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Abstract: The purpose of this article is to explore various inequalities pertaining to the numerical radius of operators
in a Hilbert space. Additionally, we present several bounds for the Berezin number and Berezin norm of operators that
act on a reproducing kernel Hilbert space. Finally, we establish a necessary and sufficient condition for the triangle
inequality related to the Berezin number to hold.
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1. Introduction
In recent years, there has been significant research into the applications of numerical radius and Berezin numbers
of operators across various fields such as quantum computing, engineering, quantum mechanics, differential
equations, numerical analysis, etc. Additionally, there has been growing interest in the study of quadratic forms
within Hilbert spaces, particularly in relation to the field of values or numerical range. This concept was first
introduced by Toeplitz in [34] for matrices, and later, Wintner investigated the connection between the field of
values and the convex hull of the spectrum of Hilbert space operators in [35].

The article aims to investigate different inequalities related to the numerical radius of operators in a
Hilbert space. Furthermore, it provides various bounds for the Berezin number and Berezin norm of operators
that operate on a reproducing kernel Hilbert space.

We need to recall several facts and notations. Firstly, let us denote the algebra of all linear and bounded
operators on a complex Hilbert space (H, 〈·, ·〉) by B(H) . Additionally, we use the norm associated with 〈·, ·〉
and denote it by ‖ · ‖ . If dimH = d , then B(H) is identified with the matrix algebra Md of every d× d matrix
with entries in C , where C is the field of the complex numbers. Let S1 stand for the unit sphere of H , i.e.

S1 :=
{
x ∈ H ; ‖x‖ =

√
〈x, x〉 = 1

}
.
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Let Q ∈ B(H) . The numerical radius and the operator norm of Q , denoted respectively by ω(Q) and
‖Q‖ , are given by

ω(Q) = sup
x∈S1

∣∣〈Qx, x〉
∣∣ and ‖Q‖ = sup

x∈S1
‖Qx‖.

It is well-known that ω(·) defines a norm on B(H) which is equivalent to ‖ ·‖ . Indeed, the following inequalities

‖Q‖
2

≤ ω(Q) ≤ ‖Q‖,

hold for every Q ∈ B(H) . Notice that if Q is normal (that is, Q∗Q = QQ∗ ), the equality ω(Q) = ‖Q‖ holds.
It can be shown that ω(·) is neither a submultiplicative nor a multiplicative norm on B(H) (see for instance,
[18]).

However, the power inequality holds for ω(·) , i.e. for every positive integer n and all Q ∈ B(H) , we have

ω(Qn) ≤ ω(Q)n. (1.1)

Although (1.1) was conjectured by Halmos and answered by Berger (for more details and references see [4, 18]),
the reverse inequality of (1.1) may not hold in general. This can be demonstrated by considering the following

nilpotent matrix: A =

(
0 0
1 0

)
∈ M2, then we see that ω(A2) = 0 , but ω(A) = 1

2 . To delve deeper into the

topic of numerical radius of Hilbert space operators and explore its various applications, interested readers are
encouraged to refer to [5, 15] and the references cited therein.

An operator Q ∈ B(H) is called positive (we write Q ≥ 0) if 〈Qx, x〉 ≥ 0 for every x ∈ H . If Q ≥ 0 ,
then there exists a unique bounded positive linear operator, denoted by Q1/2 , which satisfies the property
Q = (Q1/2)2 . The absolute value of an operator Q ∈ B(H) , denoted by |Q| , is defined as |Q| = (Q∗Q)1/2 .
Clearly |Q| ≥ 0 .

We mention here that Kittaneh showed respectively in [24] and [25] that the following inequalities

ω(Q) ≤ 1

2

∥∥|Q|+ |Q∗|
∥∥

and
1

4

∥∥|Q|2 + |Q∗|2
∥∥ ≤ ω2(Q) ≤ 1

2

∥∥|Q|2 + |Q∗|2
∥∥. (1.2)

hold for every Q ∈ B(H) .
For Q,W ∈ B(H) , we found

ωr(W ∗Q) ≤ 1

2

∥∥|Q|2r + |W |2r
∥∥, (r ≥ 2). (1.3)

This represents an inequality given by Dragomir in [12]. Next, we present an improvement of the above inequality
for r = 2 , given by Kittaneh and Moradi in [26]:

ω2(W ∗Q) ≤ 1

6

∥∥|Q|4 + |W |4
∥∥+

1

3
ω(W ∗Q)

∥∥|Q|2 + |W |2
∥∥ ≤ 1

2

∥∥|Q|4 + |W |4
∥∥. (1.4)
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Additional results related to the numerical radius of Hilbert space operators can be found in [6, 11, 29, 30] and
their respective reference lists.

Let us now introduce the concept of reproducing kernel Hilbert spaces. Consider a nonempty set Ω , and
let F(Ω,C) denote the set of all complex-valued functions defined on Ω . We say that a set HΩ ⊆ F(Ω,C) is
a reproducing kernel Hilbert space on Ω (RKHS for short) if HΩ is a Hilbert space and for each α ∈ Ω , the
map Eα : HΩ → C defined as Eα(f) = f(α) for all f ∈ HΩ is bounded. By applying the well-known
Riesz representation theorem, we infer that for every α ∈ Ω , there exists a unique kα ∈ HΩ satisfying
f(α) = Eα(f) = 〈f, kα〉 for every f ∈ HΩ . Note that kα is called the reproducing kernel for α . Moreover, the

reproducing kernel of HΩ is the following set {kα ; α ∈ Ω} . Let k̂α = kα

∥kα∥ denote the normalized reproducing

kernel of HΩ . It is worth noting that {k̂α : α ∈ Ω} is dense in HΩ . Let Q ∈ B(HΩ) . The Berezin transform

