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Abstract: In this present study, we pay attention to a class of nonlinear neutral type systems (NNSs) with periodic
coefficients and construct some assumptions guaranteeing the exponential stability (ES) of the trivial solutions of the
system considered. To get specific conditions guaranteeing the ES, we use a modified Lyapunov functional. In conclusion,
we get some estimates for the exponential decay of the solutions at infinity with the constructed sufficient conditions.
We give two examples to demonstrate the applicability of the results obtained with the constructed assumptions.
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1. Introduction
Differential equation systems with time delays have been of considerable interest for the few decades. Recently,
the stability problem of these systems has attracted the attention of many researchers (see, [1–34]). In
particular, the interest in stability analysis of various neutral differential systems has attracted attention with
the applications in practical fields of many researchers. Current efforts for stability analysis of these systems
are examined in two categories, delay independent and delay dependent. The study of ES of solutions of
NNSs is one of the important problems. This problem is very important both theoretically and practically
in terms of determining the ES criteria of the solutions of delay dependent and delay independent neutral
systems. When the related literature is searched, the commonly used method for the stability of delayed
differential systems is the Lyapunov stability theory. While defining this theory, it is possible to deal with
basically two aspects. The first is to choose an appropriate Lyapunov functional; the second is to reduce the
expansion when estimating its derivative. These functionals allow us to examine the qualitative behavior of
the differential equations we are considering without determining their roots. For this reason, it is seen that
different modifications of Lyapunov functionals are used by considering delayed differential equation systems.
These modifications can be constructed in shapes discretized Lyapunov functional [16], augmented Lyapunov
functional [18], delayed partitioning Lyapunov functional [34], etc. At the same time, in the case of constant
[32] and periodic coefficients in the linear part, a modified Lyapunov functional was suggested and used in [8]
to obtain the estimates of exponential decay at the infinity of the solutions to systems of linear and quasi linear
time-delay differential equations. In addition, Lyapunov functionals suitable for fractional-order systems have
been used to further reduce conservatism [23]. Therefore, it is important to choose a functional suitable for the
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form of the system in order to obtain a less prudent criterion when performing stability analysis of differential
systems [25].

In this study motivated by [4, 5, 9, 13, 26–29, 32, 33], we consider the following NNS with periodic
coefficients:

d

dt
[u(t) +Du(t− τ(t))] =A(t)u(t) +B(t)u(t− τ(t)) + C(t)

d

dt
u(t− τ(t))

+ F (t, u(t), u(t− τ(t)),
d

dt
u(t− τ(t)))

(1.1)

where t ≥ 0, u ∈ ℜn, D is an n×n− constant matrix, A(t), B(t) , and C(t) are n×n matrices with continuous
T− periodic entries, (T > 0), that is,

A(t+ T ) ≡ A(t), B(t+ T ) ≡ B(t), C(t+ T ) ≡ C(t)

and τ(t) ∈ C1([0,∞)),

0 < τ1 ≤ τ(t) ≤ τ2 < ∞ (1.2)

and

τ3 ≤ τ ′(t) ≤ τ4 < 1. (1.3)

where τ1 and τ2 are positive constants. In addition, the continuous real value F (t, ũ, ṽ, w̃) function satisfies
the Lipschitz condition with respect to ũ, such that

∥F (t, ũ, ṽ, w̃)∥ ≤ q1 ∥ũ∥+ q2 ∥ṽ∥+ q3 ∥w̃∥ , t ≥ 0, ũ, ṽ, w̃ ∈ ℜn, (1.4)

for some constants qi ≥ 0, i = 1, 2, 3. Here, the vector norm and dot product mentioned above are defined as
follows

⟨x, z⟩ =
n∑

j=1

xj z̄j , ∥x∥ =
√

⟨x, x⟩ .

For the system (1.1), we deal with the following initial value problem (IVP)

d

dt
[u(t) +Du(t− τ(t))] =A(t)u(t) +B(t)u(t− τ(t)) + C(t)

d

dt
u(t− τ(t))

+ F (t, u(t), u(t− τ(t)),
d

dt
u(t− τ(t)))

u(t) =ϑ(t), t ∈ [−τ2, 0],

u(0+) =ϑ(0),

(1.5)

where ϑ(t) ∈ C1([−τ2, 0]) is a given real-valued vector-function.
In this research motivated by the above discussions, we consider the NNS (1.1), when the spectrum of the

matrix belongs to the unit disk. From this point of view, we can summarize the main purpose and contribution
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of this research as follows. For the NNS (1.1), our aim is to establish new sufficient conditions for the ES of
trivial solution at infinity depending on the norms ∥D∥ and to obtain some estimates for its exponential decay.

Researchers frequently employ various Lyapunov-Krasovskii functionals to develop stability criteria (see,
[6, 15]). However, we cannot derive estimates describing the decay rate of solutions at infinity for every
Lyapunov-Krasovskii functional. The research in this area has been progressing rapidly in recent years.
We construct a modified Lyapunov functional in proofs to obtain special conditions that guarantee ES and
exponential decay of the solutions at infinity. Our theoretical results obtained in this search improve the results
of [4, 5, 9, 13, 26–29, 32, 33] and make a contribution to the existing results in the literature from cases
without delay to more general cases with time delay. We believe that this research, whose theoretical results
are exemplified by numerical simulations, can be useful for researchers working on the qualitative behavior of
solutions of NSs.

2. The main results
We first present a result for the ES of the trivial solution of NNS (1.1) with F (t, u, v, w) ≡ 0 as follows

d

dt
[u(t) +Du(t− τ(t))] = A(t)u(t) +B(t)u(t− τ(t)) + C(t)

d

dt
u(t− τ(t)), t > 0. (2.1)

Notation: M∗ is the conjugate transpose of M.

