
Turk J Math
(2023) 47: 1558 – 1572
© TÜBİTAK
doi:10.55730/1300-0098.3448

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

What can lattices do for hypersemigroups?

Niovi KEHAYOPULU∗

TBAE, The Scientific and Technological Research Council of Türkiye, Turkey

Received: 13.03.2023 • Accepted/Published Online: 05.06.2023 • Final Version: 18.07.2023

Abstract: This is from Birkhoff, the “father of lattice theory” in Trends in Lattice Theory. Van Nostrand 1970:
“Lattices can do things for you, no matter what kind of mathematician you are!”. The aim of this paper is to show that
the le -semigroups (lattice ordered semigroups possessing a greatest element) play the main role in studying the ordered
hypersemigroups. From many results on lattice ordered semigroups corresponding results on ordered semigroups can
be obtained. The converse is also possible but the beauty and simplicity of “order” makes it easier to investigate the
lattice ordered semigroup at first. After getting the results on ordered semigroups, by an easy modification corresponding
results on ordered hypersemigroups can be obtained.
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1. Introduction
Birkhoff, in [1], summarizes his ideas about the role played by lattice theory in mathematics generally. “In
general, lattice theory has helped to simplify, unify and generalize many aspects of mathematics, and it has
suggested many interesting new problems. Because of its central concept, that of order, intertwines through
almost all of mathemetics” [1, p. 1]. “Lattices can do things for you, no matter what kind of mathematician
you are !” [1, p. 38]. “The beauty of lattice theory derives in part from the extreme simplicity of its basic
concepts: (partial) ordering, least upper and greatest lower bounds. Many of the deepest and most interesting
applications of lattice theory concern (partially) ordered mathematical structures having also a binary addition
or multiplication: lattice-ordered groups, monoids, vector spaces, rings, and fields (like the real field)” [2, p. iii].
“The concept of a lattice-ordered monoid (or l -monoid) arises naturally in ideal theory, where it has roots in
the work of Dedekind, and was studied carefully by Krull [R. Dedekind, Ges. Werke, Vol. III, pp. 62–71; W.
Krull, S.-B Phys. Med. Soc. zu Erlangen 56 (1924), 47–63” [2, p. 319].

The aim is to show what lattices can do for hypersemigroups. From many results on poe -semigroups or
le -semigroups, especially from the results related to various kind of ideals, bi-ideals, quasi-ideals, results can
be proved using sets (instead of elements) or results on structures like regularity, intra-regularity etc., one can
shows analogous results for ordered semigroups. The converse is also true, by the beauty and simplicity of the
order makes it easier to pass from le -semigroups to ordered semigroups. Besides, if we want to check the validity
of some of the results on ordered semigroups, we always check their analogous for the le -semigroups. The work
on ordered semigroups is based on some well-known properties. After one proves that the analogous properties
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(lemmas) hold for ordered hypersemigroups, the results on ordered hypersemigroups can be obtained by a
very easy way, just putting the operation ∗ instead of the multiplication of the ordered semigroup. Therefore,
although many results of the ordered hypersemigroups can be seen as generalization of ordered semigroups, in
fact they can be obtained from ordered semigroups by easy modification.

We try to solve the results in each structure in a similar way to be able to compare them, as this is the
only way to show their relation to ordered hypersemigroups. We will deal with the basic concepts of ordered
semigroups, the regular and the intra-regular ordered semigroups but the same holds for many results on ordered
semigroups especially for the results that can be proved using only sets (instead of elements). The intra-regular
semigroups are union of simple semigroups [3, Theorem 4.4]. The concept of regular rings has been introduced
by Neumann [21]. Kovács characterized the regular rings as rings satisfying the property A∩B = AB for every

right ideal A and every left ideal B of S , where AB is the set of all finite sums of the form
∑

aibi ; ai ∈ A ,

bi ∈ B [20]. Iséki studied the same for semigroups and has shown that a semigroup S is regular if and only of
every right ideal A and every left ideal B of S we have A ∩ B = AB [4]. The same problem for an ordered
semigroup has been given in [12].

2. On le-semigroups

An ordered groupoid, shortly po -groupoid, is a groupoid S with an order relation ≤ on S such that a ≤ b

implies ac ≤ bc and ca ≤ cb for all c ∈ S [2]. A lattice ordered groupoid (shortly l -groupoid) is a groupoid S

at the same time a lattice such that a(b ∨ c) = ab ∨ ac and (a ∨ b)c = ac ∨ bc for all a, b, c ∈ S [2, 5]. If S is
not a lattice but only an upper semilattice, then it is called a ∨ -groupoid. Every ∨ -groupoid (S, ·,≤) is a po -
groupoid. Indeed, if a ≤ b and c ∈ S , then bc = (a∨b)c = ac∨bc ≥ ac and cb = c(a∨b) = ca∨cb ≥ ca . We call
poe -groupoid, ∨e -groupoid, le -groupoid the po -groupoid, ∨ -groupoid or l -groupoid, respectively, possessing a
greatest element e (: e ≥ a for every a ∈ S ).

