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Abstract: In a ring with an involution, we first present some necessary and sufficient conditions for the existence of
the m -weak group inverse and expression. As an application, we prove that a regular element a is (m+ 1) -weak group
invertible if and only if a2a− is m -weak group invertible, where a− is an inner inverse of a . The relevant results for
weak core inverses and for pseudocore inverses are given. In addition, we present some new characterizations of weak
core inverses, and also investigate maximal classes of elements determining weak core inverses.
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1. Introduction
Throughout the paper, R is a unitary ring with an involution ∗ , aR = {ax : x ∈ R} and Ra = {xa : x ∈ R} .
We recall that an element a ∈ R is regular if there is a− ∈ R satisfying aa−a = a , in which case, a− is called
an inner inverse (or {1} -inverse) of a . The set of all inner inverses of a is denoted by a{1} . An element a ∈ R

is said to be {1, 3} -invertible if there is a(1,3) ∈ R satisfying aa(1,3)a = a and (aa(1,3))∗ = aa(1,3) , in which
case, a(1,3) is called a {1, 3} -inverse of a . The symbol a{1, 3} denotes the set of all {1, 3} -invertible elements
of a . Also, it was proved in [12] that a ∈ R is {1, 3} -invertible if and only if a ∈ Ra∗a .

We use N and N+ to denote the sets of all nonnegative integers and positive integers, respectively.
Recall that a ∈ R is said to be Drazin invertible [3] if there is an element aD (usually called the Drazin

inverse of a) which is the unique solution to the equations

ax2 = x, ax = xa, xak+1 = ak for some k ∈ N+.

In this case, the smallest positive integer k satisfying the above equations is called the Drazin index of a and
denoted by ind(a) . In particular, if ind(a) = 1 , then a is said to be group invertible and aD is called the group
inverse of a (written as a# ).

Afterwards, some kinds of new generalized inverses were introduced and investigated, such as core-EP
inverses. The core-EP inverse of a complex matrix was introduced by Manjunatha Prasad and Mohana [17]. In
2018, Gao and Chen [9] extended the concept of core-EP inverses of complex matrices to rings and called them
pseudocore inverses. An element a ∈ R is said to be pseudocore invertible if there exist x ∈ R and k ∈ N+
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such that
xak+1 = ak, ax2 = x, (ax)∗ = ax.

Such x is unique if it exists, and is called the pseudocore inverse of a , denoted by aD⃝ . The smallest positive
integer k satisfying the equations above is called the pseudocore index of a , which coincides with its Drazin
index, and still denoted by ind(a) . Some interesting properties and representations of these generalized inverses
were investigated, for example, see [1, 4, 11, 15, 24, 30].

The weak group inverse was introduced by Wang and Chen [25] in complex matrices (for some repre-
sentations, also see [7, 19]), and later was generalized to proper ∗ -rings (i.e. R is a proper ∗ -ring if a∗a = 0

implies a = 0 for any a ∈ R) by Zhou et al. [27]. From [27, Theorem 3.5], it was turned out that each element
in a proper ∗ -ring has at most one weak group inverse. However, it may not be unique in R (see [27, Remark
3.6]).

Definition 1.1 [27, Definition 3.1] Let a ∈ R . Then a is said to be weak group invertible if there exist x ∈ R

and k ∈ N+ satisfying
xak+1 = ak, ax2 = x, (ak)∗a2x = (ak)∗a.

Any such x is called the weak group inverse of a .

As a common generalization of the pseudocore inverse and the weak group inverse, Zhou et al. [29]
proposed the definition of the m -weak group inverse in a ring with involution.

Definition 1.2 [29, Definition 4.1] Let m ∈ N . An element a ∈ R is said to be m-weak group invertible if
there exist x ∈ R and k ∈ N+ satisfying

xak+1 = ak, ax2 = x, (ak)∗am+1x = (ak)∗am.

Any such x is called the m-weak group inverse of a .

If k is the smallest positive integer such that the above equations hold, then k is called the m -weak
group index of a . If a is m -weak group invertible, then a is Drazin invertible and the m -weak group index of
a is equal to its Drazin index. Therefore, we still use ind(a) to denote the m -weak group index of a .

It is worth noting that the definition of the 1-weak group inverse is exactly that of the weak group inverse
(see [29, Corollary 4.4]). When the m -weak group inverse (resp., weak group inverse) is unique, we use a w⃝m

(resp., a w⃝ ) to denote the unique m -weak group inverse (resp., weak group inverse) of a .

In what follows, the symbols R{1,3}, R#, RD, R D⃝, R w⃝, R w⃝m denote the sets of all {1, 3} -invertible, group
invertible, Drazin invertible, pseudocore invertible, weak group invertible, and m -weak group invertible elements
of R , respectively.