Theorem 2.1 Assume that there are matrices H̃(t) ∈ C1 [0, T ], K̃(s) and L̃(s) ∈ C1 [0, τ2] such that

H̃(t) =H̃∗(t), H̃(t) = H̃(t+ T ) > 0, t ≥ 0, (2.2)

K̃(s) =K̃∗(s) > 0,
d

ds
K̃(s) < 0, s ∈ [0, τ2], (2.3)

L̃(s) =L̃∗(s) > 0,
d

ds
L̃(s) < 0, s ∈ [0, τ2], (2.4)

and for all t ∈ [0, T ] , it is presumed that

Φ(t) =

Φ11(t) Φ12(t) Φ13(t)
Φ∗

12(t) Φ22(t) Φ23(t)
Φ∗

13(t) Φ∗
23(t) Φ33(t)

 > 0 (2.5)

with entries

Φ11(t) =− d

dt
H̃(t)− H̃(t)A(t)−A∗(t)H̃(t)− K̃(0)−A∗(t)L̃(0)A(t),

Φ12(t) =− H̃(t)B(t) + H̃(t)A(t)D + K̃(0)D +A∗(t)L̃(0)A(t)D −A∗(t)L̃(0)B(t),

Φ13(t) =− H̃(t)C(t)−A∗(t)L̃(0)C(t) +A∗(t)L̃(0)D,

Φ22(t) =−D∗K̃(0)D + (1− τ4)K̃(τ2)−D∗A∗(t)L̃(0)A(t)D +B∗(t)L̃(0)A(t)D

+D∗A∗(t)L̃(0)B(t)−B∗(t)L̃(0)B(t),

Φ23(t) =D∗A∗(t)L̃(0)C(t)−B∗(t)L̃(0)C(t)−D∗A∗(t)L̃(0)D +B∗(t)L̃(0)D,

Φ33(t) =− C∗(t)L̃(0)C(t) + C∗(t)L̃(0)D +D∗L̃(0)C(t)−D∗L̃(0)D + (1− τ3)
−1L̃(τ2).

(2.6)

Then the trivial solution of system (2.1) is exponentially stable.

1510



ALTUN/Turk J Math

Let us assume that the assumptions of Theorem 2.1 are true. We construct conditions for the ES of the
trivial solution to the NNS (1.1). In addition, we introduce some notations to formulate our results. If the
matrix H̃(t) holds the assumptions of Theorem 2.1 then

d

dt
H̃(t) + H̃(t)A(t) +A∗(t)H̃(t) < −K̃(0)−A∗(t)L̃(0)A(t);

i.e. for the following Lyapunov differential equation, H̃(t) is a solution to a special boundary value problem:

d

dt
H̃ + H̃A(t) +A∗(t)H̃ =−N(t), t ∈ [0, T ],

H̃(0) =H̃(T ) > 0,

where N(t) = N∗(t) > 0. In this case, H̃(t) = H̃∗(t) > 0 on [0, T ] . Let us extend the H̃(t) matrix T -
periodically on the whole half-axis {t ≥ 0} , keeping the same notation. Using the matrix H̃(t) together with
the matrices K̃(s) and L̃(s) satisfying the conditions of Theorem 2.1, we define the functions

β1(t) =2
∥∥∥H̃(t)

∥∥∥+ (2 ∥A(t)∥+ q1)
∥∥∥L̃(0)∥∥∥ ,

β2(t) =(2 ∥B(t)∥+ 2 ∥A(t)D∥+ q2 + q1 ∥D∥)
∥∥∥L̃(0)∥∥∥ ,

β3(t) =(2 ∥C(t)∥+ 2 ∥D∥+ q2 + q1 ∥D∥)
∥∥∥L̃(0)∥∥∥ ,

(2.7)

α1(t) =q1β1(t) +
q1β2(t) + (q2 + q1 ∥D∥)β1(t)

2
+

q1β3(t) + q3β1(t)

2
,

α2(t) =(q2 + q1 ∥D∥)β2(t) +
q2β1(t) + q1β2(t)

2
+

(q2 + q1 ∥D∥)β3(t) + q3β2(t)

2
,

α3(t) =q3β3(t) +
q3β1(t) + q1β3(t)

2
+

q3β2(t) + (q2 + q1 ∥D∥)β3(t)

2
,

(2.8)

and the matrix

Φα(t) = Φ(t)−

α1(t)I 0 0
0 α2(t)I 0
0 0 α3(t)I

 , (2.9)

where I is the unit matrix.
By k̃, l̃ > 0 and pmin(t) > 0 the minimal eigenvalue of the matrix P (t),

d

ds
K̃(s) + k̃K̃(s) ≤0,

d

ds
L̃(s) + l̃L̃(s) ≤ 0, s ∈ [0, τ2], (2.10)

ε(t) =min

 pmin(t)∥∥∥H̃(t)
∥∥∥ , k̃, l̃

 . (2.11)
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We denote by h̃min(t) > 0 the minimal eigenvalue of H̃(t). Let

Ψ = max
t∈[−τ2,0]

∥ϑ(t)∥ , (2.12)

µ = max
t∈[0, T ]

√
V (0, ϑ)

h̃min(t)
, (2.13)

β(t) =ε(t)/2 , β+ = max
t∈[0, T ]

β(t), β− = min
t∈[0, T ]

β(t). (2.14)

Theorem 2.2 Let the assumptions of Theorem 2.1 be satisfied. Assume that qi ≥ 0, (i = 1, 2, 3) are such that
Φα(t) > 0 for t ∈ [0, T ] . Then the trivial solution of NNS (1.1) is exponentially stable.

