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Abstract: The metallic-like (a,b)-manifold is a manifold endowed with a polynomial structure of second degree which
unifies the almost product, complex structures and includes metallic structures. We introduce the metallic-like maps
between metallic-like (a,b)-manifolds and we give a criterion for the nonconstancy of these maps. We prove that an
almost contact structure on a Riemannian manifold induces a metallic-like (a,b)-structure and we give an example of a

nonconstant metallic-like endomorphism of a particular almost contact manifold.
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1. Introduction

This paper is concerned about metallic-like (a,b)-manifolds and metallic-like maps. One of the main results is
a criterion for nonconstancy of the metallic-like maps between two different metallic-like structures on the same
base manifold M (these maps are called endomorphisms of M). On the other hand, we provide examples of
several classes of metallic-like (a,b)-structures for which all metallic-like endomorphisms are constant.

Another main result states that an almost contact structure on a manifold induces a metallic-like (a,b)-
structure with A = a2 4+ 4b > 0, also giving an example of nonconstant metallic-like endomorphism in the case
of a particular almost contact manifold.

To fit these results into context, we defined metallic-like structures as a particular case of polynomial
structures on manifolds, which were introduced and studied by Goldberg and Yano in [7]. A polynomial structure
F of degree d on a C*> manifold M is, [7], a (1,1)-tensor field F satisfying a certain polynomial equation of
d degree. Integrability conditions for polynomial structures, involving the Nijenhuis torsion of the structural
endomorphism F', are given in [20], under the assumption that the polynomial equation has only simple roots.

Some classes of polynomial structures of the second degree are provided by the almost product structures,
(i.e. F? = I;), as well as by the almost complex structures, (i.e. F? = —I;) for 2n-dimensional manifolds.
Also, an almost contact structure, [3], [5], is an example of the polynomial structure of the third degree since its
structural endomorphism satisfies F3 + F = 0, for a 2n + 1-dimensional manifold. Nevertheless, the metallic
structures, (i.e., 2 = pF + ql; with nonzero positive integers p, q), are substantially more general polynomial
structures of the second degree and they were intensively studied in the last decade, [8], [10], [11], [12], [16],
[17]. Recently, a new type of polynomial structures called f, (3,2, 1)-structures (i.e. F*—aF?—bF =0, with
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a,b real numbers and b # 0) are introduced in [9]. These structures generalize some polynomial structures of
degrees 2 and 3, like metallic structures or almost contact structures. It is an interesting topic to unify these
kinds of polynomial structures (product, complex, and metallic), [6].

In this paper, we recall the extension of the metallic structures proposed by us in [14]. We defined the
notion of metallic-like (a,b)-structure with two real numbers a,b dropping the constraint that a and b must
be integers, only imposing that A = a? 4+ 4b does not vanish. Our theory generalizes in a natural way the
almost complex and almost product structures on manifolds as well as includes the metallic structure. In [4]
the author proved that any almost contact structure on a manifold determines a metallic structure. We obtain
a similar statement, using a new argument, for metallic-like structures induced by almost contact structures.

In the last years the metallic maps (similar to holomorphic-like maps) between metallic manifolds were
investigated by some authors, [1], [2], [18], [19], which provided conditions for the constancy of some certain
metallic maps.

The paper is organized as follows. The notion of metallic-like (a, b)-structures on a Riemannian manifold
and some properties of them are given in the second section of the paper. In the third section, we define multiple
metallic-like structures on a manifold M endowed with a metallic-like (a,b)-structure, following an idea from
[15]. The endomorphisms of M which are metallic-like maps between different metallic-like structures on M
are investigated in the fourth section. We obtain one of the main results of this paper, a criterion for the
nonconstancy of these endomorphisms (Proposition 4.4). For several particular metallic-like (a, b)-structures
we prove that all metallic-like endomorphisms are constant (Propositions 4.6, 4.8, 4.10).

Finally, in the last section, we prove another main result, that an almost contact structure on a manifold
induces a metallic-like (a, b)-structure with a?+4b > 0 (Theorem 5.1). Also, we give an example of nonconstant

metallic-like endomorphism of a certain almost contact manifold.

2. Metallic-like structures on manifolds
Let M be an n-dimensional C* -manifold and a,b two real numbers with A = a? + 4b # 0.
We call, [14], a metallic-like (a,b)-structure on M a polynomial structure of second degree given by a

(1,1)-tensor field ¢ which satisfies the equation,
W —a-p—b-I;=0, (2.1)

where I, is the identity on the vector fields space I'(T'M). In this case the pair (M,¢) will be called a

metallic-like (a, b)-manifold. Following an idea from [13], we obtained the following result.