(or Berezin symbol) of Q is the function Q̃ : Ω → C such that Q̃(α) = 〈Qk̂α, k̂α〉 for all α ∈ Ω (see [7, 8]).
Berezin transforms play a fundamental role in the theory of operators, more specifically, in the study of Hankel
operators, composition operators and Toeplitz operators. In particular, the Berezin symbol uniquely determines
the operator, i.e. two operators Q,W ∈ B(HΩ) are equal if and only if , Q̃(α) = W̃ (α) for all α ∈ Ω . For
more information regarding Berezin symbols, see [3, 21, 22, 28] and the references therein. Another related and
important concept in operator theory is the Berezin number of an operator Q ∈ B(HΩ) , denoted by ber(Q) ,
and given by

ber(Q) := sup
α∈Ω

|Q̃(α)| = sup
α∈Ω

∣∣〈Qk̂α, k̂α〉
∣∣.

It is easy to see that ber(·) defines a norm on B(HΩ) . Let Q ∈ B(HΩ) . It is clear that 0 ≤ ber(Q) ≤ ω(Q) ≤
‖Q‖ . Furthermore, if ber(Q) 6= 0 , then for any positive integer n we have

ber(Qn) ≤
(

ω(Q)

ber(Q)

)n

ber(Q)n,

(see [16]). It is clear that ber(IΩ) = 1 , where IΩ denotes the identity operator on HΩ . Further, if Q ∈ B(HΩ) ,
then it can be observed that ∣∣〈Qkα, kα〉

∣∣ ≤ ber(Q)‖kα‖2

for every reproducing kernel kα . Several studies have been recently carried out on the Berezin number of
operators. For instance, one may refer to [16, 17, 19, 20, 33] and the references therein.

Some other norms on B(HΩ) are given by

‖Q‖ber := sup
{
|〈Qk̂α, k̂β〉| ; α, β ∈ Ω

}
and

‖Q‖b̃er := sup
α∈Ω

‖Qk̂α‖,

where Q ∈ B(HΩ) and k̂α , k̂β are two normalized reproducing kernels of HΩ (see [20]). We mention that,
in general, neither ‖ · ‖ber nor ‖ · ‖b̃er verifies the submultiplicative property (see the recent work [10]). In
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addition, the equality ‖Q‖ber = ‖Q‖b̃er fails to hold in general for Q ∈ B(HΩ) (see also [10]). A very important
observation is that

ber(Q) ≤ ‖Q‖ber ≤ ‖Q‖b̃er ≤ ‖Q‖ (1.5)

for all Q ∈ B(HΩ) . Note that, in general, the inequalities in (1.5) are strict. It has been recently proven in [9]
that if Q ≥ 0 , then

ber(Q) = ‖Q‖ber. (1.6)

Remark 1.1 It is well known that the equality ω(Q) = ‖Q‖ holds for every self-adjoint operator Q . However,
(1.6) may not be correct, in general, for self-adjoint operators (see [9]).

The next inequality has been recently established in (1.5) and provides an improvement of the inequality
ber(Q) ≤ ‖Q‖ .

ber2 (Q) ≤ 1

2

∥∥|Q|2 + |Q∗|2
∥∥

ber, ∀Q ∈ B(HΩ). (1.7)

The goal of this article is to explore inequalities associated with the numerical radius of operators in
a Hilbert space, and to provide bounds for the Berezin number and Berezin norm of operators that operate
on a reproducing kernel Hilbert space. The article is structured as follows: Section 2 presents some well-
known lemmas that will be used throughout the paper. In Section 3, we establish an inequality that improves
the Cauchy-Schwarz inequality and generalize a result of Dragomir. We also derive several inequalities for
the numerical radius of operators in a Hilbert space. Section 4 presents various results concerning the Berezin
number and Berezin norm. Section 5 contains additional results related to the Berezin number, and we conclude
the article by providing a necessary and sufficient condition for the equality of the triangle inequality related to
the Berezin number.

The results of this study are expected to be of interest to researchers in the field of Hilbert spaces
and operator theory. The various inequalities derived for the numerical radius of operators and the bounds
established for the Berezin number and Berezin norm contribute to the advancement of Hilbert space theory
and may inspire further research.

2. Preliminary
In this section, we provide some preliminary results that are essential to our analysis. We begin by introducing
some well-known facts and lemmas that will be repeatedly used throughout the paper. Specifically, we work
with a complex Hilbert space H equipped with the inner product 〈·, ·〉 and the corresponding norm ‖ · ‖ .

In [26], a new refinement of the Cauchy-Schwarz inequality was presented:

|〈x, y〉| ≤
√

1

2
(‖x‖2‖y‖2 − |〈x, y〉|2) + |〈x, y〉|‖x‖‖y‖ ≤ ‖x‖‖y‖, (2.1)

where x, y ∈ H . This inequality provides a more accurate bound than some previously established numerical
radius inequalities for Hilbert space operators. Another inequality of similar form was introduced by Alomari
[1]: ∣∣〈x, y〉∣∣2 ≤ ν‖x‖2‖y‖2 + (1− ν)

∣∣〈x, y〉∣∣‖x‖‖y‖ ≤ ‖x‖2‖y‖2, (2.2)
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where x, y ∈ H and ν ∈ [0, 1] . These refined inequalities are crucial tools for our analysis in this paper.
In [27], Kouba noted, using Bessel’s inequality, that if H is a real vector space equipped with an inner

product 〈·, ·〉 and corresponding norm ‖ · ‖ , then for all x, y, u, v ∈ H with ‖u‖ = ‖v‖ = 1 , we have