In a po -groupoid, an element a is called subidempotent if a2 := aa ≤ a [2]. An element a of a po -
groupoid S is called a right ideal element if ax ≤ a for all x ∈ S ; it is called a left ideal element if xa ≤ a

for all x ∈ S [2]. An element which is both a right and a left ideal element is called an ideal element. As a
consequence, an element a of a poe -groupoid S is a right ideal element of S if and only if ae ≤ a ; it is a
left ideal element of S if and only if ea ≤ a [6]. This being so, the relation ae ≤ a (resp. ea ≤ a) defines
the right (resp. left) ideal element of a poe -groupoid. A po -groupoid S is called right (resp. left) duo if the
right ideal elements of S are at the same time left (resp. right) ideal elements; that is ideal elements of S . It
is called duo if the right ideal elements and the left ideal elements of S coincide. A poe ( le -groupoid) having
an associative multiplication is called poe ( le -semigroup). Clearly, every ∨e -semigroup (and so le -semigroup)
is a poe -semigroup. We denote by r(a) the right ideal element of S generated by a ; that is, r(a) is a right
ideal element of S such that r(a) ≥ a , and if t is a right ideal element of S such that t ≥ a , then r(a) ≤ t .
Denote by l(a) the left ideal element of S generated by a . For a ∨e -semigroup, we have l(a) = a ∨ ea and
r(a) = a ∨ ae . A poe -semigroup S is called regular if a ≤ aea for all a ∈ S [7]. A poe -semigroup S is called
intra-regular if, for every a ∈ S , we have a ≤ ea2e [6].

Theorem 2.1 Let S be a poe-semigroup. If S is regular then, for every right ideal element a and every left
ideal element b of S, the infimum of the elements a and b exists and this is the ab . In particular, if S is an
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le-semigroup satisfying the relation a ∧ b = ab for every right ideal element a and every left ideal element b of
S, then S is regular.

Proof Let a be a right ideal element and b a left ideal element of S . Since S is regular, we have
ab ≤ (ab)e(ab) ≤ ae ≤ a and ab ≤ (ab)e(ab) ≤ eb ≤ b and so ab ≤ a, b . Let now t be an element of S

such that t ≤ a and t ≤ b . Since S is regular, we have t ≤ tet ≤ (ae)b ≤ ab and so ab ≥ t . Thus we have
inf{a, b} = ab . For the converse statement, let a ∈ S . Since r(a) is a right ideal element and l(a) is a left ideal
element of S , by hypothesis, we have

a ≤ r(a) ∧ l(a) = r(a)l(a) = (a ∨ ae)(a ∨ ea) = a2 ∨ aea ∨ ae2a = a2 ∨ aea,

then a2 ≤ a3 ∨ aea2 ≤ aea from which a ≤ aea and so S is regular. 2

Corollary 2.2 (see also [7]) An le-semigroup S is regular if and only if for every right ideal element a and
every left ideal element b of S we have a ∧ b = ab .

Corollary 2.3 An le-semigroup S is regular duo if and only if for every right ideal element a and every left
ideal element b of S we have a ∧ b = ba .

Proof =⇒ . Let a be a right ideal element and b a left ideal element of S . Since S is a duo, a is a left ideal
element and b is a right ideal element of S as well. Since S is regular, by Corollary 2.2, we have b ∧ a = ba

and so a ∧ b = ba .
⇐= . Let a be a right ideal element of S . Since e is a left ideal element of S , by hypothesis, we have
a = a ∧ e = ea , then ea ≤ a i.e. a is a left ideal element of S and so S is right duo. Similarly, S is left duo.
Let now a be a right ideal element and b a left ideal element of S . Since S is a duo, a is a left and b a right
ideal element of S . By hypothesis, we have b ∧ a = ab . Since a ∧ b = ab , by Theorem 2.1, S is regular. 2

Theorem 2.4 Let S be a poe-semigroup. If S is regular and right (resp. left) duo, then S is intra-regular.