We present below the exponential decay rate estimation of the solution of the IVP (1.5) as t → ∞. Let
be defined Lyapunov functional

V (0, φ) =
〈
H̃(0)(φ(0) +Dφ(−τ(0))), (φ(0) +Dφ(−τ(0)))

〉

+

0∫
−τ(0)

〈
K̃(−θ)φ(θ), φ(θ)

〉
dθ +

0∫
−τ(0)

〈
L̃(−θ)

d

dθ
φ(θ),

d

dθ
φ(θ)

〉
dθ,

(2.15)

P (t) =Φ11(t)− α1(t)I − [Φ12(t)− Φ13(t)(Φ33(t)− α3(t)I)
−1

Φ∗
23
(t)]

× [Φ22(t)− α2(t)I − Φ23(t)(Φ33(t)− α3(t)I)
−1

Φ∗
23
(t)]

−1

× [Φ12(t)− Φ13(t)(Φ33(t)− α3(t)I)
−1

Φ∗
23
(t)]

∗

− Φ13(t)(Φ33(t)− α3(t)I)
−1

Φ∗
13
(t),

(2.16)

where the matrices Φij(t) are defined by (2.6). It is not hard to show that P (t) is positive definite if Φα(t)

defined in (2.9) is positive definite (see, Lemma 2.6 below).
The main results of this research are expressed in the following theorems.

Theorem 2.3 Let the assumption given by (2.5) be satisfied and

∥D∥ < e−β+τ2 .

Then, for the solutionu(t) of (IVP) (1.5), the below assertion is true:

∥u(t)∥ ≤ µ(1− ∥D∥ eβ
+τ2)

−1
e−β−t + ∥D∥max{t/τ2,1 }

Ψ, (2.17)

where Ψ, µ, β− and β+ are defined in (2.12), (2.13) and (2.14), respectively.

Theorem 2.4 Let the assumption given by (2.5) be satisfied and

∥D∥ = e−β+τ2 .
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Then, for the solution u(t) of (IVP) (1.5), the below assertion is true:

∥u(t)∥ ≤ [µ(t/τ1 + 1)e−β−t + ∥D∥max{t/τ2,1 }
Ψ, (2.18)

where Ψ, µ, β− and β+ are defined in (2.12), (2.13) and (2.14), respectively.

Theorem 2.5 Let the assumption given by (2.5) be satisfied and

e−β+τ2 < ∥D∥ < e−(β+τ2−β−τ1).

Then, for the solution u(t) of (IVP) (1.5), the below assertion is true:

∥u(t)∥ ≤ µ(1− (∥D∥ eβ
+τ2)

−1
)
−1

(∥D∥ eβ
+τ2−β−τ1)

t/τ1
+ ∥D∥max{t/τ2,1 }

Ψ, (2.19)

where Ψ, µ, β− and β+ are defined in (2.12), (2.13), and (2.14), respectively.

The next lemmas are needed for the main results of this paper.

Lemma 2.6 [29] Let

Ξ =

Ξ11(t) Ξ12(t) Ξ13(t)
Ξ∗
12(t) Ξ22(t) Ξ23(t)

Ξ∗
13(t) Ξ∗

23(t) Ξ33(t)

 > 0, t ∈ [0, T ],

be a Hermitian matrix. Then

Ξ =

I Ξ̃1(t)Ξ̃
−1
2

(t) Ξ13(t)Ξ
−1
33

(t)
0 I Ξ23(t)Ξ

−1
33

(t)
0 0 I



×

Ξ11(t)− Ξ̃1(t)Ξ̃
−1
2

(t)Ξ̃∗
1
(t)− Ξ13(t)Ξ

−1
33

(t)Ξ∗
13(t) 0 0

0 Ξ̃2(t) 0
0 0 Ξ33(t)



×

 I 0 0

Ξ̃−1
2

(t)Ξ̃∗
1
(t) I 0

Ξ−1
33

(t)Ξ∗
13(t) Ξ−1

33
(t)Ξ∗

23(t) I

 ,

where Ξ̃1(t) = Ξ12(t)−Ξ13(t)Ξ
−1
33

(t)Ξ∗
23
(t), Ξ̃2(t) = Ξ22(t)−Ξ23(t)Ξ

−1
33

(t)Ξ∗
23
(t); moreover, the matrices Ξ11(t)−

Ξ̃1(t)Ξ̃
−1
2

(t)Ξ̃∗
1
(t)− Ξ13(t)Ξ

−1
33

(t)Ξ∗
13(t) > 0, Ξ̃2(t) > 0 and Ξ33(t) > 0.

Lemma 2.7 Suppose that the assumptions of Theorem 2.2 are satisfied. Then the trivial solution u(t) of the
(IVP) (1.5) holds the below estimate

∥u(t) +Du(t− τ(t))∥ ≤

√
V (0, ϑ)

h̃min(t)
exp(−

t∫
0

β(s)ds), t > 0, (2.20)

where β(t) and V (0, ϑ) are defined in (2.14) and (2.15), respectively; h̃min(t) > 0 is the minimal eigenvalue of
the matrix H̃(t).
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Proof Let u(t) be a solution of (IVP) (1.5). Using the above matrices H̃(t), K̃(s) , andL̃(s), we consider the
Lyapunov–Krasovskii functional

V (t, u) =
〈
H̃(t)(u(t) +Du(t− τ(t))), (u(t) +Du(t− τ(t)))

〉

+

t∫
t−τ(t)

〈
K̃(t− s)u(s), u(s)

〉
ds+

t∫
t−τ(t)

〈
L̃(t− s)

d

ds
u(s),

d

ds
u(s)

〉
ds.

(2.21)

Positive definiteness of the functional V (t, u) is clear. Differentiating of the functional V (t, u) along
solutions of (1.5), we can obtain that

d

dt
V (t, u) =

〈
d

dt
H̃(t)(u(t) +Du(t− τ(t))), (u(t) +Du(t− τ(t)))

〉
+

〈
H̃(t)

d

dt
(u(t) +Du(t− τ(t))), (u(t) +Du(t− τ(t)))

〉
+

〈
H̃(t)(u(t) +Du(t− τ(t))),

d

dt
(u(t) +Du(t− τ(t)))

〉
+

〈
K̃(0)u(t), u(t)

〉

− (1− τ ′(t))
〈
K̃(τ(t))u(t− τ(t)), u(t− τ(t))

〉
+

t∫
t−τ(t)

〈
d

dt
K̃(t− s)u(s), u(s)

〉
ds

+

〈
L̃(0)

d

dt
u(t),

d

dt
u(t)

〉
− (1− τ ′(t))

〈
L̃(τ(t))

d

dt
u(t− τ(t)),

d

dt
u(t− τ(t))

〉

+

t∫
t−τ(t)

〈
d

dt
L̃(t− s)

d

ds
u(s),

d

ds
u(s)

〉
ds.