〈u, x〉2 + 〈v, x〉2 ≤ ‖x‖2 (1 + |〈u, v〉|) (2.3)

and
‖z‖2〈x, y〉2 + ‖y‖2〈x, z〉2 ≤ ‖x‖2‖y‖‖z‖ (‖y‖‖z‖+ |〈y, z〉|) . (2.4)

When H is a complex vector space equipped with an inner product, Dragomir proved, in [11], the
following:

Lemma 2.1 For any x, y, z ∈ H , we have∣∣〈x, y〉∣∣2 + ∣∣〈x, z〉∣∣2 ≤ ‖x‖2
(
max

{
‖y‖2, ‖z‖2

}
+

∣∣〈y, z〉∣∣). (2.5)

It is easy to see that for ‖y‖ = ‖z‖ = 1 in (2.5) we deduce inequality (2.3). Next, we propose a generalization
of the result given by Dragomir.

The classical Schwarz inequality for positive operators is given by:

|〈Qx, y〉|2 ≤ 〈Qx, x〉〈Qy, y〉 (2.6)

for any positive operator Q ∈ B(H) and for any vectors x, y ∈ H . Kato [23] established a companion of the
Schwarz inequality (2.6), which asserts:

|〈Qx, y〉|2 ≤ 〈|Q|2θx, x〉〈|Q∗|2(1−θ)y, y〉 (2.7)

for every operator Q ∈ B(H) , for any vectors x, y ∈ H , and θ ∈ [0, 1] . For θ = 1
2 , we obtain a result attributed

to Halmos [18, pp. 75-76]; thus,

|〈Qx, x〉| ≤
√

〈|Q|x, x〉 〈|Q∗|x, x〉 (2.8)

for every Q ∈ B(H) and for all x, y ∈ H .
The inequality in the following lemma deals with positive operators and is known as the McCarthy

inequality:

Lemma 2.2 ([14, Theorem 1.4]) Let Q ∈ B(H) be a positive operator and x ∈ S1 . Then, for every r ≥ 1 we
have

〈Qx, x〉r ≤ 〈Qrx, x〉 .

If 0 ≤ r ≤ 1 , then the above inequality is reversed.

3. Numerical radius inequalities
In this section, we will discuss numerical radius inequalities concerning bounded linear operators on a complex
Hilbert space. Our main focus will be on proving our first result, which involves a lemma that extends a known
inequality referred to as (2.1). This inequality is crucial in demonstrating our first result and can be expressed
as follows:
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Lemma 3.1 Let x, y ∈ H and ν ∈ [0, 1] . Then

|〈x, y〉|2 ≤ γν‖x‖2‖y‖2 + Γν |〈x, y〉|‖x‖‖y‖ ≤ ‖x‖2‖y‖2, (3.1)

for any x, y ∈ H , where γν = min{ν, 1− ν} and Γν = max{ν, 1− ν} .

Proof We study two cases. I) For ν ∈ [0, 1
2 ] , we have ν ≤ 1 − ν , so γν = ν and Γν = 1 − ν ; thus, the first

part of inequality (3.1) becomes

∣∣〈x, y〉∣∣2 ≤ ν‖x‖2‖y‖2 + (1− ν)
∣∣〈x, y〉∣∣‖x‖‖y‖.

This is equivalent to ∣∣〈x, y〉∣∣2 ≤ ν‖x‖‖y‖
(
‖x‖‖y‖ −

∣∣〈x, y〉∣∣)+ ∣∣〈x, y〉∣∣‖x‖‖y‖,
which is true from the Cauchy–Schwarz inequality, |〈x, y〉| ≤ ‖x‖‖y‖ .

II) For ν ∈ [ 12 , 1] , we have ν ≥ 1− ν , so γν = 1− ν and Γν = ν ; thus, the first part of inequality (3.1)
becomes ∣∣〈x, y〉∣∣2 ≤ (1− ν)‖x‖2‖y‖2 + ν

∣∣〈x, y〉∣∣‖x‖‖y‖
= (1− ν)‖x‖‖y‖

(
‖x‖‖y‖ −

∣∣〈x, y〉∣∣)+ (2ν − 1)
∣∣〈x, y〉∣∣‖x‖‖y‖.

This is true because |〈x, y〉| ≤ ‖x‖‖y‖ and 2ν ≥ 1 . Next, for any x, y ∈ H and ν ∈ [0, 1] , we use the following
inequality:

γν‖x‖2‖y‖2 + Γν |〈x, y〉|‖x‖‖y‖ ≤ ν‖x‖2‖y‖2 + (1− ν)
∣∣〈x, y〉∣∣‖x‖‖y‖. (3.2)

This is true, because it is equivalent with

0 ≤ (ν − γν)‖x‖‖y‖(‖x‖‖y‖ −
∣∣〈x, y〉∣∣)

and by using inequality (2.2), we deduce that the second inequality of the statement is true. 2

Remark. Note that inequality (3.1) can be written as:

|〈x, y〉| ≤
√
γν‖x‖2‖y‖2 + Γν |〈x, y〉|‖x‖‖y‖ ≤ ‖x‖‖y‖, (3.3)

for any x, y ∈ H and ν ∈ [0, 1] , which is another improvement on the Cauchy–Schwarz inequality. From relation
(3.2) we can say that the first part of inequality (3.1) is better than (2.2).