It was also shown in [29, Corollary 4.3] that a ∈ R D⃝ if and only if a ∈ R w⃝0 , in this case, a has at
most one 0-weak group inverse and a w⃝0 = aD⃝ . Following [29, Corollary 4.11], if a ∈ R D⃝ , then a has a unique
m -weak group inverse. Moreover, it was pointed out in [29, Proposition 4.8] that a w⃝ = (aD⃝)2a when a ∈ R D⃝ .
For more details of m -weak group inverses, see, e.g., [13, 21].

The weak core inverse is a new type of generalized inverse, which was introduced by Ferreyra et al. [6]
for complex matrices. Later, Zhou and Chen [28] generalized this concept to a ring with involution. Following
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[28, Proposition 3.1], it was proved that if a ∈ R w⃝ ∩R{1,3} , then a ∈ R D⃝ , in which case, a has a unique weak
group inverse.

Definition 1.3 [28, Definition 3.6] Let a ∈ R . If a ∈ R w⃝ ∩ R{1,3} , then a is said to be weak core invertible.
The unique x ∈ R satisfying the following equations

xax = x, ax = aa w⃝aa(1,3), xa = a w⃝a

is called the weak core inverse of a , denoted by awC .

We use RwC to denote the set of all weak core invertible elements of R . Following [28], the relation

RwC ⊆ R D⃝ ⊆ R w⃝ ⊆ R w⃝m ⊆ RD (m ≥ 2)

is established. Moreover, awC = a w⃝aa(1,3) = (aD⃝)2a2a(1,3) . Some expressions and properties which can be
used in the calculation of weak core inverse for complex matrices can also be found in [8, 20].

The theme of this paper is to investigate some new characterizations and representations of weak core
inverses and m -weak group inverses in a ring with involution. The motivations are as follows.

It was shown in [9, Theorem 2.3] that a ∈ R D⃝ with ind(a) = k if and only if a ∈ RD with ind(a) = k

and ak ∈ R{1,3} . In addition, Zhou et al. [29, Proposition 3.11] also gave an existence criteria for weak group
inverses in R . Motivated by these discussions, in Section 3, we first investigate some equivalent conditions for
the existence of the m -weak group inverse, and improve the relevant result of Zhou et al. As an application, it
turned out that a ∈ R w⃝m+1 if and only if a2a− ∈ R w⃝m , where a ∈ R is regular and a− ∈ a{1} . For a regular
element a ∈ R and b = aa− ∈ R , we prove that ab ∈ R D⃝ if and only if ba ∈ R D⃝ .

In [27], Zhou et al. characterized the weak group inverse using annihilators in a proper ∗ -ring. In
[5], Ferreyra et al. investigated maximal classes for complex matrices determining some generalized inverses,
such as DMP inverses [16], core-EP inverses and CMP inverses [18]. Later, Zhou and Chen [26] generalized
the relevant result of core-EP inverses to a ring with an involution, and obtained maximal classes of elements
in a ring determining pseudocore inverses. Inspired by the discussion above, we aim to present some new
characterizations of weak core inverses and present maximal classes of elements in a ring related to weak core
inverses in Section 4.

2. Preliminaries
The right (resp., left) annihilator of a is defined by a◦ = {x ∈ R : ax = 0} (resp., ◦a = {x ∈ R : xa = 0}). In
this section, we give several necessary lemmas.

Lemma 2.1 [22, Lemma 2.5 ] Let a, b ∈ R .

(i) If aR ⊆ bR , then ◦b ⊆ ◦a .

(ii) If Ra ⊆ Rb , then b◦ ⊆ a◦ .

Lemma 2.2 [23, Theorem 3.3] If a ∈ RD , then a ∈ R D⃝ if and only if aaD ∈ R{1,3} . In this case,
aaD⃝ ∈ (aaD){1, 3} and aD⃝ = aD(aaD)(1,3) for any (aaD)(1,3) ∈ (aaD){1, 3} .
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Lemma 2.3 [9, Lemma 2.1] Let a ∈ R . If there exists x ∈ R such that

ax2 = x , xak+1 = ak for some k ∈ N+ ,

then a ∈ RD with ind(a) ≤ k .

Following [28], Zhou and Chen wrote

Tl(a) = {x ∈ R : xak+1 = ak, ax2 = x for some k ∈ N+},

when a ∈ RD . Moreover, Tl(a) = {x ∈ R : xaind(a)+1 = aind(a), ax2 = x} is also established.

Lemma 2.4 [28, Lemma 2.2] Let a ∈ RD , k1, . . . , kn, s1, . . . , sn ∈ N and x1, . . . , xn ∈ Tl(a) . If sn ̸= 0 , then

n∏
i=1

akixsi
i = akxs

n,

where k =
n∑

i=1

ki and s =
n∑

i=1

si .