We introduce the notation

z(t) = A(t)u(t) +B(t)u(t− τ(t)) + C(t)
d

dt
u(t− τ(t)).

Considering that u(t) satisfies the system (1.1), we get

d

dt
V (t, u) =

〈
d

dt
H̃(t)(u(t) +Du(t− τ(t))), (u(t) +Du(t− τ(t)))

〉
+
〈
H̃(t)z(t), (u(t) +Du(t− τ(t)))

〉
+

〈
H̃(t)F (t, u(t), u(t− τ(t)),

d

dt
u(t− τ(t))), (u(t) +Du(t− τ(t)))

〉
+
〈
H̃(t)(u(t) +Du(t− τ(t))), z(t)

〉
+

〈
H̃(t)(u(t) +Du(t− τ(t))), F (t, u(t), u(t− τ(t)),

d

dt
u(t− τ(t)))

〉
+
〈
K̃(0)u(t), u(t)

〉
− (1− τ ′(t))

〈
K̃(τ(t))u(t− τ(t)), u(t− τ(t))

〉

(2.22)
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+

t∫
t−τ(t)

〈
d

dt
K̃(t− s)u(s), u(s)

〉
ds+

〈
L̃(0)

d

dt
u(t),

d

dt
u(t)

〉

− (1− τ ′(t))

〈
L̃(τ(t))

d

dt
u(t− τ(t)),

d

dt
u(t− τ(t))

〉

+

t∫
t−τ(t)

〈
d

dt
L̃(t− s)

d

ds
u(s),

d

ds
u(s)

〉
ds.

Let us consider the expressions

(1− τ ′(t))
〈
K̃(τ(t))u(t− τ(t)), u(t− τ(t))

〉
and

(1− τ ′(t))−1

〈
L̃(τ(t))

d

dt
u(t− τ(t)),

d

dt
u(t− τ(t))

〉
.

By (1.3) and the conditions K̃(s) = K̃∗(s) > 0 and L̃(s) = L̃∗(s) > 0, s ∈ [0, τ2], it is clear that

(1− τ ′(t))
〈
K̃(τ(t))u(t− τ(t)), u(t− τ(t))

〉
≥ (1− τ4)

〈
K̃(τ(t))u(t− τ(t)), u(t− τ(t))

〉
and

(1− τ ′(t))−1

〈
L̃(τ(t))

d

dt
u(t− τ(t)),

d

dt
u(t− τ(t))

〉
≥ (1− τ3)

−1

〈
L̃(τ(t))

d

dt
u(t− τ(t)),

d

dt
u(t− τ(t))

〉
.

Using the assumptions (1.2), (1.3), (2.3), and (2.4), we have K̃(τ(t)) ≥ K̃(τ2) and L̃(τ(t)) ≥ L̃(τ2).
Hence, it is obvious that

(1− τ ′(t))
〈
K̃(τ(t))u(t− τ(t)), u(t− τ(t))

〉
≥ (1− τ4)

〈
K̃(τ2)u(t− τ(t)), u(t− τ(t))

〉
, (2.23)

and

(1− τ ′(t))−1

〈
L̃(τ(t))

d

dt
u(t− τ(t)),

d

dt
u(t− τ(t))

〉
≥ (1− τ3)

−1

〈
L̃(τ2)

d

dt
u(t− τ(t)),

d

dt
u(t− τ(t))

〉
. (2.24)

By (2.23) and (2.24), we have

d

dt
V (t, u) ≤

〈
d

dt
H̃(t)(u(t) +Du(t− τ(t))), (u(t) +Du(t− τ(t)))

〉
+
〈
H̃(t)A(t)(u(t) +Du(t− τ(t))), (u(t) +Du(t− τ(t)))

〉
−
〈
H̃(t)A(t)Du(t− τ(t)), (u(t) +Du(t− τ(t)))

〉
+
〈
H̃(t)B(t)u(t− τ(t)), (u(t) +Du(t− τ(t)))

〉
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+

〈
H̃(t)C(t)

d

dt
u(t− τ(t)), (u(t) +Du(t− τ(t)))

〉
+

〈
H̃(t)F (t, u(t), u(t− τ(t)),

d

dt
u(t− τ(t))), (u(t) +Du(t− τ(t)))

〉
+
〈
A∗(t)H̃(t)(u(t) +Du(t− τ(t))), (u(t) +Du(t− τ(t)))

〉
−
〈
A∗(t)H̃(t)(u(t) +Du(t− τ(t))), Du(t− τ(t))

〉
+
〈
B∗(t)H̃(t)(u(t) +Du(t− τ(t))), u(t− τ(t))

〉
+

〈
C∗(t)H̃(t)(u(t) +Du(t− τ(t))),

d

dt
u(t− τ(t))

〉
+

〈
H̃(t)(u(t) +Du(t− τ(t))), F (t, u(t), u(t− τ(t)),

d

dt
u(t− τ(t)))

〉
+
〈
K̃(0)(u(t) +Du(t− τ(t))), (u(t) +Du(t− τ(t)))

〉
−
〈
K̃(0)Du(t− τ(t)), (u(t) +Du(t− τ(t)))

〉
−
〈
D∗K̃(0)(u(t) +Du(t− τ(t))), u(t− τ(t))

〉
+
〈
D∗K̃(0)Du(t− τ(t)), u(t− τ(t))

〉

− (1− τ4)
〈
K̃(τ2)u(t− τ(t)), u(t− τ(t))

〉
+

t∫
t−τ(t)

〈
d

dt
K̃(t− s)u(s), u(s)

〉
ds

+

〈
L̃(0)

d

dt
(u(t) +Du(t− τ(t))),

d

dt
(u(t) +Du(t− τ(t)))