Proof Let S be regular and right duo and let a ∈ S . Since S is regular, we have a ≤ aea . The element ae is
a right ideal element of S (as (ae)e = ae2 ≤ ae). Since S is right duo, ae is a left ideal element of S as well,
that is e(ae) ≤ ae . Hence we obtain

a ≤ aea ≤ (aea)e(aea) = (aea)(eae)a ≤ (aea)(ae)a = aea2ea ≤ ea2e,

then a ≤ ea2e and so S is intra-regular. Let now S be regular, left duo, and a ∈ S . The element ea is a left
ideal element of S . Since S is left duo, ea is a right ideal element of S as well i.e. (ea)e ≤ ea . Since S is
regular, we have

a ≤ aea ≤ (aea)e(aea) = a(eae)aea ≤ a(ea)aea = aea2ea ≤ ea2e,

then a ≤ ea2e and so S is intra-regular. 2

Theorem 2.5 Let S be a poe-semigroup. If S is intra-regular then, for every right ideal element a and every
left ideal element b of S such that a ∧ b exists we have a ∧ b ≤ ba . In particular, if S is an le-semigroup such
that a ∧ b ≤ ba for every right ideal element a and every left ideal element b of S, then S is intra-regular.
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Proof Let S be an intra-regular poe -semigroup, a a right ideal element, b a left ideal element of S and a∧ b

exists. Since S is intra-regular, we have

a ∧ b ≤ e(a ∧ b)2e = e(a ∧ b)(a ∧ b)e ≤ (eb)(ae) ≤ ba

and so a ∧ b ≤ ba . For the converse statement, let S be an le -semigroup and a ∈ S . By hypothesis, we have

a ≤ r(a) ∧ l(a) = l(a)r(a) = (a ∨ ea)(a ∨ ae) = a2 ∨ ea2 ∨ a2e ∨ ea2e.

Then
a2 ≤ a3 ∨ aea2 ∨ a3e ∨ aea2e ≤ ea2 ∨ ea2e , a2e ≤ (ea2 ∨ ea2e)e = ea2e ∨ ea2e2 = ea2e ,
a ≤ ea2 ∨ ea2e , a2 ≤ ea3 ∨ ea2ea ≤ ea2e , ea2 ≤ ea2e .

Then we have a ≤ ea2 ∨ ea2e = ea2e and so S is intra-regular. 2

Thus we have the following theorem.

Corollary 2.6 (see also [6]) An le-semigroup S is intra-regular if and only if for every right ideal element a
and every left ideal element b of S we have a ∧ b ≤ ba .

3. On ordered semigroups

When we say ordered groupoid (semigroup) we assume that it does not possess a greatest element. For a subset
A of an ordered groupoid S , we denote by (A] the subset of S defined by (A] := {t ∈ S | t ≤ a for some a ∈ A}
and we have

(1)
(
(A]

]
= (A]

(2) if A is a right ideal (or a left ideal) of S , then (A] = A

(3) A ⊆ B implies (A] ⊆ (B]

(4) (A](B] ⊆ (AB]

(5)
(
(A](B]

]
= (AB] .

If S is an ordered semigroup, then, in addition to properties (1)–(5), we have

(6)
(
(A]B(C]

]
=

(
A(B]C

]
=

(
ABC

]
(7) (ABCD] =

(
AB(C]D

]
=

(
A(B]CD

]
.

Clearly, (S] = S and A ⊆ (A] .
Later, we will use the same symbol (A] for ordered hypergroupoids as well.

Let S be an ordered groupoid. A nonempty subset A of S is called right (resp. left) ideal of S [8] if (1)
AS ⊆ A (resp. SA ⊆ A) and (2) if a ∈ A and S ∋ b ≤ a , then b ∈ S i.e. if (A] = A . If A is both a right and
a left ideal of S , then it is called an ideal of S . An ordered groupoid S is called right (resp. left) duo if the
right (resp. left) ideals of S are at the same time left (resp. right) ideals of S ; that is ideals of S . It is called
duo if the right and the left ideals of S are the same. For a subset A of an ordered semigroup S we denote by
R(A) the right ideal of S generated by A i.e. the least (with respect to the inclusion relation) right ideal of S

containing A , and we have
R(A) = (A ∪AS] .

Denote by L(A) the left ideal of S generated by A and we have
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L(A) = (A ∪ SA] [11].
For A = ∅ , we clearly have R(A) = L(A) = S .

An ordered semigroup (S, ·,≤) is called regular [10] if for every a ∈ S there exists x ∈ S such that
a ≤ axa . This is equivalent to saying that A ⊆ (ASA] for every subset A of S or a ∈ (aSa] for every a ∈ S .
An ordered semigroup (S, ·,≤) is called intra-regular [9] if for every a ∈ S there exist x, y ∈ S such that
a ≤ xa2y . That is to say, A ⊆ (SA2S] for every subset A of S or a ∈ (Sa2S] for every a ∈ S .

A poe-semigroup S is regular if and only if a ≤ aea for every a ∈ S . A poe-semigroup S is intra-regular
if and only if a ≤ ea2e for every a ∈ S (its proof is easy).