Theorem 3.2 Let Q,W ∈ B(H) and ν ∈ [0, 1] . Then the inequality

ω2(W ∗Q) ≤ γν
2

∥∥|Q|4 + |W |4
∥∥+

Γν

2
ω(W ∗Q)

∥∥|Q|2 + |W |2
∥∥ ≤ 1

2

∥∥|Q|4 + |W |4
∥∥

holds, where γν = min{ν, 1− ν} and where Γν = max{ν, 1− ν} .

Proof We take the first inequality from Lemma 3.1 ,

|〈x, y〉|2 ≤ γν‖x‖2‖y‖2 + Γν |〈x, y〉|‖x‖‖y‖
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for any x, y ∈ H and ν ∈ [0, 1] . Because we need to apply the Hölder–McCarthy inequality for positive
operators, it is easy to see that the operators |Q|2 and |W |2 are positive. Now, we replace x and y by Qx

and Wx , in the above inequality, and we assume that x ∈ S1 , then we obtain

|〈W ∗Qx, x〉|2 ≤ γν‖Qx‖2‖Wx‖2 + Γν |〈W ∗Qx, x〉|‖Qx‖‖Wx‖

≤ γν〈Qx,Qx〉〈Wx,Wx〉+ Γν |〈W ∗Qx, x〉|
√

〈Qx,Qx〉〈Wx,Wx〉

= γν〈|Q|2x, x〉〈|W |2x, x〉+ Γν |〈W ∗Qx, x〉|
√
〈|Q|2x, x〉〈|W |2x, x〉

≤ γν
4

(
〈|Q|2x, x〉+ 〈|W |2x, x〉

)2
+

Γν

2
|〈W ∗Qx, x〉|

(
〈|Q|2x, x〉+ 〈|W |2x, x〉

)
≤ γν

2

(
〈|Q|2x, x〉2 + 〈|W |2x, x〉2

)
+

Γν

2
|〈W ∗Qx, x〉|

(
〈(|Q|2 + |W |2)x, x〉

)
McCarthy

≤ γν
2

(
〈|Q|4x, x〉+ 〈|W |4x, x〉

)
+

Γν

2
|〈W ∗Qx, x〉|

(
〈(|Q|2 + |W |2)x, x〉

)
=

γν
2

(
〈(|Q|4 + |W |4)x, x〉

)
+

Γν

2
|〈W ∗Qx, x〉|

(
〈(|Q|2 + |W |2)x, x〉

)
.

Taking the supremum over x ∈ S1 in the above inequality, we obtain the first inequality of the statement.
Now, taking into account that∥∥|Q|4 + |W |4

∥∥ ≥ ω(S∗Q)
∥∥|Q|2 + |W |2

∥∥,
from inequality (1.4), we obtain the inequality

γν
2

∥∥|Q|4 + |W |4
∥∥+

Γν

2
ω(W ∗Q)

∥∥|Q|2 + |W |2
∥∥ ≤ γν

2

∥∥|Q|4 + |W |4
∥∥+

Γν

2

∥∥|Q|4 + |W |4
∥∥

=
1

2

∥∥|Q|4 + |W |4
∥∥.

Therefore, the second inequality of the statement is true. 2

Remark 3.3 Through various particular cases of ν in Theorem 3.2 , we obtain some known results; thus, for
ν = 1 in the first inequality of Theorem 3.2, we deduce the second inequality from (1.2), and for ν = 0 , we find
inequality (1.3) for r = 2 . For ν = 1

3 in Theorem 3.2, we obtain inequality (1.4). If we take ν = 1
2 in the first

inequality of Theorem 3.2, then we deduce the inequality

ω2(W ∗Q) ≤ 1

4

(∥∥|Q|4 + |W |4
∥∥+ ω(W ∗Q)

∥∥|Q|2 + |W |2
∥∥) ≤ 1

2

∥∥|Q|4 + |W |4
∥∥.

If, in Theorem 3.2, we take W = Q∗ , then we find the following inequality:

ω2(Q2) ≤ γν
2

∥∥|Q|4 + |Q∗|4
∥∥+

Γν

2
ω(Q2)

∥∥|Q|2 + |Q∗|2
∥∥ ≤ 1

2

∥∥|Q|4 + |Q∗|4
∥∥.

Theorem 3.4 Let Q ∈ B(H) and ν ∈ [0, 1] . Then, the inequality

ω2(Q) ≤ γν
2

∥∥|Q|2 + |Q∗|2
∥∥+

Γν

2
ω(Q)

∥∥|Q|+ |Q∗|
∥∥ (3.4)

holds.
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Proof Applying inequality (2.8) , we deduce

|〈Qx, x〉| ≤ γν
√
〈|Q|x, x〉〈|Q∗|x, x〉+ Γν |〈Qx, x〉|

for any x ∈ H and ν ∈ [0, 1] . Multiplying the above relation by
√
〈|Q|x, x〉〈|Q∗|x, x〉 , and taking into account

that |〈Qx, x〉|2 ≤ |〈Qx, x〉|
√
〈|Q|x, x〉〈|Q∗|x, x〉 , we find the following inequality:

|〈Qx, x〉|2 ≤ γν〈|Q|x, x〉〈|Q∗|x, x〉+ Γν |〈Qx, x〉|
√
〈|Q|x, x〉〈|Q∗|x, x〉. (3.5)

Because the operators |Q| and |Q∗| are positive, we can apply the Hölder–McCarthy inequality [13], thus:

〈|Q|x, x〉2 ≤ 〈|Q|2x, x〉 and 〈|Q∗|x, x〉2 ≤ 〈|Q∗|2x, x〉.