〉
−
〈
L̃(0)

d

dt
Du(t− τ(t)),

d

dt
(u(t) +Du(t− τ(t)))

〉
−
〈
D∗L̃(0)

d

dt
(u(t) +Du(t− τ(t))),

d

dt
u(t− τ(t))

〉
+

〈
D∗L̃(0)D

d

dt
u(t− τ(t)),

d

dt
u(t− τ(t))

〉
− (1− τ3)

−1

〈
L̃(τ2)

d

dt
u(t− τ(t)),

d

dt
u(t− τ(t))

〉

+

t∫
t−τ(t)

〈
d

dt
L̃(t− s)

d

ds
u(s),

d

ds
u(s)

〉
ds.
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Consequently,

d

dt
V (t, u) ≤−

〈
Φ(t)

u(t) +Du(t− τ(t))
u(t− τ(t))
d
dtu(t− τ(t))

 ,

u(t) +Du(t− τ(t))
u(t− τ(t))
d
dtu(t− τ(t))

〉

+

〈
H̃(t)F (t, u(t), u(t− τ(t)),

d

dt
u(t− τ(t))), (u(t) +Du(t− τ(t)))

〉
+

〈
H̃(t)(u(t) +Du(t− τ(t))), F (t, u(t), u(t− τ(t)),

d

dt
u(t− τ(t)))

〉
+ < L̃(0)A(t)(u(t) +Du(t− τ(t))), F (t, u(t), u(t− τ(t)),

d

dt
u(t− τ(t))) >

− < L̃(0)A(t)Du(t− τ(t)), F (t, u(t), u(t− τ(t)),
d

dt
u(t− τ(t))) >

+ < L̃(0)B(t)u(t− τ(t)), F (t, u(t), u(t− τ(t)),
d

dt
u(t− τ(t))) >

+ < L̃(0)C(t)
d

dt
u(t− τ(t)), F (t, u(t), u(t− τ(t)),

d

dt
u(t− τ(t))) >

+ < A∗(t)L̃(0)F (t, u(t), u(t− τ(t)),
d

dt
u(t− τ(t))), (u(t) +Du(t− τ(t))) >

− < D∗A∗(t)L̃(0)F (t, u(t), u(t− τ(t)),
d

dt
u(t− τ(t))), u(t− τ(t)) >

+ < B∗(t)L̃(0)F (t, u(t), u(t− τ(t)),
d

dt
u(t− τ(t))), u(t− τ(t)) >

+ < C∗(t)L̃(0)F (t, u(t), u(t− τ(t)),
d

dt
u(t− τ(t))),

d

dt
u(t− τ(t)) >

+ < L̃(0)F (t, u(t), u(t− τ(t)),
d

dt
u(t− τ(t))), F (t, u(t), u(t− τ(t)),

d

dt
u(t− τ(t))) >

− < L̃(0)
d

dt
Du(t− τ(t)), F (t, u(t), u(t− τ(t)),

d

dt
u(t− τ(t))) >

−D∗L̃(0)F (t, u(t), u(t− τ(t)),
d

dt
u(t− τ(t))),

d

dt
u(t− τ(t)) >

+

t∫
t−τ(t)

〈
d

dt
K̃(t− s)u(s), u(s)

〉
ds+

t∫
t−τ(t)

〈
d

dt
L̃(t− s)

d

ds
u(s),

d

ds
u(s)

〉
ds

where the matrix Φ(t) is defined in (2.5) .

Consider the group of the summands containing F (t, u(t), u(t − τ(t)), d
dtu(t − τ(t))) and indicate them

by W (t) .

Then,
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d

dt
V (t, u) ≤−

〈
Φ(t)

u(t) +Du(t− τ(t))
u(t− τ(t))
d
dtu(t− τ(t))

 ,

u(t) +Du(t− τ(t))
u(t− τ(t))
d
dtu(t− τ(t))

〉
+W (t)

+

t∫
t−τ(t)

〈
d

dt
K̃(t− s)u(s), u(s)

〉
ds+

t∫
t−τ(t)

〈
d

dt
L̃(t− s)

d

ds
u(s),

d

ds
u(s)

〉
ds.

(2.25)

Obviously,

W (t) ≤(2
∥∥∥H̃(t)

∥∥∥ ∥u(t) +Du(t− τ(t))∥

+ 2
∥∥∥L̃(0)∥∥∥ ∥∥∥∥A(t)(u(t) +Du(t− τ(t))) +B(t)u(t− τ(t)) + C(t)

d

dt
u(t− τ(t))

∥∥∥∥
+ 2

∥∥∥L̃(0)∥∥∥ ∥∥∥∥A(t)Du(t− τ(t)) +D
d

dt
u(t− τ(t))

∥∥∥∥
+
∥∥∥L̃(0)∥∥∥∥∥∥∥F (t, u(t), u(t− τ(t)),

d

dt
u(t− τ(t)))

∥∥∥∥)
×
∥∥∥∥F (t, u(t), u(t− τ(t)),

d

dt
u(t− τ(t)))

∥∥∥∥ .
Using (1.4), we have

W (t) ≤
(
β1(t) ∥u(t) +Du(t− τ(t))∥+ β2(t) ∥u(t− τ(t))∥+ β3(t)

∥∥∥∥ d

dt
u(t− τ(t))

∥∥∥∥)
×
(
q1 ∥u(t)∥+ q2 ∥u(t− τ(t))∥+ q3

∥∥∥∥ d

dt
u(t− τ(t))

∥∥∥∥)
≤
(
β1(t) ∥u(t) +Du(t− τ(t))∥+ β2(t) ∥u(t− τ(t))∥+ β3(t)

∥∥∥∥ d

dt
u(t− τ(t))

∥∥∥∥)
×
(
q1 ∥u(t) +Du(t− τ(t))∥+ (q2 + q1 ∥D∥) ∥u(t− τ(t))∥+ q3

∥∥∥∥ d

dt
u(t− τ(t))