Proposition 3.1 Let S be a groupoid, A a right ideal of S and B a left ideal of S . Then the intersection
A ∩B is nonempty.

Proof Let a ∈ A and b ∈ B (A,B ̸= ∅) . Since A is a right ideal of S , we have ab ∈ AS ⊆ A ; since B is a
left ideal of S , we have ab ∈ SB ⊆ B and so ab ∈ A ∩B . 2

For an ordered semigroup, using the properties (1) to (7), the following Theorems 3.2 to 3.5 can be
obtained.

Theorem 3.2 (see also [12]) An ordered semigroup S is regular if and only if for every right ideal A and every
left ideal B of S we have A ∩B = (AB] .

Proof =⇒ . Let A be a right ideal and B a left ideal of S . Since S is regular, we have

A ∩B ⊆
(
(A ∩B)S(A ∩B)

] (3)

⊆
(
(AS)B

] (3)

⊆ (AB]
(3)

⊆ (AS] ∩ (SB]

(3)

⊆ (A] ∩ (B]
(2)
= A ∩B

and so A ∩B = (AB] .
⇐= . Let A be a subset of S . By hypothesis, we have

A ⊆ R(A) ∩ L(A) ⊆
(
R(A)L(A)

]
=

(
(A ∪AS](A ∪ SA]

]
(5)
=

(
(A ∪AS)(A ∪ SA)

]
= (A2 ∪ASA ∪AS2A] = (A2 ∪ASA].

Then we have A2 ⊆ (A2∪ASA](A]
(4)

⊆ (A3∪ASA2] ⊆ (ASA] , then A
(3)

⊆
(
(ASA]∪ASA

]
=

(
(ASA]

] (1)
= (ASA]

and so S is regular. 2

Theorem 3.3 An ordered semigroup S is regular duo if and only if for every right ideal A and every left ideal
B of S we have A ∩B = (BA] .

Proof =⇒ . Let A be a right ideal and B a left ideal of S . Since S is a duo, A is a left ideal and B is a
right ideal of S as well. Since S is regular, by Theorem 3.2, we have B ∩A = (BA] .
⇐= . Let A be a right ideal of S . Since S is a left ideal of S , by hypothesis, we have A = A∩ S = (SA] , then
SA ⊆ (SA] ⊆ A , thus A is a left ideal of S and so S is right duo. Similarly S is left duo. Let now A be a
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right ideal and B a left ideal of S . Since S is a duo, A is a left ideal and B a right ideal of S . By hypothesis,
we have B ∩A = (AB] . By Theorem 3.2, S is regular. 2

Theorem 3.4 Let S be an ordered semigroup. If S is regular and right (or left) duo, then S is intra-regular.

Proof Let S be regular and right duo and A be a subset of S . Since S is regular, we have A ⊆ (ASA] . The

set (AS] is a right ideal of S (as (AS]S = (AS](S]
(4)

⊆ (AS2]
(3)

⊆ (AS] and
(
(AS]

] (1)
= (AS]). Since S is right

duo, (AS] is a left ideal of S as well, that is S(AS] ⊆ (AS] . Hence we obtain

A ⊆ (ASA]
(3)

⊆
(
(ASA]S(ASA]

]
(6)
=

(
(ASA)S(ASA)

]
=

(
(ASA)S(AS)A

]
(7)
=

(
(ASA)S(AS]A

] (3)

⊆
(
(ASA)(AS]A

]
(6)
=

(
(ASA)(AS)A

]
= (ASA2SA]

(3)

⊆ (SA2S],

then A ⊆ (SA2S] and so S is intra-regular. Let now S be regular and left duo and A be a subset of S . The
set (SA] is a left ideal and, since S is left duo, it is a right ideal of S as well, that is (SA]S ⊆ (SA] . Since S

is regular, we have

A ⊆ (ASA]
(3)

⊆
(
(ASA]S(ASA]

]
(6)
=

(
(ASA)S(ASA)

]
=

(
A(SA)S(ASA)

]
(7)
=

(
A(SA]S(ASA)

]
(3)
=

(
A(SA](ASA)

]
(6)
=

(
A(SA)(ASA)

]
= (ASA2SA]

(3)

⊆ (SA2S],

then A ⊆ (SA2S] and so S is intra-regular. 2

Theorem 3.5 An ordered semigroup S is intra-regular if and only if for every right ideal A and every left ideal
B of S, we have A ∩B ⊆ (BA] .