Proposition 2.1 [1/] Let (M, ) be an n- dimensional metallic-like (a,b)-manifold. If A = a?+4b < 0, then

the dimension n s an even number.

Remark 2.2 For a =0, b =1, ¢ is an almost product structure. If a =0, b = —1, then ¢ is an almost
complex structure. For a,b nonzero positive integers the endomorphism ¢ is called a metallic structure, [10].
Some authors, [8], [4], consider to be a metallic structure those endomorphisms ¢ with a,b nonzero integers

and the equation x>

—ax — b =0 has a positive irrational root. Examples of metallic structures are: golden
structure (a =1, b= 1), silver structure (a = 2, b = 1), bronze structure (a = 3, b = 1), nickel structure

(a=1, b=23), copper structure (a =1, b=2).
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The main properties of metallic-like (a,b)-structures are given in the following propositions and they are

easy to be proved by direct computation.

Proposition 2.3 [14] To every metallic-like (a,b) -structure ¢ on M, given by (2.1), we can associate another

polynomial structure

(2.2)

2 a
J = P — : Id.
VIA| VIA|
If A >0, then J? = 1; and J is called the almost product structure associated to .
If A <0, then J?> = —1I4 and J is called the almost complex structure associated to .

Now, for the above real numbers a,b, let J be a polynomial structure of second degree on M with

J? = €21, where € = I%I' Then we can associate to J the following polynomial structure:
a A
oo O VAL (2.3)
2 2
By direct computation, we obtain
A A
0> —ap —bly = —Z-Id+%-621d.

The above relation shows that:

Proposition 2.4 [14] Let M be an n-dimensional C*° manifold. Then,

(i) For any real numbers a,b such that a®> +4b > 0, every almost product structure J on M induces a
metallic-like (a,b)-structure on M , given by (2.3).

(ii)For any real numbers a,b such that a* + 4b < 0, every almost complex structure J on M induces a

metallic-like (a,b)-structure on M, given by (2.3).

Let (M,g) be a Riemannian manifold endowed with the metallic-like (a,b)-structure ¢. We say that
¢ is compatible with the metric g and that M is a metallic-like (a,b)-Riemannian manifold (denoted by

(Mv g, 4,0) )’ if
9(pX,Y) = g(X,9Y), (2.4)

for every X, Y € T'(TM). An equivalent condition is
9(pX,9Y) = a-g(X,9Y) +b-g(X,Y).

2

Let o4, U;,b = a — 04 be the roots of the equation z° — az — b = 0. Analogous to the metallic projections

defined in [10], we can consider the projections

1 1
Dy = VA (Gapla =), D, = VA (_a:z,bld + ) (2.5)
and two complementary distributions D, = Ker(p,), D, = Ker(p,).
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Proposition 2.5 Let (M, g,p) be a metallic-like (a,b) - Riemannian manifold. The metallic-like distributions

D, and D', are orthogonal with respect to the compatible metric g.

Proof For every X € D, and Y € D', we have pX = 0,,X and ¢Y =0 Y.
Relation (2.4) implies
(0ap —045)9(X,Y) =0,

which is equivalent to vAg(X,Y) = 0 and, since A # 0, we obtain g(X,Y) =0. O
For a metallic-like (a,b)-Riemannian manifold (M,g,¢), let J be the associated almost product or

almost complex structure from (2.2). We obtain that J is also g-symmetric, namely
g(JX,Y) = g(X,JY), VX,Y €T(TM). (2.6)

The integrability of almost product or complex structure J is usually expressed by the vanishing of the

Nijenhuis tensor Ny, this is
Ny(X,Y) = [JX,JY] - J[JX,Y] - J[X,JY] + J*[X,Y],

which expresses the involutivity of eigenbundles of J. From relation (2.3) it is easy to see that the eigenbundles of
i are exactly the eigenbundles of the associated structure J and they are exactly the metallic-like distributions
D, and D',,.

Moreover, considering the Nijenhuis tensor of ¢
Ne(X,Y) = [pX, oY] = p[pX, Y] — 9[X, pY] + ¢*[X, Y],

we obtain the following link between N, and N:

A A A |A|
N,=—N — Iy — — = —Nj. 2.
=7 Not | La AJ 1 N (2.7)

Definition 2.6 The metallic-like (a,b)-structure ¢ is called integrable if N, = 0.

A direct consequence is that

Proposition 2.7 The metallic-like (a,b)-structure ¢ is integrable if and only if the associated structure J

given by (2.2) is integrable. In this case the eigenbundles of ¢ are involutive.