∥∥∥∥) ,

where βj(t), j = 1, 2, 3, are defined in (2.7). Obviously,

W (t) ≤ α1(t)∥(u(t) +Du(t− τ(t)))∥2 + α2(t)∥u(t− τ(t))∥2 + α3(t)

∥∥∥∥ d

dt
u(t− τ(t))

∥∥∥∥2, (2.26)

where αj(t), j = 1, 2, 3, are described in (2.8). By (2.26), from (2.25) we get

d

dt
V (t, u) ≤−

〈
Φα(t)

u(t) +Du(t− τ(t))
u(t− τ(t))
d
dtu(t− τ(t))

 ,

u(t) +Du(t− τ(t))
u(t− τ(t))
d
dtu(t− τ(t))

〉

+

t∫
t−τ(t)

〈
d

dt
K̃(t− s)u(s), u(s)

〉
ds+

t∫
t−τ(t)

〈
d

dt
L̃(t− s)

d

ds
u(s),

d

ds
u(s)

〉
ds

(2.27)
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where the matrix Φα(t) is given in (2.9).
We apply the Lemma 2.6 from matrix theory for additional transformations. By the Lemma 2.6, for the

matrix Φα(t), we have 〈
Φα(t)

u(t) +Du(t− τ(t))
u(t− τ(t))
d
dtu(t− τ(t))

 ,

u(t) +Du(t− τ(t))
u(t− τ(t))
d
dtu(t− τ(t))

〉

≥ ⟨P (t)u(t) +Du(t− τ(t)), u(t) +Du(t− τ(t))⟩ ,

where P (t) is the positive definite Hermitian matrix given in (2.16). Then

⟨P (t)(u(t) +Du(t− τ(t))), (u(t) +Du(t− τ(t)))⟩ ≥ pmin(t)∥u(t) +Du(t− τ(t))∥2.

Consequently, from (2.27) we obtain

d

dt
V (t, u) ≤− ⟨pmin(t)(u(t) +Du(t− τ(t))), (u(t) +Du(t− τ(t)))⟩

+

t∫
t−τ(t)

〈
d

dt
K̃(t− s)u(s), u(s)

〉
ds+

t∫
t−τ(t)

〈
d

dt
L̃(t− s)

d

ds
u(s),

d

ds
u(s)

〉
ds.

Clearly,

h̃min(t)∥u(t) +Du(t− τ(t))∥2 ≤
〈
H̃(t)(u(t) +Du(t− τ(t))), (u(t) +Du(t− τ(t)))

〉
≤H̃(t)∥u(t) +Du(t− τ(t))∥2.

(2.28)

Hence,

d

dt
V (t, u) ≤− pmin(t)∥∥∥H̃(t)

∥∥∥
〈
H̃(t)(u(t) +Du(t− τ(t))), (u(t) +Du(t− τ(t)))

〉

+

t∫
t−τ(t)

〈
d

dt
K̃(t− s)u(s), u(s)

〉
ds+

t∫
t−τ(t)

〈
d

dt
L̃(t− s)

d

ds
u(s),

d

ds
u(s)

〉
ds.

Using the condition (2.10), we arrive at

d

dt
V (t, u) ≤− pmin(t)∥∥∥H̃(t)

∥∥∥
〈
H̃(t)(u(t) +Du(t− τ(t))), (u(t) +Du(t− τ(t)))

〉

− k̃

t∫
t−τ(t)

〈
K̃(t− s)u(s), u(s)

〉
ds−

t∫
t−τ(t)

l̃

〈
L̃(t− s)

d

ds
u(s),

d

ds
u(s)

〉
ds.

From the definition of V (t, u) in (2.21), we have

d

dt
V (t, u) + ε(t)V (t, u) ≤ 0
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where ε(t) = min

{
pmin(t)

∥H̃(t)∥ , k̃, l̃
}
. So that, by this inequality, we can reach the below estimate

V (t, u) ≤ V (0, ϑ) exp(−
t∫

0

ε(s)ds),

where V (0, ϑ) is described by (2.15). Taking into account the (2.28) and definition of the functional (2.21), we
infer 〈

H̃(t)(u(t) +Du(t− τ(t))), (u(t) +Du(t− τ(t)))
〉
≤ V (t, u)

and

∥u(t) +Du(t− τ(t))∥ ≤

√
V (t, u)

h̃min(t)
≤

√
V (0, ϑ)

h̃min(t)
exp(−1

2

t∫
0

ε(s)ds).

Hence, we have the required inequality (2.20). This finishes the proof. 2

Now, we estimate ∥u(t)∥ . For t > 0, let us consider the below functions

η0(t) = t,

η1(t) = t− τ(t),

...

ηl(t) = ηl−1(t)− τ(ηl−1(t)), l ≥ 1

or equivalently,

η0(t) = t,

η1(t) = t− τ(η0(t)),

...

ηl(t) = t−
l−1∑
j=0

τ(ηj(t)), l ≥ 1

(2.29)

Assume that m ∈ N be a minimal number such that

ηm(t) ∈ [−τ2, 0). (2.30)

Lemma 2.8 Let the assumption given by (2.5) be satisfied. Then the trivial solution u(t) of (IVP) (1.5) holds
the below estimate

∥u(t)∥ ≤ µ

m−1∑
j=0

(∥D∥eβ
+τ2)

j
e−β−t + ∥D∥max{t/τ2 ,1}

Ψ, (2.31)

where Ψ, µ, β− and β+ are defined in (2.12), (2.13), and (2.14), respectively.
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Proof In the case of the consideration of {ηl(t)}l≥1, we can reach the u(t) as follows

u(t) =[u(η0(t)) +Du(η1(t))]−D[u(η1(t)) +Du(η2(t))] + ...

+ (−1)
m−1

Dm−1[u(ηm−1(t)) +Du(ηm(t))] + (−1)
m
Dmu(ηm(t))

which implies that

∥u(t)∥ ≤∥u(η0(t)) +Du(η1(t))∥+ ∥D∥ ∥u(η1(t)) +Du(η2(t))∥+ ...