Lemma 2.5 ([10, Theorem 3.1], core-EP decomposition) Let a ∈ R D⃝ . Then a = a1 + a2 , where

(i) a
#⃝
1 exists.

(ii) am2 = 0 for some m ∈ N+ .

(iii) a∗1a2 = a2a1 = 0 .

In this case, a
#⃝
1 = aD⃝ , a#1 = (aD⃝)2a , a1 = aaD⃝a and a2 = a− aaD⃝a .

In what follows, we will restrict a1 = aaD⃝a and a2 = a− aaD⃝a when a ∈ R D⃝ following Lemma 2.5.

Lemma 2.6 [28, Corollary 3.2] Let a ∈ R . Then a ∈ R w⃝ ∩R{1,3} if and only if a ∈ R D⃝ and a2 ∈ R{1,3} .

3. Characterizations of m-weak group inverses

In this section, we first give some characterizations of m -weak group inverses.

Theorem 3.1 Let a ∈ RD with ind(a) = k and m ∈ N . Then the following conditions are equivalent.

(i) a ∈ R w⃝m .

(ii) (ak)∗amR ⊆ (ak)∗akR .

(iii) (aaD)∗amR ⊆ (aaD)∗(aaD)R .

In this case, aD + (aD)m+1aaDt(1− aaD) is an m-weak group inverse of a , where (aaD)∗am = (aaD)∗aaDt .
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Proof (i)⇒(ii). From Definition 1.2, there exists x ∈ R such that (ak)∗am = (ak)∗am+1x . Then it follows
that (ak)∗am = (ak)∗akamxk ∈ (ak)∗akR . Hence, (ak)∗amR ⊆ (ak)∗akR .

(ii)⇒(i). Since (ak)∗amR ⊆ (ak)∗akR , it follows that (ak)∗am = (ak)∗akt for some t ∈ R . Let
x = aD + (aD)m+1akt(1− aaD) . Then it suffices to prove that x is an m -weak group inverse of a . By Lemma
2.4, we get that

xak+1 = aDak+1 + (aD)m+1akt(1− aaD)ak+1 = ak,

ax2 = a
(
aD + (aD)m+1akt(1− aaD)

)2
= a

(
(aD)2 + (aD)m+2akt(1− aaD)

)
= aD + (aD)m+1akt(1− aaD) = x

and

(ak)∗am+1x = (ak)∗am+1
(
aD + (aD)m+1akt(1− aaD)

)
= (ak)∗am+1aD + (ak)∗am+1(aD)m+1akt(1− aaD)

= (ak)∗am+1aD + (ak)∗akt(1− aaD)

= (ak)∗am+1aD + (ak)∗am(1− aaD)

= (ak)∗am.

Hence, a is m -weak group invertible and x is an m -weak group inverse of a .
(ii)⇔(iii) is obvious by akR = aaDR . Similarly, it also can be derived that aD +(aD)m+1aaDt(1−aaD)

is also an m -weak group inverse of a , where (aaD)∗am = (aaD)∗aaDt . 2

Recall from [14, Definition 2], an element a ∈ R is left ∗ -cancellable if a∗ax = a∗ay implies ax = ay .
Following [29, Corollary 3.7 and Proposition 4.12], if each idempotent element in R is left ∗ -cancellable, then
each element in R has at most one m -weak group inverse.

Remark 3.2 Under the assumption of Theorem 3.1, it was pointed out that a ∈ R D⃝ if and only if ak ∈ R(ak)∗ak

when m = 0 , which was first given in [9, Theorem 2.3]. When m = 1 , it follows that a ∈ R w⃝ if and only
if (aaD)∗a ∈ (aaD)∗aaDR , which is also equivalent to (aD)∗a ∈ (aD)∗aDR . Thus, the condition that each
idempotent element in R is left ∗-cancellable of [29, Proposition 3.11] can be dropped, and aD+(aD)3t(1−aaD)

is a weak group inverse of a , where (aD)∗a = (aD)∗aDt .

Proposition 3.3 Let a ∈ RD and m ∈ N+ . Then a ∈ R w⃝m if and only if there exists t ∈ R such that
(aD)∗am = (aD)∗aDt . If each idempotent element in R is left ∗-cancellable, then a w⃝m = (aD)m+2t .

Proof By Theorem 3.1 (i)⇔(iii), it is easy to get that a ∈ R w⃝m if and only if there exists s ∈ R such that
(aaD)∗am = (aaD)∗aaDs , or equivalently, there exists t ∈ R such that (aD)∗am = (aD)∗aDt . In this case,
a w⃝m = aD + (aD)m+1aDt(1− aaD) .
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From (aD)∗am = (aD)∗aDt , it follows that (aaD)∗aaDam−1 = (aaD)∗aaDaDtaD . Since aaD is left
∗ -cancellable, we obtain amaD = aDtaD . Hence,

a w⃝m = aD + (aD)m+1aDt− (aD)m+1aDtaDa

= aD + (aD)m+2t− (aD)m+1amaDa

= aD + (aD)m+2t− aD = (aD)m+2t.

