 = ∅ . If p = q and p∗ ̸= q∗ , then we have

p ∈ φ1 =
{
x = x+ εx∗ ∈ Dn | x = p, d2 (x

∗, p∗) < r∗1 , r∗1 ∈ R+
}
∈ τ

and
q ∈ φ2 =

{
x = x+ εx∗ ∈ Dn | x = q, d2 (x

∗, q∗) < r∗2 , r∗2 ∈ R+
}
∈ τ
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such that φ1 ∩ φ2 = ∅ . Thus, the space (Dn, τ) are Hausdorff space. 2

For example, let us take d1 : Dn ×Dn → D, d1 (x, y) = ∥x− y∥1 = ∥x− y∥+ ε ∥x∗ − y∗∥ . In this case, a
collection of all the sets

φ1 = {x = x+ εx∗ ∈ Dn | ∥x− p∥ < r, x∗ ∈ Rn}

and
φ2 = {x = x+ εx∗ ∈ Dn | x = constant, ∥x∗ − p∗∥ < r∗}

forms a base on Dn . If the topology consisting of this base is denoted by τd1
, for n = 1 , we have τd = τd1

and for
n ≥ 2 , we get τd1

⊆ τd . Moreover, the collection of all the sets Λ = {x = x+ εx∗ ∈ Dn | ∥x− p∥ < r, x∗ ∈ Rn}
found in both topologies also forms a base on Dn . Let τω denote the topology obtained from this base. Thus,
we can write the following relations:

τω ⊆ τd1
and τω ⊆ τd.

On the other hand, from the dual distance function d1 , we conclude that

|γ|1 = |γ|+ ε |γ∗| ,

where γ = γ+ εγ∗ ∈ D . Using this equality instead of dual absolute value function, we can reinterpret the dual
Minkowski inequality:

Theorem 3.26 Let {γ1, ..., γn} and
{
δ1, ..., δn

}
be any two sets of dual numbers, where γi = γi + εγ∗

i , δi =

δi + εδ∗i and 1 ≤ i ≤ n . Then the following dual inequalities are possible to write

1)
n∑

i=1

∣∣γi + δi
∣∣
1
≤D

n∑
i=1

|γi|1 +
n∑

i=1

∣∣δi∣∣1 .
2) For ∃γi ̸= 0, ∃δi ̸= 0 and 2 ≤ p ∈ N , we have

(
n∑

i=1

∣∣γi + δi
∣∣p
1

) 1
p

≤D

(
n∑

i=1

|γi|
p
1

) 1
p

+

(
n∑

i=1

∣∣δi∣∣p1
) 1

p

I1 ≤D I2 + I3.

Besides, this dual inequality is satisfied for all γi = δi = 0 . On the other hand, for ∀γi = 0, ∃δi ̸= 0 and p ≥ 2 ,
if dual

(
I1
)
≤ dual

(
I3
)

( for ∀δi = 0, ∃γi ̸= 0 and p ≥ 2, if dual
(
I1
)
≤ dual

(
I2
)
) , then this dual inequality

also holds.

Example 3.27 Let us take
−→
γ̃ = −→γ + ε

−→
γ∗ ∈ D2 , where −→γ = (γ1, γ2) and −→

γ∗ = (γ∗
1 , γ

∗
2) . We know that the

dual norm
∥∥∥−→γ̃ ∥∥∥

D
of

−→
γ̃ = −→γ + ε

−→
γ∗ is

∥∥∥−→γ̃ ∥∥∥
D
=

√〈−→
γ̃ ,

−→
γ̃
〉
D
=


0 ,−→γ =

−→
0

∥−→γ ∥+ ε

〈−→γ ,
−→
γ∗
〉

∥−→γ ∥
,−→γ ̸= −→

0 .

1330



AKTAŞ et al./Turk J Math

It is seen that
∥∥∥−→γ̃ ∥∥∥

D
∈ D+∪

{
0
}

. Now, assume that r = r+εr∗ ∈ D+ and U =
{
x ∈ D2 | ∥x∥D <D r, r ∈ D+

}
.

Let us find a general and specific solution of the set U .
Expanding the set U , we have

U =
{
x ∈ D2 | ∥x∥ < r, x ∈ R2

}
∪
{
x ∈ D2 | ∥x∥ = r and ⟨x, x∗⟩

∥x∥
< r∗

}
= U ′

1 ∪ U ′
2.

1) Assume that ∥x∥ < r . The solution set for this case is

U1 =
{
x ∈ D2 | x2

1 + x2
2 < r2, x∗ ∈ R2

}
.

2) Assume that ∥x∥ = r . In this case, we can write x1 = r cos t and x2 = r sin t , where 0 ≤ t < 2π . Thus, it
is possible to express the following inequality:

x∗
1 cos t+ x∗

2 sin t < r∗.