Proof =⇒ . Let A be a right ideal and B a left ideal of S . Since S is intra-regular, we have

A ∩B ⊆
(
S(A ∩B)2S

]
=

(
S(A ∩B)(A ∩B)S

] (3)

⊆
(
(SB)(AS)

] (3)

⊆ (BA]

and so A ∩B ⊆ (BA] .
⇐= . Let A ⊆ S . By hypothesis, we have

A ⊆ R(A) ∩ L(A) =
(
L(A)R(A)

]
=

(
(A ∪ SA](A ∪AS]

]
(5)
=

(
(A ∪ SA)(A ∪AS

]
= (A2 ∪ SA2 ∪A2S ∪ SA2S].

Then

A2 ⊆ (A](A2 ∪ SA2 ∪A2S ∪ SA2S]
(4)

⊆ (A3 ∪ASA2 ∪A3S ∪ASA2S]
(3)

⊆ (SA2 ∪ SA2S] ,
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A2S ⊆ (SA2 ∪ SA2S](S]
(4)

⊆ (SA2S ∪ SA2S2] = (SA2S] ,

A ⊆
(
(SA2 ∪ SA2S]

]
(1)
= (SA2 ∪ SA2S] .

Then

A2 ⊆ (SA2 ∪ SA2S](A]
(4)

⊆ (SA3 ∪ SA2SA] ⊆ (SA2S] ,
and thus

SA2 ⊆ (S](SA2S]
(4)

⊆ (S2A2S]
(3)

⊆ (SA2S] .
Hence we have

A ⊆ (SA2 ∪ SA2S]
(3)

⊆
(
(SA2S] ∪ SA2S

]
=

(
(SA2S]

]
(1)
= (SA2S] ,

thus A ⊆ (SA2S] and so S is intra-regular. 2

4. On ordered hypersemigroups

Denote by P∗(S) the set of all nonempty subsets of S . An hypergroupoid is a nonempty set S with an
“operation” ◦ : S × S → P∗(S) | (a, b) → a ◦ b on S (called hyperoperation as it assigns to each couple (a, b)

of elements of S a nonempty subset instead of an element of S ) and an operation

∗ : P∗(S)× P∗(S) → P∗(S) | (A,B) → A ∗B :=
∪

a∈A,b∈B

a ◦ b

on P∗(S) (induced by the hyperoperation ◦) [13]; we denote it by (S, ◦) . If A,B,C,D are subsets of S such
that A ̸= ∅ , C ̸= ∅ and A ⊆ B , C ⊆ D , then A ∗ C ⊆ B ∗D and C ∗A ⊆ D ∗B . It is easy to see that

x ◦ y = {x} ∗ {y} for every x, y ∈ S.

From the definition of ∗ , we have the following:
(1) if x ∈ A ∗B , then x ∈ a ◦ b for some a ∈ A , b ∈ B and
(2) if a ∈ A and b ∈ B , then a ◦ b ⊆ A ∗B ; that is a ◦ b ⊆ A ∗B for every a ∈ A , b ∈ B .
An hypergroupoid is called hypersemigroup if (a ◦ b) ∗ {c} = {a} ∗ (b ◦ c) for every a, b, c ∈ S [13]. An

hypergroupoid (S, ◦) is called an ordered hypergroupoid if there exists an order relation ≤ on S such that
a ≤ b implies a ◦ c ⪯ b ◦ c and c ◦ a ⪯ c ◦ b for every c ∈ S ; in the sense that for every c ∈ S and every
u ∈ a ◦ c there exists v ∈ b ◦ c such that u ≤ v and for every u ∈ c ◦ a there exists v ∈ c ◦ b such that u ≤ v .
A nonempty subset A of an ordered hypergroupoid S is called a right (resp. left) ideal of S if (1) A ∗ S ⊆ A

(resp. S ∗A ⊆ A) and (2) if a ∈ A and S ∋ b ≤ a , then b ∈ A . An hypergroupoid S is called right (resp. left)
duo if the right ideals of S are at the same time left (resp. right) ideals of S , that is ideals of S . It is called
duo if the right and the left ideals of S coincide. For a nonempty subset A of an hypersemigroup S , we denote

by R(A) (resp. L(A)) the right (resp. left) ideal of S generated by A and we have R(A) =
(
A∪ (A ∗S)

]
and

L(A) =
(
A ∪ (S ∗A)

]
[18].

The concept of regular (intra-regular) ordered semigroup can be naturally extended to an ordered
hypersemigroup as follows: An ordered hypersemigroup (S, ◦,≤) is called regular if for every a ∈ S there
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exists x ∈ S such that {a} ⪯ (a ◦ x) ∗ {a} ; in the sense that for every a ∈ S there exist x, t ∈ S such that
t ∈ (a ◦x) ∗ {a} and a ≤ t . An ordered hypersemigroup (S, ◦,≤) is called intra-regular if for every a ∈ S there
exist x, y ∈ S such that {a} ⪯ (x ◦ a) ∗ (a ◦ y) ; in the sense that for every a ∈ S there exist x, y, t ∈ S such
that t ∈ (x ◦ a) ∗ (a ◦ y) and a ≤ t (see [18]).