2

As an application of Theorem 3.1, we have the following result.

Theorem 3.4 Let a ∈ R be regular with an inner inverse a− and m ∈ N+ . Then a ∈ R w⃝m+1 if and only if
a2a− ∈ R w⃝m . In this case,

aDaa− + axa−(1− aDa2a−) is an m-weak group inverse of a2a−

and

aD + aDya(1− aaD) is an (m+ 1)-weak group inverse of a ,

where x is an (m+ 1)-weak group inverse of a and y is an m-weak group inverse of a2a− .

Proof By Cline’s formula [2], a ∈ RD if and only if a2a− ∈ RD , in this case, (a2a−)D = aDaa− and
ind(a2a−) ≤ ind(a) + 1 . Then by Theorem 3.1, it follows that when a ∈ RD , we obtain that

a ∈ R w⃝m+1 ⇔ (aaD)∗am+1R ⊆ (aaD)∗aaDR

⇔ (aaD)∗am+1a−R ⊆ (aaD)∗aaDR

⇔ (aaD)∗(a2a−)mR ⊆ (aaD)∗aaDR

⇔
(
(a2a−)(a2a−)D

)∗
(a2a−)mR ⊆

(
(a2a−)(a2a−)D

)∗
(a2a−)(a2a−)DR

⇔ a2a− ∈ R w⃝m .

Now we proceed to present an m -weak group inverse of a2a− . Let ind(a) = k and x be an (m+1) -weak
group inverse of a . By Lemma 2.4, we get that(

(a2a−)(a2a−)D
)∗

(a2a−)m = (aaDaa−)∗am+1a−

=
(
(aD)kaa−

)∗
(ak)∗am+1a−

=
(
(aD)kaa−

)∗
(ak)∗am+2xa−

= (aaDaa−)∗am+2xa−

=
(
(a2a−)(a2a−)D

)∗
aaDam+2xa−

=
(
(a2a−)(a2a−)D

)∗
(a2a−)(a2a−)Dam+2xa−.
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Then it follows from Lemma 2.4 and Theorem 3.1 that

(a2a−)D +
(
(a2a−)D

)m+1 (
(a2a−)(a2a−)Dam+2xa−

) (
1− (a2a−)(a2a−)D

)
= aDaa− + (aD)m+1aa−(am+2xa−)(1− aDa2a−)

= aDaa− + (aD)m+1am+2xa−(1− aDa2a−)

= aDaa− + am+2xm+2a−(1− aDa2a−)

= aDaa− + axa−(1− aDa2a−).

Therefore, aDaa− + axa−(1− aDa2a−) is an m -weak group inverse of a2a− .

Next, we give an (m + 1) -weak group inverse of a . Let y be an m -weak group inverse of a2a− . Since
ind(a2a−) ≤ k + 1 and Lemma 2.4, we get that

(aaD)∗am+1 =
(
(a2a−)k+1(aD)k+1

)∗
(a2a−)ma

=
(
(aD)k+1

)∗ (
(a2a−)k+1

)∗
(a2a−)ma

=
(
(aD)k+1

)∗ (
(a2a−)k+1

)∗
(a2a−)m+1ya

= (aaD)∗(a2a−)m+1ya

= (aaD)∗(a2a−)D(a2a−)m+2ya

= (aaD)∗aaD(a2a−)m+1ya.

Then it also follows from Lemma 2.4 and Theorem 3.1 that

aD + (aD)m+2aaD(a2a−)m+1ya(1− aaD)

= aD + (aD)m+2am+2a−ya(1− aaD)

= aD + aDaa−(a2a−)y2a(1− aaD)

= aD + aD(a2a−)y2a(1− aaD)

= aD + aDya(1− aaD).

Hence, aD + aDya(1− aaD) is an (m+ 1) -weak group inverse of a . 2

Corollary 3.5 Let m ∈ N+ and a ∈ R be regular with an inner inverse a− . If a ∈ R w⃝m+1 and each idempotent

element in R is left ∗-cancellable, then (a2a−) w⃝m = aa w⃝m+1a− and a w⃝m+1 =
(
(a2a−) w⃝m

)2
a .