Now, we will find the solution set of this case according to the angle t .
i) Assume that t = 0 . For this case, the solution set is

U2 =
{
x ∈ D2 | x1 = r, x2 = 0, x∗

1 < r∗, x∗
2 ∈ R

}
.

ii) Assume that 0 < t < π
2 . Since cos t > 0 and sin t > 0 , we can write cos t = λ2

1 and sin t = λ2
2 , where

0 < λ1, λ2 < 1 . The solution set of this case is as follows:

U3 =

{
x ∈ D2 | x1 = rλ2

1, x2 = rλ2
2, x∗

1 <
r∗ −A1λ

2
2

λ2
1

, x∗
2 = A1 ∈ R

}
.

iii) Assume that t = π
2 . The solution set of this case is

U4 =
{
x ∈ D2 | x1 = 0, x2 = r, x∗

2 < r∗, x∗
1 ∈ R

}
.

iv) Assume that π
2 < t < π . It is known that cos t < 0 and sin t > 0 . Thus, it is possible to say that

cos t = −λ2
1 < 0 and sin t = λ2

2 > 0 , where 0 < λ1, λ2 < 1 . The solution set for this case is expressed as below:

U5 =

{
x ∈ D2 | x1 = −rλ2

1, x2 = rλ2
2, x∗

1 >
A2λ

2
2 − r∗

λ2
1

, x∗
2 = A2 ∈ R

}
.

v) Assume that t = π . The solution set is

U6 =
{
x ∈ D2 | x1 = −r, x2 = 0, x∗

1 > −r∗, x∗
2 ∈ R

}
.

vi) Assume that π < t < 3π
2 . Since cos t < 0 and sin t < 0 , we can write cos t = −λ2

1 and sin t = −λ2
2 , where

0 < λ1, λ2 < 1 . The solution set of this case is

U7 =

{
x ∈ D2 | x1 = −rλ2

1, x2 = −rλ2
2, x∗

1 >
−A3λ

2
2 − r∗

λ2
1

, x∗
2 = A3 ∈ R

}
.
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vii) Assume that t = 3π
2 . The solution set is

U8 =
{
x ∈ D2 | x1 = 0, x2 = −r, x∗

2 > −r∗, x∗
1 ∈ R

}
.

viii) Assume that 3π
2 < t < 2π . Since cos t = λ2

1 > 0 and sin t = −λ2
2 < 0 , where 0 < λ1, λ2 < 1 , the solution

set for this case is

U9 =

{
x ∈ D2 | x1 = rλ2

1, x2 = −rλ2
2, x∗

1 <
r∗ +A4λ

2
2

λ2
1

, x∗
2 = A4 ∈ R

}
.

Thus, the solution set of U is as follows:
U = U1 ∪ ... ∪ U9.

Now, suppose that x = x + εx∗ , where x = (x1, x2) and x∗ = (x∗
1, 0) . Therefore, we will obtain a specific

solution of the set U and make the geometric modellings of this solution.
Situation.1. Assume that ∥x∥ < r . For this case, the solution set is U1 .
Situation.2. Let ∥x∥ = r . In this case, we can write the following inequality:

x∗
1 cos t < r∗, (3.3)

where 0 ≤ t < 2π . According to the situations of r∗ , we will investigate the inequality (3.3) .
Case.1. Let us consider r∗ > 0 . For 0 ̸= µ ∈ R , r∗ = µ2 can be written. For 0 ≤ t < π

2 and 3π
2 < t < 2π , it

is clear that cos t > 0 . Taking cos t = λ2 into account, where 0 < λ ≤ 1 , from (3.3) , we have

x∗
1 <

µ2

λ2
.

For π
2 < t ≤ π and π ≤ t < 3π

2 , it is possible to say that cos t = −λ2 < 0 , where 0 < λ ≤ 1 . Thus, we have

x∗
1 > −µ2

λ2
.

If t = π
2 and t = 3π

2 are taken into consideration, for all x∗
1 ∈ R , the inequality (3.3) is satisfied (see Figure).

Case.2. Suppose that r∗ < 0 . We can write r∗ = −µ2 . For 0 ≤ t < π
2 and 3π

2 < t < 2π , it is seen that
cos t = λ2 > 0 , where 0 < λ ≤ 1 . From (3.3) , the following inequality can be written:

x∗
1 < −µ2

λ2
.

For π
2 < t ≤ π and π ≤ t < 3π

2 , since cos t = −λ2 < 0 , where 0 < λ ≤ 1 , we get

x∗
1 >

µ2

λ2
.

Considering t = π
2 and t = 3π

2 , the solution set is empty. The geometric modelling of this case is shown in
Figure.
Case.3. Assume that r∗ = 0 . For 0 ≤ t < π

2 and 3π
2 < t < 2π , since cos t = λ2 , where 0 < λ ≤ 1 , from

(3.3) , we get x∗
1 < 0 . For π

2 < t ≤ π and π ≤ t < 3π
2 , since cos t = −λ2 < 0 , where 0 < λ ≤ 1 , from (3.3) ,

we have x∗
1 > 0. For t = π

2 and t = 3π
2 , the solution set is empty (see Figure).
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Figure.

4. Conclusion
In this study, firstly, some properties of the dual absolute value function have been examined. Then, the
properties of the order relation on dual numbers have been investigated in detail. In the last section, we obtain
the topologies on Dn denoted by τ , τd , and τω , after then the general and specific solutions of the given
example have been analyzed in detail so that the order relation on dual numbers can be understood better, and
the geometric modellings of the specific solution have been made.
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