Properties (1)–(3) of ordered semigroup (of Section 3), for ordered hypersemigroups also hold (as the
operation ∗ does not play any role in them). Our aim is to prove the properties (4)–(7) for an ordered
hypersemigroup. To prove them, we need the following four lemmas:

Lemma 4.1 (see also [14]). For any nonempty subsets A,B,C of an hypersemigroup S , we have (A∗B)∗C =

A ∗ (B ∗ C) .

Proof A better proof than that one given in [14] is as follows: If x ∈ (A∗B)∗C , then x ∈ u◦v for some u ∈ A∗B ,
v ∈ C , u ∈ a ◦ b for some a ∈ A , b ∈ B , thus x ∈ u ◦ v = {u} ∗ {v} ⊆ (a ◦ b) ∗ {v} = {a} ∗ (b ◦ v) ⊆ A ∗ (B ∗C)

and so (A∗B)∗C ⊆ A∗(B ∗C) . If x ∈ A∗(B ∗C) , then x ∈ a◦u for some a ∈ A , u ∈ B ∗C , u ∈ b◦c for some
b ∈ B , c ∈ C , then x ∈ {a} ∗ {u} ⊆ {a} ∗ (b ◦ c) = (a ◦ b) ∗ {c} ⊆ (A ∗B) ∗C and so A ∗ (B ∗C) ⊆ (A ∗B) ∗C .

2

Therefore, the operation ∗ is associative and we can write expressions like A ∗ B ∗ C ∗ · · ∗F without
using parentheses.

Lemma 4.2 (see also [18]) If S is an ordered hypergroupoid, a ≤ b and c ≤ d , then a ◦ c ⪯ b ◦ d (i.e. for
every x ∈ a ◦ c there exists y ∈ b ◦ d such that x ≤ y ).

We write, for short, A ⪯ B if for every a ∈ A there exists b ∈ B such that a ≤ b .

Lemma 4.3 Let S be an ordered hypergroupoid and A,B,C nonempty subsets of S.
If A ⪯ B , then A ∗ C ⊆ (B ∗ C] and C ∗A ⊆ (C ∗B].

Proof Let A ⪯ B and x ∈ A ∗ C . Then x ∈ a ◦ c for some a ∈ A , c ∈ C and a ≤ b for some b ∈ B . Since
a ≤ b , we have a◦c ⪯ b◦c . Since x ∈ a◦c , there exists y ∈ b◦c such that x ≤ y . We have x ≤ y ∈ b◦c ⊆ B ∗C
and so x ∈ (B ∗ C] . The proof that A ⪯ B implies C ∗A ⊆ (C ∗B] is similar. 2

Lemma 4.4 (see [13, 14]) If S is an hypergroupoid and A,B,C nonempty subsets of S , then we have
(A ∪B) ∗ C = (A ∗ C) ∪ (B ∗ C) and A ∪ (B ∗ C) = (A ∪B) ∗ (A ∪ C) .

We are ready now to prove the analogous of properties (4)–(7) for an ordered hypersemigroup. We give
them in the following Propositions 4.5 to 4.8.

Proposition 4.5 [15, 18] Corresponds to property (4). For an ordered hypergroupoid S and nonempty subsets
A,B of S , we have

(A] ∗ (B] ⊆ (A ∗B].

Proposition 4.6 [16, 18] Corresponds to property (5). For an ordered hypergroupoid S and nonempty subsets
A,B of S , we have (

(A] ∗ (B]
]
= (A ∗B].
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Proposition 4.7 Corresponds to property (6). If S is an ordered hypersemigroup then, for any nonempty
subsets A,B,C of S , we have (

(A] ∗B ∗ (C]
]
=

(
A ∗ (B] ∗ C

]
= (A ∗B ∗ C].

Proof Since A ⊆ (A] and C ⊆ (C] , we have (A ∗ B ∗ C] ⊆
(
(A] ∗ B ∗ (C]

]
. Let now t ∈

(
(A] ∗ B ∗ (C]

]
.

Then t ≤ x for some x ∈ (A] ∗ B ∗ (C] , x ∈ y ◦ z for some y ∈ (A] ∗ B , z ∈ (C] , y ∈ w ◦ b for some w ∈ (A] ,
b ∈ B , w ≤ a for some a ∈ A , z ≤ c for some c ∈ C . Then we have

t ≤ x ∈ y ◦ z = {y} ∗ {z} ⊆ (w ◦ b) ∗ {z}.