+
∥∥Dm−1

∥∥ ∥u(ηm−1(t)) +Du(ηm(t))∥+ ∥Dmu(ηm(t))∥

= ∥u(η0(t)) +Du(η0(t)− τ(η0(t)))∥

+ ∥D∥ ∥u(η1(t)) +Du(η1(t)− τ(η1(t)))∥+ ...

+
∥∥Dm−1

∥∥ ∥u(ηm−1(t)) +Du(ηm−1(t)− τ(ηm−1(t)))∥+ ∥Dmu(ηm(t))∥ .

It should now be noted that

∥u(t)∥ ≤µe
−

η0(t)∫
0

β(s)ds
+ ∥D∥µe

−
η1(t)∫
0

β(s)ds
+ . . .

+
∥∥Dm−1

∥∥µe− ηm−1(t)∫
0

β(s)ds
+ ∥Dmu(ηm(t))∥

=

m−1∑
j=0

∥∥Dj
∥∥ µe

−
ηj(t)∫
0

β(s)ds
+ ∥Dmu(ηm(t))∥

=µ

m−1∑
j=0

∥∥Dj
∥∥ e

t∫
ηj(t)

β(s)ds

e
−

t∫
0

β(s)ds
+ ∥Dmu(ηm(t))∥

by (2.13) and (2.20).
We note that (2.29) and (1.2) imply that ηj(t) ≥ t−jτ2. Particularly, by (2.30) and 0 > ηm(t) ≥ t−mτ2,

which implies m > t/τ2 .Thus, we can obtain that

∥u(t)∥ ≤µ

m−1∑
j=0

∥∥Dj
∥∥ eβ+(t−ηj(t))e−β−t + ∥D∥max{t/τ2,1 }

Ψ

≤µ

m−1∑
j=0

∥∥Dj
∥∥ eβ+jτ2e−β−t + ∥D∥max{t/τ2,1 }

Ψ.

2

Proof [Proof of Theorems 2.3-2.5] Using the inequality (2.31), it is not hard to prove estimates given by

(2.17), (2.18), and (2.19), respectively. Indeed, let ∥D∥ < e−β+τ2 . By the estimate

m−1∑
j=0

(∥D∥ eβ
+τ2)

j ≤
∞∑
j=0

(∥D∥ eβ
+τ2)

j
= (1− ∥D∥ eβ

+τ2)
−1
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and inequality (2.31), we can arrive at inequality (2.17). This result finishes the proof of Theorem 2.3.

Let ∥D∥ = e−β+τ2 . By (2.30), we have ηm−1(t) ≥ 0 . Moreover, by (2.29) and ??eq2), we get ηm−1(t) ≤
t− (m− 1)τ1, which implies

m ≤ t

τ1
+ 1. (2.32)

Hence,
m−1∑
j=0

(∥D∥ eβ
+τ2)

j
= m ≤ t

τ1
+ 1.

The last equality above and estimate (2.31) imply (2.18). This result finishes the proof of Theorem 2.4.

Finally, let e−β+τ2 < ∥D∥ < e−(β+τ2−β−τ1). By (2.32), we have
m−1∑
j=0

(∥D∥ eβ
+τ2)

j
=

m−1∑
j=0

(∥D∥ eβ
+τ2)

m−1−j

≤
m−1∑
j=0

(∥D∥ eβ
+τ2)

t/τ1 −j

≤
∞∑
j=0

(∥D∥ eβ
+τ2)

−j
(∥D∥ eβ

+τ2)
t/τ1

=(1− (∥D∥ eβ
+τ2)

−1
)
−1

(∥D∥ eβ
+τ2)

t/τ1
.

By (2.14) and inequality (2.31), we have

u(t) ≤ µ(1− (∥D∥ eβ
+τ2)

−1
)
−1

(∥D∥ eβ
+τ2−β−τ1)

t/τ1
+ ∥D∥max{t/τ2 ,1}

Ψ.

Thus, we can reach the assertion in (2.19). This result finishes the proof of Theorem 2.5. 2

3. Numerical examples

Example 3.1 As a special case of (1.1), we consider the below neutral system with periodic coefficients

d

dt
(y(t) + 0.02y(t− τ(t))) =(0.1 cos t− 3.2)y(t) + 0.2y(t− τ(t)) + 0.2 cos t

d

dt
y(t− τ(t))

+ F (t, y(t), y(t− τ(t)),
d

dt
y(t− τ(t))),

(3.1)

for t > 0.

We start first by thinking about the linear case

F (t, ũ, ṽ, w̃) = 0,

i.e. qi = 0, (i = 1, 2, 3). Let

τ1 = 0.1 ≤ τ(t) = (1 + sin2t)/10 ≤ 0.2 = τ2.
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In addition, it can be followed that

H̃(t) = 1− 0.2 sin t, K̃(s) = 0.24e−0.45s, L̃(s) = 0.01e−0.45s,

Obviously, these functions satisfy (2.2-2.4) and (2.10) with

k̃, l̃ = 0.45.

Let h̃min(t) > 0 be the minimal eigenvalue of H̃(t). Thus, it is can easily calculated that

h̃min(t) ≥ 0.8 ,
∥∥∥H̃(t)

∥∥∥ ≤ 1.2 .

Therefore, it is simple to verify that the matrix Φ(t) > 0 for the earlier specific choices. Thus, considering
the assumptions of Theorem 2.1, we can say that the trivial solution of (3.1) with qi = 0, (i = 1, 2, 3) is
exponentially stable.