3. Multiple metallic-like structures
In this section, we will referee to the duality between metallic-like structures and almost product or complex
structures, mentioned in Propositions 2.3, 2.4.

Let (M,y) be a metallic-like (a,b)-manifold and J given by (2.2), the almost product or complex
structure induced by ¢ on M.

We fix two real numbers a’, b with A’ =a? +4b #0 and A- A’ > 0.
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According to Proposition 2.4, we can introduce on the (a,b)-metallic-like manifold M a metallic-like

(a',b')-structure ¢’ by relation

/ /Al
s0/2617']}1_’_ | |'J.

; ; (3.1)

If (M,g,¢) is a Riemannian metallic-like (a,b)-manifold, then the above relation and (2.6) show that the

Riemannian metric g is ¢’-compatible,
g X,Y) = g(X,0'Y), VX,Y € D(TM). (3.2)
By direct computation, from relations (2.2) and (3.1) we obtain that

Proposition 3.1 The link between the initial metallic-like structure and the new one is

, 1 < A'|> [A7]
o'==|d - -Ig + P (3.3)
2 VIA| |A|

Obviously, using now the relation (2.2) for the metallic-like structure ¢, we obtain that this new metallic-

like structure induces the same almost product J on M.

We can also see that

Proposition 3.2 For a metallic-like manifold (M, ) with the almost product or complex associated structure
J, any metallic-like structure induced by J on M 1is integrable if and only if the initial metallic-like structure
1s integrable.

Proof Using relation (2.7) for the Nijenhuis tensors N, and N, respectively, we have

which proves the statement. O

Considering now the cases of Golden, silver, bronze, and nickel structures, we can see that:

Proposition 3.3 Every Golden manifold also carries a silver, a bronze, and a nickel structure. If the Golden

structure is integrable, the induced silver, bronze, and nickel structures are integrable, too.

Proof Let (M,g,¢) be a Golden manifold. Then ¢ is a metallic-like (1,1)-structure and A = 5. According

to Proposition 3.1, the following polynomial structures are induced by ¢:
¢s =+ [(6—V10)I4 + 2v/10¢p] is a silver structure;
©op = 215 [(3 —V13) I+ v 13@] is a bronze structure;

3

1

[(1 —V13)Ig+ v 1330] is a nickel structure. The statement of Proposition 3.2 ends the proof.
O

Lpn:2

S

5

Remark 3.4 The relation (3.3) also proves that if ¢ is a bronze structure on a manifold M , then ¢’ = p— 1,
is a nickel structure on M .
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4. Metallic-like maps between metallic-like manifolds

Let ¢1, @2 be metallic-like structures on Riemannian manifolds (M, g1), (M2, g2). Inspired by [18], we can

give the following definition:

Definition 4.1 A differentiable map F : My — My is called (1, @2) -metallic-like map between metallic-like
manifolds (M1, 1) and (M, ps) if Fup1 = poFy, where F, is the tangent map of F.

In this section we investigate the properties of a differentiable endomorphism F' : M — M when the
manifold M is endowed with a metallic-like (a,b)-structure ¢. Let J be the associated almost product or
complex structure given by (2.2) and ¢’ another metallic-like (a’,b’) structure induced by J, introduced in the

previous section.

Proposition 4.2 The following assertions are equivalent:
(i) Fop=@F,.; (i) F.J = JF.; (iii) Fu¢' = ¢'F,

Proof Using relations (2.2) we prove the equivalence (i) < (i7). Relation (3.1) proves the equivalence

(17) < (i), since the equivalence (iii < (i) results from (3.3). O

Remark 4.3 The above proposition says that a (p, @) -metallic-like endomorphism F of a metallic-like manifold
(M, ) is also a (J,J)-metallic-like map and (', ") -metallic-like map for any another metallic-like (a',b)

structure ¢’ induced by the associated almost product or complex structure J .

Proposition 4.4 The (p,¢’) metallic-like endomorphism F between metallic-like (a,b)-structure ¢ and

metallic-like (a',V')-structure ¢’ could be nonconstant if
(a—a)?b—ala—ad)b-b)—(b-b)?=0. (4.1)
Proof The condition F,p = ¢'F, implies ' F,¢ = ¢'?F,, hence it results for every vector field X on M:
F.0*X = ¢*F.X
aF,pX +bF, X =d o F,X +VF. X

(a—ad)F.pX + (b—b)F.X = 0. (4.2)

Applying again ¢’, we obtain
(a —d)Fep? X + (b— b )FopX =0,

[(a—a)a+ (b—b)F.pX + (a — a')bF. X = 0. (4.3)
Solving the system (4.2), (4.3) it results
[(a—a)?*b—ala—ad)(b-V)—(b—b)*F.X =0.