Proof According to the proof of Theorem 3.4, we get

(
(a2a−)(a2a−)D

)∗
(a2a−)m =

(
(a2a−)(a2a−)D

)∗
(a2a−)(a2a−)Dam+2a w⃝m+1a− .
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Then from Lemma 2.4 and Proposition 3.3, it follows that

(a2a−) w⃝m =
(
(a2a−)D

)m+2
(a2a−)am+2a w⃝m+1a−

=
(
(a2a−)D

)m+1
(aDaa−)(a2a−)am+2a w⃝m+1a−

=
(
(a2a−)D

)m+1
aDam+3a w⃝m+1a−

=
(
(a2a−)D

)m+1
am+2a w⃝m+1a−

= (aD)m+1aa−am+2a w⃝m+1a−

= (aD)m+1am+2a w⃝m+1a−

= am+2 (a w⃝m+1)
m+2

a−

= aa w⃝m+1a−.

A similar argument gives that

a w⃝m+1 = (aD)m+2(a2a−)m+1(a2a−) w⃝ma = (aD)m+2am+2a−(a2a−) w⃝ma

= (a2a−)D(a2a−) w⃝ma =
(
(a2a−) w⃝m

)2
a.

2

In [23], Shi et al. found that Cline’s formula for pseudocore inverses does not hold. Here, for a regular
element a ∈ R and b = aa− , we prove that ab ∈ R D⃝ is equivalent to ba ∈ R D⃝ .

Proposition 3.6 Let a ∈ R be regular with an inner inverse a− . Then a ∈ R D⃝ if and only if a2a− ∈ R D⃝ .
In this case, aD⃝ = (a2a−)D⃝ .

Proof From aaDR = (a2a−)(a2a−)DR and Lemma 2.2, the equivalence of a ∈ R D⃝ and a2a− ∈ R D⃝ follows
directly. Also, it is easy to check that aaD⃝ ∈

(
(a2a−)(a2a−)D

)
{1, 3} . Combining Lemma 2.4, we get that

(a2a−)D⃝ = (a2a−)D
(
(a2a−)(a2a−)D

)(1,3)
= aDaa−aaD⃝ = aD⃝.

2

Particularly, when a ∈ R{1,3} , we can have the relevant result for weak core inverses.

Theorem 3.7 Let a ∈ R{1,3} with a {1, 3}-inverse a(1,3) . Then a ∈ RwC if and only if a2a(1,3) ∈ R D⃝ . In
this case, awC = (a2a(1,3)) w⃝ .

Proof It is obvious by Lemma 2.6 and Proposition 3.6. For the expression of the weak core inverse, since
aD⃝ = (a2a(1,3))D⃝ , we obtain that

awC = (aD⃝)2a2a(1,3) =
(
(a2a(1,3))D⃝)2

a2a(1,3) = (a2a(1,3)) w⃝ .

2
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Remark 3.8 It is worth noting that a2a(1,3) ∈ R w⃝ does not imply a ∈ RwC when a ∈ R{1,3} with a {1, 3}-

inverse a(1,3) . Taking the example as in [28, Example 3.4], we know a =

1 0 0
1 0 1
0 0 0

 ∈ R w⃝2 but a /∈ R D⃝ .

From Theorem 3.4, it was shown that a ∈ R w⃝2 if and only if a2a(1,3) ∈ R w⃝ . However, a /∈ RwC by Lemma
2.6.

In [6], Ferreyra et al. considered the equivalent condition for AwC = A w⃝ when A ∈ Cn×n . Later, Zhou
and Chen [28] gave several equivalent conditions for awC = a w⃝m for m ∈ N\{1} , when a ∈ RwC . Here we
investigate the case of awC = a w⃝ when a ∈ RwC , which generalizes the result of Ferreyra et al. [6].

Theorem 3.9 Let a ∈ RwC . Then awC = a w⃝ if and only if

(aa w⃝ − aaD⃝)(1− a2a
(1,3)
2 ) = 0 .

Proof According to the proof of [28, Corollary 3.2], we get that aa(1,3) = p1 + p2 with p1p2 = 0 , where

p1 = a1a
(1,3)
1 and p2 = a2a

(1,3)
2 . Then

a w⃝p1 = (aD⃝)2ap1 = a#1 a1a
(1,3)
1 = a

#⃝
1 = aD⃝ .

It follows that

awC = a w⃝ ⇔ a w⃝aa(1,3) = a w⃝

⇔ a w⃝(1− aa(1,3)) = 0

⇔ a w⃝(1− p1 − p2) = 0

⇔ a w⃝(1− p2)− a w⃝p1(1− p2) = 0

⇔ (a w⃝ − aD⃝)(1− p2) = 0

⇔ (aa w⃝ − aaD⃝)(1− a2a
(1,3)
2 ) = 0.

2

Example 3.10 awC = aD⃝ does not imply that awC = a w⃝ . For example, let R = C4×4 with the conjugate

transpose as the involution. Take a =


1 0 0 1
0 1 0 0
0 0 0 1
0 0 0 0

 ∈ R . Then we have aa(1,3) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .

Following [6, Theorem 3.12], [24, Theorem 3.2] and [25, Theorem 3.1], we get that a w⃝ =


1 0 0 1
0 1 0 0
0 0 0 0
0 0 0 0



and aD⃝ =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 = awC . However, awC ̸= a w⃝ .
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Following [28, Definition 4.7], an element a ∈ R is called weak core element if a ∈ RwC with awC =

aDaa(1,3) . The forthcoming example shows that a is not weak core element when awC = a w⃝ .

Example 3.11 Let R = C6×6 with the conjugate transpose as the involution. Take

a =


1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 .

Then according to [6, Theorem 5.3], we know that a is not weak core element. By [6, Theorem 3.12], we

get a w⃝ =


1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . It is easy to verify that aa(1,3) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 . Then it follows

awC = a w⃝aa(1,3) = a w⃝ .

4. Characterizations of weak core inverses
In [27], some characterizations of weak group inverses are given. In this section, we will present some new
characterizations of weak core inverses analogously.

Theorem 4.1 Let a ∈ R be {1, 3}-invertible with a {1, 3}-inverse a(1,3) and x ∈ R . Then the following
conditions are equivalent.

(i) a ∈ RwC and x = awC .

(ii) xax = x , xR = amR = am+1R , R(am)∗a2a(1,3) = Rx and (am)∗aR = (am)∗amR for some m ∈ N+ .

(iii) xax = x , xR = amR ⊆ am+1R , R(am)∗a2a(1,3) ⊆ Rx and (am)∗aR ⊆ (am)∗amR for some m ∈ N+ .

(iv) xax = x , ◦(am+1) ⊆ ◦(am) = ◦x , x◦ ⊆
(
(am)∗a2a(1,3)

)◦ and (am)∗aR ⊆ (am)∗amR for some m ∈ N+ .

Proof (i)⇒(ii). By the hypothesis, we can suppose ind(a) = m . Following [28, Proposition 3.14], we also get

xax = x , ax2 = x and ax = aa w⃝aa(1,3) .

Since

x = ax2 = amxm+1 = am+1xm+2 ,

we get xR ⊆ am+1R ⊆ amR . Since xam+1 = a w⃝am+1 = am , we get amR ⊆ xR . Hence, xR = amR = am+1R .
Since

(am)∗a2a(1,3) = (am)∗a2a w⃝aa(1,3) = (am)∗a2x ,
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we have R(am)∗a2a(1,3) ⊆ Rx . From

x = (aD⃝)2a2a(1,3) = (aD⃝)2am(aD⃝)ma2a(1,3)

= (aD⃝)2 ((aD⃝)m)
∗
(am)∗a2a(1,3) ∈ R(am)∗a2a(1,3),

we get Rx ⊆ R(am)∗a2a(1,3) . Then Rx = R(am)∗a2a(1,3) .
In addition, (am)∗aR ⊆ (am)∗amR follows directly by Theorem 3.1. Obviously (am)∗amR ⊆ (am)∗aR .

Then (am)∗aR = (am)∗amR .
(ii)⇒(iii) is obvious.
(iii)⇒(iv). It follows by Lemma 2.1.
(iv)⇒(i). From xa − 1 ∈ ◦x , we get (xa − 1)am = 0 . Then xam+1 = am . Since axam+1 = am+1 , it

follows that ax − 1 ∈ ◦(am+1) . Then (ax − 1)x = 0 implies ax2 = x . Hence, a ∈ RD with ind(a) ≤ m by
Lemma 2.3.

From (am)∗aR ⊆ (am)∗amR , we get a ∈ R w⃝ by Theorem 3.1. Hence, a ∈ RwC . Since(
(am)∗a2a(1,3)

)◦ ⊆
(
(aD⃝)2 ((aD⃝)m)

∗
(am)∗a2a(1,3)

)◦
=

(
(aD⃝)2a2a(1,3)

)◦
= (awC)◦

and x◦ ⊆
(
(am)∗a2a(1,3)

)◦ , we can derive from x(ax − 1) = 0 that awC(ax − 1) = 0 . Then awC = awCax =

ax2 = x by Lemma 2.4. 2

Remark 4.2 From the example of Remark 3.8, we know that the condition (am)∗aR ⊆ (am)∗amR of Theorem

4.1 ( iii) is not superfluous. In fact, we take x = aD . By computation, (a2)∗a =

2 0 1
0 0 0
0 0 0

 , (a2)∗a2 =

(a2)∗a2a(1,3) =

2 0 0
0 0 0
0 0 0

 . Then xax = x , xR = a2R ⊆ a3R and R(a2)∗a2a(1,3) ⊆ Rx . However,

(a2)∗aR ⊊ (a2)∗a2R . Hence, a /∈ RwC .