Since w ≤ a , we have w ◦ b ⪯ a ◦ b and, by Lemma 4.3, we have

(w ◦ b) ∗ {z} ⊆
(
(a ◦ b) ∗ {z}

]
=

(
{a} ∗ (b ◦ z)

]
.

Since z ≤ c , we have b ◦ z ⪯ b ◦ c again, by Lemma 4.3, {a} ∗ (b ◦ z) ⊆
(
{a} ∗ (b ◦ c)

]
. Hence we obtain

t ∈
(
(w ◦ b) ∗ {z}

]
⊆

((
{a} ∗ (b ◦ z)

]]
=

(
{a} ∗ (b ◦ z)

]
⊆

((
{a} ∗ (b ◦ c]

]]
=

(
{a} ∗ (b ◦ c]

]
⊆ (A ∗B ∗ C]

and so
(
(A] ∗B ∗ (C]

]
⊆ (A ∗B ∗ C] .

For the proof of the second equality see [16]. 2

Proposition 4.8 Corresponds to property (7). If S is an ordered hypersemigroup then, for any nonempty
subsets A,B,C,D of S , we have

(A ∗B ∗ C ∗D] =
(
A ∗B ∗ (C] ∗D

]
=

(
A ∗ (B] ∗ C ∗D

]
.

Proof Since C ⊆ (C] , we have (A ∗ B ∗ C ∗D] =
(
A ∗ B ∗ (C] ∗D

]
. Let now t ∈

(
A ∗ B ∗ (C] ∗D

]
. Then

t ≤ x for some x ∈ A ∗ B ∗ (C] ∗D , x ∈ u ◦ v for some u ∈ A ∗ B , v ∈ (C] ∗D , u ∈ a ◦ b for some a ∈ A ,
b ∈ B , v ∈ h ◦ d for some h ∈ (C] , d ∈ D , h ≤ c for some c ∈ C . Then we have

t ≤ x ∈ u ◦ v = {u} ∗ {v} ⊆ (a ◦ b) ∗ (h ◦ d).

Since h ≤ c , we have h ◦ d ⪯ c ◦ d . By Lemma 4.3, we have

(a ◦ b) ∗ (h ◦ d) ⊆
(
(a ◦ b) ∗ (c ◦ d)

]
⊆ (A ∗B ∗ C ∗D].

Then
t ∈

(
(a ◦ b) ∗ (h ◦ d)

]
⊆

(
(A ∗B ∗ C ∗D]

]
= (A ∗B ∗ C ∗D]

1566



KEHAYOPULU/Turk J Math

and so
(
A ∗B ∗ (C] ∗D

]
⊆ (A ∗B ∗ C ∗D] .

We have
(
A ∗ (B] ∗C ∗D

]
= (A ∗B ∗C ∗D] . Indeed: Clearly, (A ∗B ∗C ∗D] ⊆

(
A ∗ (B] ∗C ∗D

]
. Let

now t ∈
(
A∗ (B]∗C ∗D

]
. Then t ≤ x for some x ∈ A∗ (B]∗C ∗D , x ∈ u◦ v for some u ∈ A∗ (B] , v ∈ C ∗D ,

u ∈ a ◦ w for some a ∈ A , w ∈ (B] , v ∈ c ◦ d for some c ∈ C , d ∈ D , w ≤ b for some b ∈ B . Thus we have

t ≤ x ∈ u ◦ v = {u} ∗ {v} ⊆ (a ◦ w) ∗ (c ◦ d).

Since w ≤ b , we have a ◦ w ⪯ a ◦ b . Then, by Lemma 4.3,

(a ◦ w) ∗ (c ◦ d) ⊆
(
(a ◦ b) ∗ (c ◦ d)

]
⊆ (A ∗B ∗ C ∗D].

We have t ≤ x ∈ (A ∗B ∗ C ∗D] and so t ∈
(
(A ∗B ∗ C ∗D]

]
= (A ∗B ∗ C ∗D] . 2

Using only the definitions given at the beginning of Section 4, exactly as in ordered semigroups, the
following hold: An ordered hypersemigroup S is regular if and only if A ⊆ (A ∗ S ∗ A] for every nonempty
subset A of S . An ordered hypersemigroup S is intra-regular if and only if A ⊆ (S ∗ A ∗ A ∗ S] for every
nonempty subset A of S .

Propositions 4.5 to 4.8 play the main role in the investigation as they are the only part in which the order
of the hypersemigroup plays a role. Using these propositions, the results of the previous section on ordered
semigroups hold for ordered hypersemigroups just replacing, in proofs, the multiplication “ ·” of the ordered
semigroup by the operation “∗” of the ordered hypersemigroup.

Before we go further, we need the following lemma.