So, a sufficient condition for F to be constant is the nonvanishing of expression (a —a’)?b —a(a —a’)(b—V') —
(b—b)2. 0
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Remark 4.5 A direct consequence of Proposition 4./ is obtained for two different metallic-like (a,b), (a’,b")-
structures on M, ¢, ¢', with a = a' and b #b or b =V and a # a'. Then any (¢,¢’') metallic-like

endomorphism F of M is constant.

From this remark, we can say that

Proposition 4.6 Let F' be a differential endomorphism of a golden manifold M with the golden structure
Yg, and ps, ©bv, Pn the silver, bronze and nickel structures induced by ¢g, on M, respectively. If F' is a

metallic-like map between any two different structures from the mentioned above ones, then F is a constant
map.

Proof For F' metallic-like map between ¢, and any one of the others the condition (4.1) is not satisfied since
a=a and b#V or a #a' and b=1V". By direct calculation, relation (4.1) is not verified neither for another

combination between ¢, ¢y, and ¢, . O

Remark 4.7 The condition (4.1) is equivalent to
(a—a)* —d'(a—ad)b-b)—(b—V)* =0,

since

(a—a)?(b=V)~(a=d)a—d)b-V)=0,

and it is obviously satisfied for a =a’ and b=10".
Moreover, two metallic-like (a,b), (a’,V')-structures with a # a’ and b # b are satisfying condition (4.1)
iff equations

2?+ar—b=0, 22+dz—-V =0,

b—b'

a—a’’

have a common root (which is obviously).

Proposition 4.8 Let (M, J) be an almost product manifold and ¢, ¢' two different metallic-like (p,q), (p',q')-
structures, respectively, induced by J, where p,q,p’,q are nonzero positive integers such that at least one of
the equations x> —px —q =0, 2°> — p'z — ¢’ = 0 has irrational roots. Then, any (p,¢") - metallic-like map is
constant.

Proof According to the Remark 4.7, the condition (4.1) is not satisfied since the equations z? — pr —q =0

qa—q
p—p’

and 22 — p'z — ¢’ = 0 have irrational roots and is a rational number. O
Remark 4.9 The metallic-like structures considered in Proposition 4.8 are metallic manifolds. So, this
proposition generalizes the result of Proposition 4.6 at the case of metallic manifolds given by a metallic-
like (p,q)-structure with p,q non-zero positive integers such that x*> — px —q = 0 has irrational roots. This
proposition also says that there could exist nonconstant (¢, ') metallic-like maps only for metallic manifolds
which have metallic (p,q)-, (p',q")-structures with the same associated almost product and p* + 4q, p'? + 4¢

both perfect squares.

Another consequence of the Remark 4.7 is that
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Proposition 4.10 Let (M,J) be an almost complex manifold and (a,b), (a’,V') two different metallic-like

structures ¢ and @', respectively, induced by J. Any metallic-like map between ¢ and ¢’ is constant.

Proof The structures ¢, ¢’ induced by the almost complex structure J are satisfying ¢? — ap — bl; = 0,
¢ —a'¢' —V'1; =0, respectively, and A = a? + 4b, A’ = a’? + 4b' are negative. The condition (4.1) is not

— / .
272, is a real number.

O

satisfied since the equations z2+ax —b =0 and 22 +a’z —b = 0 have no real roots and

The above considerations show that there could exist a nonconstant (¢, ¢’) metallic-like endomorphism

only for metallic-like structures ¢, ¢’ which induce almost product structure (that means A > 0).

Proposition 4.11 Let ¢ be a metallic like (a,b)-structure on a manifold M, with A = a? +4b > 0, and J
the almost product structure associated with it. There could exist nonconstant metallic-like maps F : M — M
between ¢ and J iff a=+(b—1).

Proof
The associated almost product structure J is a metallic-like (0, 1)-structure. F' is a metallic-like map if

F.p = JF, and it could be nonconstant iff the condition (4.1) is verified, where o’ =0 and ' = 1.
We obtain a?b —a?(b—1) — (b—1)2 =0, so a® = (b— 1)?, which ends the proof.

5. Metallic-like structures on a contact metric manifold

Let M be a (2n + 1)-dimensional manifold and (p,&,7n) a contact structure on M. That is, ¢ is a tensor field
of type (1,1), & a vector field, called the Reeb vector field on M, and n a 1-form on M, such that

P’ =—I;+n®¢ né) =1, (5.1)

and the (2n + 1)-form 5 A (dn)"™ does not vanish everywhere on M .
A Riemannian metric compatible with the contact structure (¢,&,7) is a Riemannian metric ¢ on M

such that
9(pX,pY) =g(X,Y) —=n(X)n(Y), VXY e (TM). (5.2)

A manifold M endowed with a contact structure and a Riemannian metric compatible with it is called

a contact metric manifold.