Theorem 4.3 Let a ∈ R be {1, 3}-invertible with a {1, 3}-inverse a(1,3) . Then the following conditions are
equivalent.

(i) a ∈ RwC .

(ii) There exists an idempotent q ∈ R such that qR = amR = am+1R , Ram = Ram+1 , R(am)∗a2a(1,3) = Rq

and (am)∗aR = (am)∗amR for some m ∈ N+ .

(iii) There exists an idempotent q ∈ R such that qR = amR ⊆ am+1R , Ram ⊆ Ram+1 , R(am)∗a2a(1,3) ⊆ Rq

and (am)∗aR ⊆ (am)∗amR for some m ∈ N+ .

(iv) am+1 is regular and there exists an idempotent q ∈ R such that ◦(am+1) ⊆ ◦(am) = ◦q , (am+1)◦ ⊆ (am)◦ ,
q◦ ⊆

(
(am)∗a2a(1,3)

)◦ and (am)∗aR ⊆ (am)∗amR for some m ∈ N+ .

In this case, awC = am(am+1)−q for any (am+1)− ∈ am+1{1} .
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Proof (i)⇒(ii). Following the assumption, we suppose ind(a) = m . Let q = aawC . Then

q = aa w⃝aa(1,3) = am(a w⃝)maa(1,3) = am+1(a w⃝)m+1aa(1,3) ,

which implies that qR ⊆ am+1R ⊆ amR . Also, from

am = a w⃝am+1 = aa w⃝a w⃝am+1 = aa w⃝am = aa w⃝aa(1,3)am = aawCam = qam ,

we obtain amR ⊆ qR and Ram = Ram+1 . Hence, qR = amR = am+1R .
Since

(am)∗a2a(1,3) = (am)∗a2a w⃝aa(1,3) = (am)∗aq ,

we get R(am)∗a2a(1,3) ⊆ Rq . From

q = aD⃝a2a(1,3) = aD⃝am(aD⃝)ma2a(1,3)

= aD⃝ ((aD⃝)m)
∗
(am)∗a2a(1,3) ∈ R(am)∗a2a(1,3),

we get Rq ⊆ R(am)∗a2a(1,3) . Then R(am)∗a2a(1,3) = Rq .
Also, (am)∗aR ⊆ (am)∗amR follows directly by Theorem 3.1. Obviously, (am)∗amR ⊆ (am)∗aR . Hence,

(am)∗aR = (am)∗amR .
(ii)⇒(iii) is clear.
(iii)⇒(iv). It follows directly by Lemma 2.1.
(iv)⇒(i). Let (am+1)− be an inner inverse of am+1 . Since

(1− (am+1)−am+1) ⊆ (am+1)◦ ⊆ (am)◦ ,

it follows that am = am(am+1)−am+1 . From 1− q ∈ ◦q = ◦(am) , we can get am = qam . Since

(1− am+1(am+1)−) ∈ ◦(am+1) ⊆ ◦q ,

we can get that q = am+1(am+1)−q .
Let x = am(am+1)−q . Then ax = q ,

xam+1 = am(am+1)−qam+1 = am(am+1)−am+1 = am

and ax2 = am+1(am+1)−qam(am+1)−q = qam(am+1)−q = x.

Hence, a ∈ RD with ind(a) ≤ m by Lemma 2.3.
From (am)∗aR ⊆ (am)∗amR , we can get a ∈ R w⃝ by Theorem 3.1. Therefore, a ∈ RwC . Since

(
(am)∗a2a(1,3)

)◦ ⊆
(
(aD⃝)2a2a(1,3)

)◦
= (awC)◦

and q◦ ⊆
(
(am)∗a2a(1,3)

)◦ , it follows that ax− 1 ∈ q◦ ⊆ (awC)◦ . Then by Lemma 2.4, we have

awC = awCax = ax2 = x = am(am+1)−q .
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2

Let p, q ∈ R be idempotent. If x ∈ R , then x can be represented as a sum

x = pxq + px(1− q) + (1− p)xq + (1− p)x(1− q)

or as a formal matrix

x =

(
x11 x12

x21 x22

)
p×q

, (4.1)

where x11 = pxq , x12 = px(1− q) , x21 = (1− p)xq and x22 = (1− p)x(1− q) , which is well-known as Peirce
decomposition.

Finally, we investigate maximal classes of elements concerning the weak core inverse by Peirce decompo-
sition.

Theorem 4.4 Let a ∈ RwC with ind(a) = k and y ∈ a{1} . If there exists x ∈ R satisfying xak+1 = ak , then
the following conditions are equivalent.

(i) awC = xay .

(ii) xa = a w⃝a and a(1,3) − y ∈ (1− a w⃝a)R .