Since qi = 0, (i = 1, 2, 3), it is clear that Φ(t) = Φα(t). It is not difficult to show that P (t) is positive
definite if Φα(t) > 0 . It is known that pmin(t) is the minimal eigenvalue of P (t) . The pmin(t) value holds

pmin(t) ≥ 0.8562 by using MATLAB-Simulink. Therefore pmin(t)

∥H̃(t)∥ ≥ 0.7135 and ε(t) = min

{
pmin(t)

∥H̃(t)∥ , k̃, l̃
}

=

0.45. By (2.14), we establish the following estimate

∥y(t)∥ ≤ r max
−τ2≤s≤0

∥y(s)∥ e−0.225t, r > 0,

for the solutions to (3.1).
Let us now examine the case of F (t, ũ, ṽ, w̃) ̸= 0 for the system (3.1). We choose the functions

H̃(t), K̃(s), L̃(s) and constants qi ≥ 0, (i = 1, 2, 3)as follows

H̃(t) = 1− 0.2 sin t, K̃(s) = 0.12e−0.35s, L̃(s) = 0.16e−0.35s,

and

q1 = 0.01, q2 = 0.02, q3 = 0.06.

In this case, it is Φ(t) > 0 for t ∈ [0, 2π]. Then, by Theorem 2.1, the trivial solution to (3.1) with
qi ≥ 0, (i = 1, 2, 3) is exponentially stable.

For t ∈ [0, 2π], it is not hard to demonstrate that Φα(t) described in (2.9) is positive definite. In this
case, P (t) is positive definite if Φα(t) > 0. By MATLAB-Simulink, the value pmin(t) satisfies pmin(t) ≥ 2.9693.

Therefore pmin(t)

∥H̃(t)∥ ≥ 2.4744 and ε(t) = min

{
pmin(t)

∥H̃(t)∥ , k̃, l̃
}

= 0.35.

By (2.14), we have the estimate

∥y(t)∥ ≤ r max
−τ2≤s≤0

∥y(s)∥ e−0.175t, r > 0,

for the solutions to (3.1).

Figure 1 and Figure 2 graphs show the trajectories of solutions of the considered system.
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Figure 1. Trajectories of system (3.1) when F (t, ũ, ṽ, w̃) = 0, for τ(t) = (1 + sin2t)/10.

Figure 2. Trajectories of system (3.1) when F (t, ũ, ṽ, w̃) ̸= 0, for τ(t) = (1 + sin2t)/10 .

Example 3.2 For n = 2 , as a special subcase of (1.1), we consider the below NNS with periodic coefficients

d

dt
[y(t) +Dy(t− τ(t))] =A(t)y(t) +B(t)y(t− τ(t)) + C(t)

d

dt
y(t− τ(t))

+ F (t, y(t), y(t− τ(t)),
d

dt
y(t− τ(t)))

(3.2)

where

A(t) =

(
−3.8 + 0.2 cos t 1− 0.4 cos t

1.2 −3.6

)
, B(t) =

(
0.5 sin t 0
−0.6 sin t 0.1 cos t

)
,

C(t) =

(
0.01 0.04
0.01 0.02

)
, D =

(
0.01 0.16
0.16 0.01

)
,

F (t, y(t), y(t− τ(t)),
d

dt
y(t− τ(t))) =

[
q1e

−y2
1(t)y1(t) + q2e

−y2
1(t−τ(t))y1(t− τ(t)) + q3e

−y2
1(t−τ(t)) d

dty1(t− τ(t))

q1e
−y2

2(t)y2(t) + q2e
−y2

2(t−τ(t))y2(t− τ(t)) + q3e
−y2

2(t−τ(t)) d
dty2(t− τ(t))

]
,

τ1 = 0.1 ≤ τ(t) = (1 + sin2t)/10 ≤ 0.2 = τ2.

Considering the assumption (1.4), for some positive constants q1 = 0.02, q2 = 0.03 , and q3 = 0.004,

∥F (t, ũ, ṽ, w̃)∥ ≤ q1 ∥ũ∥+ q2 ∥ṽ∥+ q3 ∥w̃∥ , t ≥ 0, u, v, w ∈ ℜ2.
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In addition, we can choose the functions H̃(t), K̃(s) , and L̃(s) as follows

H̃(t) =

(
2− 0.2 sin t 1− 0.4 sin t
1− 0.4 sin t 4 + 1.2 sin t

)
, K̃(s) = e−0.09s

(
1 0
0 2

)
,

L̃(s) =e−0.09s

(
0.1 0
0 0.1

)
.

For the values selected above, the following calculations can be easily obtained

1.5886 ≤ h̃min(t) ≤ 1.6023 ,

and

4.4214 ≤
∥∥∥H̃(t)

∥∥∥ ≤ 4.4577,

where, h̃min(t) is the minimal eigenvalue of the matrix H̃(t).

In this case, it is Φ(t) > 0 for t ∈ [0, 2π]. Thus, considering the assumptions of Theorem 2.1, we can
say that the trivial solution of (3.2) is exponentially stable for constants q1 = 0.02, q2 = 0.03 , and q3 = 0.004.

For t ∈ [0, 2π], it is not hard to demonstrate that Φα(t) described in (2.9) is positive definite. In this
case, P (t) is positive definite if Φα(t) > 0. By MATLAB-Simulink, the value pmin(t) satisfies pmin(t) ≥ 7.7758.

Therefore pmin(t)

∥H̃(t)∥ ≥ 1.7443 and ε(t) = min

{
pmin(t)

∥H̃(t)∥ , k̃, l̃
}

= 0.09.

By (2.14), we have the estimate

∥y(t)∥ ≤ r max
−τ2≤s≤0

∥y(s)∥ e−0.045t, r > 0,

for the solutions to (3.2).
Figure 3 graph shows the trajectories of solutions of the considered system.

Figure 3. Trajectories of system (3.2) when F (t, ũ, ṽ, w̃) ̸= 0, for τ(t) = (1 + sin2t)/10 .
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4. Conclusions
This research presents the ES of trivial solutions of nonlinear neutral type systems (NNSs) with periodic
coefficients. By applying the Lyapunov functional method, a set of sufficient conditions is obtained that
guarantees ES. Two examples with simulations are provided to support the theoretical findings. Our results
improve and generalize the results of previous studies on this topic in the literature.
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