Therefore, inequality (3.5) becomes

|〈Qx, x〉|2 ≤ γν
4

(〈|Q|x, x〉+ 〈|Q∗|x, x〉)2 + Γν

2
|〈Qx, x〉|〈(|Q|+ |Q∗|)x, x〉

≤ γν
2

(
〈|Q|x, x〉2 + 〈|Q∗|x, x〉2

)
+

Γν

2
|〈Qx, x〉|〈(|Q|+ |Q∗|)x, x〉

≤ γν
2
〈(|Q|2 + |Q∗|2)x, x〉+ Γν

2
|〈Qx, x〉|〈(|Q|+ |Q∗|)x, x〉.

If we take the supremum over all x ∈ S1 in the last bound, then the inequality of the statement is true. 2

Remark 3.5 For ν = 1
3 in inequality (3.4), we find an inequality given in [26], namely:

ω2(Q) ≤ 1

6

∥∥|Q|2 + |Q∗|2
∥∥+

1

3
ω(Q)

∥∥|Q|+ |Q∗|
∥∥. (3.6)

If we take ν = 1
2 in (3.4), then we obtain the following sequence of inequalities:

ω2(Q) ≤ 1

4

(∥∥|Q|2 + |Q∗|2
∥∥+ ω(Q)

∥∥|Q|+ |Q∗|
∥∥)

≤ 1

4

(∥∥|Q|2 + |Q∗|2
∥∥+

1

2

∥∥|Q|+ |Q∗|
∥∥2)

≤ 1

4

(∥∥|Q|2 + |Q∗|2
∥∥+

∥∥|Q|2 + |Q∗|2
∥∥)

=
1

2

∥∥|Q|2 + |Q∗|2
∥∥.

Consequently, we deduce a refinement of the second inequality of relation (1.2) given by Kittaneh [25].

Next, we present a result which generalizes the inequality (2.1).

Theorem 3.6 For any x, y, z ∈ H and ν ∈ [0, 1] , we have

ν
∣∣〈x, y〉∣∣2 + (1− ν)

∣∣〈x, z〉∣∣2 ≤ ‖x‖2
(
max

{
ν‖y‖2, (1− ν)‖z‖2

}
+

√
ν(1− ν)

∣∣〈y, z〉∣∣). (3.7)
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Proof We first note that

ν
∣∣〈x, y〉∣∣2 + (1− ν)

∣∣〈x, z〉∣∣2 = 〈ν〈x, y〉y + (1− ν)〈x, z〉z, x〉2.

Using the Cauchy-Schwarz inequality,
∣∣〈u, x〉∣∣2 ≤ ‖u‖2‖x‖2 , for u = ν〈x, y〉y + (1 − ν)〈x, z〉z , and from the

above equality we deduce that

(
ν
∣∣〈x, y〉∣∣2 + (1− ν)

∣∣〈x, z〉∣∣2)2

≤ ‖u‖2‖x‖2.

However, we have

‖u‖2 = ν2
∣∣〈x, y〉∣∣2‖y‖2 + (1− ν)2

∣∣〈x, z〉∣∣2‖z‖2 + 2ν(1− ν)<(〈x, y〉〈y, z〉〈z, x〉)

≤ max
{
ν‖y‖2, (1− ν)‖z‖2

}(
ν
∣∣〈x, y〉∣∣2 + (1− ν)

∣∣〈x, z〉∣∣2)+ 2ν(1− ν)|〈x, y〉||〈y, z〉||〈z, x〉|

≤ max
{
ν‖y‖2, (1− ν)‖z‖2

}(
ν
∣∣〈x, y〉∣∣2 + (1− ν)

∣∣〈x, z〉∣∣2)+
√

ν(1− ν)
(
ν
∣∣〈x, y〉∣∣2 + (1− ν)

∣∣〈x, z〉∣∣2) |〈y, z〉|

=
(
ν
∣∣〈x, y〉∣∣2 + (1− ν)

∣∣〈x, z〉∣∣2)(
max

{
ν‖y‖2, (1− ν)‖z‖2

}
+
√
ν(1− ν)|〈y, z〉|

)
.

Therefore, by replacing u , we obtain(
ν
∣∣〈x, y〉∣∣2 + (1− ν)

∣∣〈x, z〉∣∣2)2

≤ ‖x‖2
(
ν
∣∣〈x, y〉∣∣2 + (1− ν)

∣∣〈x, z〉∣∣2)(
max

{
ν‖y‖2, (1− ν)‖z‖2

}
+
√

ν(1− ν)|〈y, z〉|
)
,

which proves the relation of the statement. 2

Remark 3.7 (1) For ν = 1
2 in relation (3.7), we prove inequality (2.5).

(2) If we take two real numbers a, b > 0 and ν = a
a+b in Theorem 3.6, then we obtain

a
∣∣〈x, y〉∣∣2 + b

∣∣〈x, z〉∣∣2 ≤ ‖x‖2
(
max

{
a‖y‖2, b‖z‖2

}
+

√
ab
∣∣〈y, z〉∣∣). (3.8)

By replacing a with ‖z‖2 and b with ‖x‖2 in relation (3.8), we deduce inequality (2.4), for the case when
H is a complex vector space equipped with an inner product.

Corollary 3.8 For any x, y, z ∈ H and ν ∈ [0, 1] , the following inequality

2
√

ν(1− ν)
∣∣〈x, y〉∣∣∣∣〈x, z〉∣∣ ≤ ‖x‖2

(
max

{
ν‖y‖2, (1− ν)‖z‖2

}
+
√
ν(1− ν)

∣∣〈y, z〉∣∣) (3.9)

holds.