(iii) x =

(
aD⃝ x2

0 x4

)
p×p

with x2a = a w⃝a− aD⃝a and x4a = 0 , y =

(
awC 0
y3 y4

)
q×γ

, where p = aaD⃝ , q = a w⃝a

and γ = aa(1,3) .

In this case, (a∗)◦ ⊆
(
(ak)∗a2y

)◦ .

Proof (i)⇒(ii). From awC = xay and y ∈ a{1} , we get

a w⃝a = a w⃝aa(1,3)a = awCa = xaya = xa .

Also, since a w⃝aa(1,3) = xay = a w⃝ay , we can obtain a w⃝a(a(1,3) − y) = 0 , which implies that

a(1,3) − y = (1− a w⃝a)(a(1,3) − y) ∈ (1− a w⃝a)R .

(ii)⇒(iii). Let p = aaD⃝ , q = a w⃝a and γ = aa(1,3) . Then following Peirce decomposition, we get that

a =

(
a11 a12
0 a2

)
p×p

=

(
aa w⃝a a− aa w⃝a
0 0

)
γ×q

,

where a11 = aaD⃝aaaD⃝ = a2aD⃝ , a12 = a1 − a11 and a2 is nilpotent of index k . Then ak =

(
ak11 ã12
0 0

)
p×p

,

where ã12 =
k−1∑
j=0

aj11a12a
k−1−j
2 .
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Suppose that x =

(
x1 x2

x3 x4

)
p×p

satisfies xak+1 = ak . Hence, we conclude that



x1a
k+1
11 = ak11

x1

k∑
j=0

aj11a12a
k−j
2 = ã12

x3a
k+1
11 = 0

x3

k∑
j=0

aj11a12a
k−j
2 = 0

⇒



x1aa
D⃝ = aD⃝

x1a12a
k
2 + x1a11ã12 = ã12

x3aa
D⃝ = 0

x3

k∑
j=0

aj11a12a
k−j
2 = 0.

Then x3 = x3aa
D⃝ = 0 and x1 = x1aa

D⃝ = aD⃝ . Therefore, x =

(
aD⃝ x2

0 x4

)
p×p

.

Following Peirce decomposition and Lemma 2.4, we can obtain a w⃝ =

(
aD⃝ a w⃝ − aD⃝

0 0

)
p×p

, then a w⃝a =(
aD⃝a11 aD⃝a12 + (a w⃝ − aD⃝)a2

0 0

)
p×p

. In addition, we can calculate xa =

(
aD⃝a11 aD⃝a12 + x2a2

0 x4a2

)
p×p

.

Hence, it follows from xa = a w⃝a and Lemma 2.4 that(
aaD⃝ aD⃝a− aaD⃝ + x2a2
0 x4a2

)
p×p

=

(
aaD⃝ a w⃝a− aaD⃝

0 0

)
p×p

.

Then x2a2 = a w⃝a− aD⃝a and x4a2 = 0 , it follows that x2a = a w⃝a− aD⃝a and x4a = 0 .

From a(1,3) − y ∈ (1− a w⃝a)R , we get a w⃝ay = a w⃝aa(1,3) . Let y =

(
y1 y2
y3 y4

)
q×γ

. Then

y1 = qyγ = a w⃝ayaa(1,3) = a w⃝aa(1,3) = awC

and

y2 = qy(1− γ) = a w⃝ay(1− aa(1,3)) = a w⃝aa(1,3)(1− aa(1,3)) = 0 .

Hence, y =

(
awC 0
y3 y4

)
q×γ

.

(iii)⇒(i). Following Peirce decomposition and Lemma 2.4, we can also get a =

(
aa w⃝a aaD⃝a− aa w⃝a
0 a− aaD⃝a

)
p×q

.

Then by computation, we get

xay =

(
awC + (aD⃝a− a w⃝a+ x2a)y3 (aD⃝a− a w⃝a+ x2a)y4

x4ay3 x4ay4

)
p×γ

.

Since x2a = a w⃝a− aD⃝a and x4a = 0 , it follows that

xay =

(
awC 0
0 0

)
p×γ

= pawCγ = aaD⃝awCaa(1,3) = awC .
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In this case, for arbitrary u ∈ (a∗)◦ , we have a∗u = 0 . Hence, aa(1,3)u = 0 . Following a(1,3) − y ∈
(1− a w⃝a)R , we can obtain that a w⃝ay = a w⃝aa(1,3) . Hence,

(ak)∗a2yu = (ak)∗a2a w⃝ayu = (ak)∗a2a w⃝aa(1,3)u = 0 .

Then u ∈
(
(ak)∗a2y

)◦ . Therefore, (a∗)◦ ⊆
(
(ak)∗a2y

)◦ . 2
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