There are well-known following properties which derive from the conditions (5.1), (5.2):

) 3:_90’ (C) noy =0, (53>
(d) n(X)=g(X,8), (e) dn(§X)=0, VXeI(TM), '

and
dn(X,Y)=o(X,Y), VXY el(TM), (5.4)

where @ is the fundamental (or Sasaki) 2 — form on M given by

O(X,Y) = g(X,pY), VX,Y e (TM). (5.5)
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We can consider the contact distribution D defined by the subspaces
(D)e ={Xe €e .M | n(X.) =0},
which is the transversal distribution to the structural distribution
xe={f& | feQ(M)}.
Let (M,g,¢,&,1m) be a contact metric manifold. The relation (5.3) (b) implies

ot = —¢?,
so the endomorphism ¢ = ¢? : TM — TM is a metallic-like (—1,0)-structure on M. We can see that
9((XY) = g(=X +n(X)§,Y) = —g(X,Y) + n(X)n(Y) = g(X,Y).

It follows that a contact metric manifold carries also a metallic-like (—1,0)-structure ¢ = ¢? and the
metric g is compatible with this structure.

According to Proposition 2.3, this metallic-like (—1,0)-structure, having A = 1, induces an almost

product structure on M given by:

J=2+1;=20*+1;, = -I;+2n®¢. (5.6)

Since the roots of the equation 22 +x =0 are o_19 =0, 0’71’0 = —1,and A =1, the metallic-like projections
(2.5) become

Po=-C=WUa=n®E), py=ITa+¢)=neE (5.7)

The metallic-like distributions are
D¢ ={X e TM| X =n(X)&} = xe,

D' = {X € TM| n(X)¢ = 0} = D,

exactly the structural and the contact distributions, respectively.

It is well-known that the contact distribution is not integrable, so the metallic-like (—1,0)-structure ¢ is
not integrable. This fact implies that almost product structure J is not integrable, since the Nijenhuis tensors
of ¢ and J are related by relation (2.7).

Now, taking into account Proposition 2.4, we obtain:

Theorem 5.1 Let (M, g,p,&,m) be an almost contact metric manifold. For every real numbers a,b such that
A = a?+4b > 0, the almost product structure J from (5.6) induces a nonintegrable metallic-like (a, b) -structure
a— VA

Vv=—F5—lat VAn® ¢ (5.8)

Theorem 5.1 is a generalization of the fact that every almost contact metric structure induces a metallic
structure, [4] (Theorem 4).

Moreover, the metallic-like structure ¢? satisfies the condition of Proposition 4.11, since it is a metallic-
like (—1,0)-structure. Then, there could exist a nonconstant endomorphism F' of the contact manifold M such

that F is a metallic-like map between ¢? and J.
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This endomorphism satisfies condition F,¢? = JF, and, using equations (5.1) and (5.6), this condition
is equivalent to n ® F.§ =2no F, ®E.

Proposition 5.2 A nonconstant endomorphism F of an almost contact manifold (M, p,&,n) which satisfies
F.§ =0 and F,X € D, VX € D, is a metallic-like map between o> and J, the almost product structure
induced by ©® on M.

Example 5.3 It is well-known, [5] the contact structure of the real (2n + 1) -dimensional manifold R®"*1 with
local coordinates (x*,22,.., 2™,y  y2,...,y", 2) given by the global 1-form n = dz — Z?zl y'dx?®, the global vector
field € = a%. The metallic-like (—1,0)-structure is ( = —I4+n®& and the associated almost product structure
is J=—-I1+2n®E.

The structural line distribution x¢ is spanned by % and the contact distribution D is spanned by

o0 0 0
R PO oyt

Now we define a nonconstant differentiable map F : R*"t1 — R2" 1 [ocally given by

F(zb, 22, .. 2™yt g™, 2) = (0,0, ...,0, b1y, b2y’ b2y, .., by, 0), (5.9)
where (bg)i,j:ﬁ is a real matrix. By direct computation we obtain
oF oF  OF OF . 0
— =0, —=-—=0, —=b-—, (5.10)
0z oxt Ozt oy’ oyt

which proves that the tangent map F, satisfies the conditions of Proposition 5.2, so it is a nonconstant metallic-

like map between the metallic-like structures ¢ and the associated almost product structure J.
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