Proof Using the inequality between the geometric mean and the arithmetic mean, we obtain

2
√

ν(1− ν)
∣∣〈x, y〉∣∣∣∣〈x, z〉∣∣ ≤ ν

∣∣〈x, y〉∣∣2 + (1− ν)
∣∣〈x, z〉∣∣2

and from inequality (3.7), we deduce the relation of the statement. 2
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4. Berezin number and norm inequalities
In this section, we will demonstrate the versatility of the Berezin number and norm in a reproducing Kernel
Hilbert space by applying the results from the previous section. Specifically, we will state a theorem that relates
the Berezin norm of a convex combination of two bounded linear operators on a reproducing Kernel Hilbert
space to their Berezin numbers and inner products, using the outcomes obtained in the preceding section. The
theorem is as follows:

Theorem 4.1 Let Q,W ∈ B(HΩ) and ν ∈ [0, 1] . Then, the inequality

‖νQ+ (1− ν)W‖2ber ≤ 1

2

∥∥ν|Q|2 + (1− ν)|W |2
∥∥

ber +
1

2
ber

(
ν|Q|2 − (1− ν)|W |2

)
+

√
ν(1− ν) ber

(
W ∗Q

)
holds.

Proof Let α, β ∈ Ω and k̂α, k̂β be two normalized reproducing kernels of HΩ . If we replace x , y , and z by

k̂β , Qk̂α , and Wk̂α , respectively, in (3.7), and we know that ‖k̂β‖ = 1 , then we have

ν
∣∣〈Qk̂α, k̂β〉

∣∣2 + (1− ν)
∣∣〈Wk̂α, k̂β〉

∣∣2 (3.7)
≤ max

{
ν‖Qk̂α‖2, (1− ν)‖Wk̂α‖2

}
+
√

ν(1− ν)
∣∣〈W ∗Qk̂α, k̂α〉

∣∣
for any x, y ∈ H and ν ∈ [0, 1] . Therefore, we have the following calculations:∣∣∣〈(νQ+ (1− ν)W )k̂α, k̂β

〉∣∣∣2 ≤
(
ν
∣∣〈Qk̂α, k̂β

〉∣∣+ (1− ν)
∣∣〈Wk̂α, k̂β

〉∣∣)2

≤ ν
∣∣〈Qk̂α, k̂β〉

∣∣2 + (1− ν)
∣∣〈Wk̂α, k̂β〉

∣∣2
≤ max

{
ν‖Qk̂α‖2, (1− ν)‖Wk̂α‖2

}
+
√
ν(1− ν)

∣∣〈W ∗Qk̂α, k̂α〉
∣∣

=
1

2

(
ν‖Qk̂α‖2 + (1− ν)‖Wk̂α‖2 + |ν‖Qk̂α‖2 − (1− ν)‖Wk̂α‖2|

)
+
√
ν(1− ν)

∣∣〈Qk̂α,W k̂α〉

=
1

2

(
ν〈Qk̂α, Qk̂α〉+ (1− ν)〈Wk̂α,W k̂α〉+ |ν〈Qk̂α, Qk̂α〉 − (1− ν)〈Wk̂α,W k̂α〉|

)
+
√
ν(1− ν)

∣∣〈Qk̂α,W k̂α〉

=
1

2

(〈(
ν|Q|2 + (1− ν)|W |2

)
k̂α, k̂α

〉
+

∣∣〈(ν|Q|2 − (1− ν)|W |2
)
k̂α, k̂α

〉)
+
√
ν(1− ν)

∣∣〈W ∗Qk̂α, k̂α
〉∣∣,

whence, ∣∣∣〈(νQ+ (1− ν)W )k̂α, k̂β
〉∣∣∣2

≤ 1

2
ber

(
ν|Q|2 + (1− ν)|W |2

)
+

1

2
ber

(
ν|Q|2 − (1− ν)|W |2

)
+

√
ν(1− ν)ber

(
W ∗Q

)
=

1

2

∥∥ν|Q|2 + (1− ν)|W |2
∥∥

ber +
1

2
ber

(
ν|Q|2 − (1− ν)|W |2

)
+

√
ν(1− ν)ber

(
W ∗Q

)
,

where we have used (1.6) in the last equality since ν|Q|2+(1−ν)|W |2 ≥ 0 . Therefore, by taking the supremum
over all α, β ∈ Ω in the above inequality, we obtain the desired result. 2
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Remark 4.2 For ν = 1
2 in the inequality of Theorem 4.1, we deduce

‖Q+W‖2ber ≤ 1

2

∥∥|Q|2 + |W |2
∥∥

ber +
1

2
ber

(
|Q|2 − |W |2

)
+ ber

(
W ∗Q

)
for all Q,W ∈ B(HΩ) .

Corollary 4.3 Let Q ∈ B(HΩ) and ν ∈ [0, 1] . Then the inequality

‖νQ+ (1− ν)Q∗‖2ber ≤ 1

2

∥∥ν|Q|2 + (1− ν)|Q∗|2
∥∥

ber +
1

2
ber

(
ν|Q|2 − (1− ν)|Q∗|2

)
+

√
ν(1− ν) ber

(
Q2

)
holds.

Proof By taking W = Q∗ in the inequality of Theorem 4.1, we have

‖νQ+ (1− ν)Q∗‖2ber ≤ 1

2

∥∥ν|Q|2 + (1− ν)|Q∗|2
∥∥

ber +
1

2
ber

(
ν|Q|2 − (1− ν)|Q∗|2

)
+
√
ν(1− ν)ber

(
(Q∗)∗Q

)
.

Consequently, we obtain the inequality of the statement. 2

5. Further results related to the Berezin number
This section contains additional results related to the Berezin number and provides a necessary and sufficient
condition for the equality of the triangle inequality related to the Berezin number. This section begins with the
following proposition that presents a refinement of the triangle inequality for ber(·) :

Proposition 5.1 Let Q,W ∈ B(HΩ) . Then the following inequality

ber
(
Q+W

)
≤ 2

∫ 1

0

ber
(
νQ+ (1− ν)W

)
dν ≤ ber

(
Q
)
+ ber

(
W

)
holds.

Proof Consider the following function φ : R → R defined by

ν 7→ φ(ν) := ber
(
νQ+ (1− ν)W

)
.

Let ν1, ν2 ∈ R and t ∈ [0, 1] . We see that

φ
(
tν1 + (1− t)ν2

)
= ber

([
tν1 + (1− t)ν2

]
Q+

[
1−

(
tν1 + (1− t)ν2

)]
W

)
= ber

(
tν1Q+ (1− t)ν2Q+W − tν1W − (1− t)ν2W + tW − tW

)
= ber

(
t
[
ν1Q+ (1− ν1)W

]
+ (1− t)

[
ν2Q+ (1− ν2)W

])
≤ tber

(
ν1Q+ (1− ν1)W

)
+ (1− t)ber

(
ν2Q+ (1− ν2)W

)
= tφ(ν1) + (1− t)φ(ν2).
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This proves that φ is convex. Hence, an application of the Hermite–Hadamard inequality (see [31, p. 137])
shows that

φ

(
0 + 1

2

)
≤ 1

1− 0

∫ 1

0

φ(ν)dν ≤ φ(0) + φ(1)

2
.

This implies that

ber
(1
2
Q+

1

2
W

)
≤

∫ 1

0

ber
(
νQ+ (1− ν)W

)
dν ≤

ber
(
Q
)
+ ber

(
W

)
2

.

So, we deduce that

ber
(
Q+W

)
≤ 2

∫ 1

0

ber
(
νQ+ (1− ν)W

)
dν ≤ ber

(
Q
)
+ ber

(
W

)
.

2

As demonstrated in the following example, the inequality presented in Proposition 5.1 offers a noteworthy
enhancement to the triangle inequality associated with ber(·) .

Example 5.2 Let {e1, e2} denote the canonical orthonormal basis of C2 and Ω = {1, 2} . Let us consider the
space C2 as a RKHS on the set Ω . Then e1 and e2 are the kernel functions given by

ek(l) =

{
1, if k = l

0, if k 6= l

for k, l ∈ Ω (see [32, pp. 4-5]). Now, we consider the following matrices in M2 : Q =

(
1 3
0 2

)
and

W =

(
1 0
1 0

)
. It is not difficult to check that ber(Q) = 2, ber(W ) = 1 and ber(Q +W ) = 2 . Moreover, we

see that ∫ 1

0

ber
(
νQ+ (1− ν)W

)
dν =

∫ 1

0

max{1, 2ν}dν =
5

4
.

Hence, we deduce that

ber(Q+W ) = 2 < 2

∫ 1

0

ber
(
νQ+ (1− ν)W

)
dν =

5

2
< ber(Q) + ber(W ) = 3.

By proceeding as in the proof of Proposition 5.1, we state without proof the next result.

Proposition 5.3 Let Q,W ∈ B(HΩ) . Then

∥∥Q+W
∥∥

ber ≤ 2

∫ 1

0

∥∥∥νQ+ (1− ν)W
∥∥∥

ber
dν ≤

∥∥Q∥∥
ber +

∥∥W∥∥
ber

and ∥∥Q+W
∥∥

b̃er ≤ 2

∫ 1

0

∥∥∥νQ+ (1− ν)W
∥∥∥

b̃er
dν ≤

∥∥Q∥∥
b̃er +

∥∥W∥∥
b̃er.
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In order to demonstrate our upcoming outcome, it is necessary to revisit the subsequent lemma from [2].

Lemma 5.4 Let Q ∈ B(BΩ) . Then

ber(Q) = sup
γ∈R

ber
(
<(eiγQ)

)
, where <(eiγQ) =

eiγQ+ e−iγQ∗

2
.

By utilizing Proposition 5.1, we provide a clear expression for ber(X) in the following outcome.

Theorem 5.5 Let X ∈ B(BΩ) . Then

ber(X) = sup
γ∈R

∫ 1

0

ber
(
νeiγX + (1− ν)e−iγX∗)dν.

Proof Let γ ∈ R . By applying Proposition 5.1 with Q := eiγX
2 and W := e−iγX∗

2 , we see that

ber
(
eiγX

2
+

e−iγX∗

2

)
≤ 2

∫ 1

0

ber
(
ν
eiγX

2
+ (1− ν)

e−iγX∗

2

)
dν

≤ ber
(
eiγX

2

)
+ ber

(e−iγX∗

2

)
.

This implies that

ber
(
<(eiγX)

)
≤

∫ 1

0

ber
(
νeiγX + (1− ν)e−iγX∗)dν ≤ 1

2
ber

(
X
)
+

1

2
ber

(
X∗),

whence

ber
(
<(eiγX)

)
≤

∫ 1

0

ber
(
νeiγX + (1− ν)e−iγX∗)dν ≤ ber

(
X
)
. (5.1)

We can obtain the desired result by computing the supremum over γ ∈ R in equation (5.1) and subsequently
applying Lemma 5.4. 2

The subsequent theorem presents a condition that is both necessary and sufficient for the triangle
inequality related to ber(·) to be equal.

Theorem 5.6 Let Q,W ∈ B(BΩ) . Then, the following assertions are equivalent:

(i) ber(Q+W ) = ber(Q) + ber(W ) .

(ii) There exists a sequence {αn} in Ω such that

lim
n→+∞

〈k̂αn
, Qk̂αn

〉〈Wk̂αn
, k̂αn

〉 = ber(Q) ber(W ), (5.2)

where k̂αn
is the normalized reproducing kernels of HΩ at αn for all n .
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Proof “(ii) ⇒ (i)”: Assume that there exists a sequence {αn} in Ω such that (5.2) is true. If ber(Q) = 0 or
ber(W ) = 0 , then the assertion (i) holds trivially. Assume that ber(Q) 6= 0 and ber(W ) 6= 0 . We see that∣∣∣〈k̂αn

, Qk̂αn
〉〈Wk̂αn

, k̂αn
〉
∣∣∣ = ∣∣∣〈k̂αn

, Qk̂αn
〉
∣∣∣ ∣∣∣〈Wk̂αn

, k̂αn
〉
∣∣∣

≤ ber(Q)
∣∣∣〈Wk̂αn

, k̂αn
〉
∣∣∣

≤ ber(Q)ber(W ).

By letting n go to +∞ and then using (5.2), we deduce that

lim
n→+∞

ber(Q)
∣∣∣〈Wk̂αn , k̂αn〉

∣∣∣ = ber(Q)ber(W ).

This yields that

lim
n→+∞

∣∣∣〈Wk̂αn
, k̂αn

〉
∣∣∣ = ber(W ). (5.3)

Similarly, we prove that

lim
n→+∞

∣∣∣〈Qk̂αn
, k̂αn

〉
∣∣∣ = ber(Q). (5.4)

On the other hand, for every n ∈ N , we see that∣∣∣〈Qk̂αn
, k̂αn

〉∣∣∣2 + ∣∣∣〈Wk̂αn
, k̂αn

〉∣∣∣2 + 2Re
(
〈k̂αn

, Qk̂αn
〉〈Wk̂αn

, k̂αn
〉
)
=

∣∣∣〈(Q+W )k̂αn
, k̂αn

〉∣∣∣2
≤ ber2(Q+W ).

By letting n go to +∞ and then using (5.2), (5.3), and (5.4), we conclude that

(
ber(Q) + ber(W )

)2

≤ ber2(Q+W ),

whence we have ber(Q) + ber(W ) ≤ ber(Q+W ) . Hence ber(Q+W ) = ber(Q) + ber(W ) as desired.
“(i) ⇒ (ii)”: Assume that ber(Q+W ) = ber(Q) + ber(W ) . Then there exists a sequence {αn} in Ω

such that

lim
n→+∞

〈
Qk̂αn +Wk̂αn , k̂αn

〉
= ber(Q) + ber(W ), (5.5)

where k̂αn
is the normalized reproducing kernels of HΩ at αn for all n . Moreover, it is clear that∣∣∣〈Qk̂αn

〉∣∣∣ ≤ ber(Q) and
∣∣∣〈Wk̂αn

〉∣∣∣ ≤ ber(W ),

for every n ∈ N . Therefore, we deduce that∣∣∣〈Qk̂αn
+Wk̂αn

, k̂αn

〉∣∣∣ ≤ ∣∣∣〈Qk̂αn
, k̂αn

〉∣∣∣+ ∣∣∣〈Wk̂αn
, k̂αn

〉∣∣∣
≤

∣∣∣〈Qk̂αn
, k̂αn

〉∣∣∣+ ber(W )

≤ ber(Q) + ber(W ).
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Hence, by letting n go to +∞ and taking (5.5) into consideration, we deduce that

lim
n→+∞

∣∣∣〈Qk̂αn , k̂αn

〉∣∣∣+ ber(W ) = ber(Q) + ber(W ).

From this, we conclude that

lim
n→+∞

∣∣∣〈Qk̂αn
, k̂αn

〉∣∣∣ = ber(Q). (5.6)

By using a similar argument to the one above, we get

lim
n→+∞

∣∣∣〈Wk̂αn , k̂αn

〉∣∣∣ = ber(W ). (5.7)

On the other hand, for every n ∈ N , we see that∣∣∣〈Qk̂αn
+Wk̂αn

, k̂αn

〉∣∣∣2 =
∣∣∣〈Qk̂αn

, k̂αn

〉∣∣∣2 + ∣∣∣〈Wk̂αn
, k̂αn

〉∣∣∣2 + 2Re
(
〈k̂αn

, Qk̂αn
〉〈Wk̂αn

, k̂αn
〉
)
.

By using (5.5), (5.6), and (5.7), we deduce that

lim
n→+∞

Re
(
〈k̂αn

, Qk̂αn
〉〈Wk̂αn

, k̂αn
〉
)
= ber(Q)ber(W ). (5.8)

Furthermore, we have[
Re

(
〈k̂αn

, Qk̂αn
〉〈Wk̂αn

, k̂αn
〉
)]2

≤
[
Re

(
〈k̂αn

, Qk̂αn
〉〈Wk̂αn

, k̂αn
〉
)]2

+
[
Im

(
〈k̂αn

, Qk̂αn
〉〈Wk̂αn

, k̂αn
〉
)]2

=
∣∣∣〈k̂αn , Qk̂αn〉〈Wk̂αn , k̂αn〉

∣∣∣2
≤ ber2(Q)ber2(W ),

for every n ∈ N . So, by using (5.8), we infer that

lim
n→+∞

Im
(
〈k̂αn

, Qk̂αn
〉〈Wk̂αn

, k̂αn
〉
)
= 0.

Finally, another application of (5.8) shows that

lim
n→+∞

〈k̂αn , Qk̂αn〉〈Wk̂αn , k̂αn〉 = ber(Q)ber(W ).

as desired. Hence, the proof is complete. 2
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