Lemma 4.9 [14] If S is an hypergroupoid, A is a right ideal and B a left ideal of S, then the intersection
A ∩B is nonempty.

Proof For the sake of completeness, we will give its proof. Take a ∈ A , b ∈ B (A,B ̸= ∅) . Then
a ◦ b ⊆ A ∗ S ∩ S ∗B ⊆ A ∩B and so a ◦ b ⊆ A ∩B . Since a ◦ b ̸= ∅ , A ∩B ̸= ∅ . 2

The theorem that corresponds to Theorem 3.2 is the following. Propositions 4.5 and 4.6 (also properties
(1)–(3) and Lemma 4.9) are needed in its proof.

Theorem 4.10 (see also [18]) An ordered hypersemigroup S is regular if and only if for every right ideal A
and every left ideal B of S we have A ∩B = (A ∗B] .

The theorem that corresponds to Theorem 3.3 is the following.

Theorem 4.11 An ordered hypersemigroup S is regular duo if and only if for eery right ideal A and every left
ideal B of S we have A ∩B = (B ∗A] .

The theorem that corresponds to Theorem 3.4 is the following. We will give its proof to be able to
compare it with the proof of Theorem 3.4 and see that both are the same. Propositions 4.5, 4.7, 4.8 (also
properties (1),(3) and Lemma 4.1) have been used in it.
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Theorem 4.12 If S is a regular and right (or left) duo ordered hypersemigroup, then S is intra-regular.

Proof Let S be regular and right duo and A be a nonempty subset of S . Since S is regular, we have A ⊆
(A∗S∗A] . The set (A∗S] is a right ideal of S (as (A∗S]∗S = (A∗S]∗(S] ⊆ (A∗S2] ⊆ (A∗S] (by Proposition 4.5)
and

(
(A ∗ S]

]
= (A ∗ S]). Since S is right duo, (A ∗ S] is a left ideal of S as well, that is S ∗ (A ∗ S] ⊆ (A ∗ S] .

Hence we obtain

A ⊆ (A ∗ S ∗A] ⊆
(
(A ∗ S ∗A] ∗ S ∗ (A ∗ S ∗A]

]
=

(
(A ∗ S ∗A) ∗ S ∗ (A ∗ S ∗A)

]
(by Proposition 4.7)

=
(
(A ∗ S ∗A) ∗ S ∗ (A ∗ S) ∗A

]
(by Lemma 4.1)

=
(
(A ∗ S ∗A) ∗ S ∗ (A ∗ S] ∗A

]
(by Proposition 4.8)

⊆
(
(A ∗ S ∗A) ∗ (A ∗ S] ∗A

]
=

(
(A ∗ S ∗A) ∗ (A ∗ S) ∗A

]
(by Proposition 4.7)

= (A ∗ S ∗A2 ∗ S ∗A] ⊆ (S ∗A2 ∗ S],

then A ⊆ (S ∗ A2 ∗ S] and so S is intra-regular. Let now S is regular and left duo and A be a nonempty
subset of S . The set (S ∗ A] is a left ideal and, since S is left duo, it is a right ideal of S as well, that is
(S ∗A] ∗ S ⊆ (S ∗A] . Since S is regular, we have

A ⊆ (A ∗ S ∗A] ⊆
(
(A ∗ S ∗A] ∗ S ∗ (A ∗ S ∗A]

]
=

(
(A ∗ S ∗A) ∗ S ∗ (A ∗ S ∗A)

]
(by Proposition 4.7)

=
(
A ∗ (S ∗A) ∗ S ∗ (A ∗ S ∗A)

]
(by Lemma 4.1)

=
(
A ∗ (S ∗A] ∗ S ∗ (A ∗ S ∗A)

]
(by Proposition 4.8)

=
(
A ∗ (S ∗A] ∗ (A ∗ S ∗A)

]
=

(
A ∗ (S ∗A) ∗ (A ∗ S ∗A)

]
(by Proposition 4.7)

= (A ∗ S ∗A2 ∗ S ∗A] ⊆ (S ∗A2 ∗ S],

then A ⊆ (S ∗A2 ∗ S] and so S is intra-regular.
2

Using Propositions 4.5 and 4.6 (also properties (1),(3) and Lemma 4.9), we can prove the following
theorem that corresponds to Theorem 3.5.

Theorem 4.13 (see also [18]) An ordered hypersemigroup S is intra-regular if and only if for every right ideal
A and every left ideal B of S, we have A ∩B ⊆ (B ∗A] .

Exactly as in Theorem 4.10, in the ⇒ -part of the proof of Theorem 4.13, the set A ∩ B should be nonempty
(this is not the case for an ordered semigroup); and it is nonempty by Lemma 4.9.

We apply the above results to the following example.
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Example 4.14 Consider the le -semigroup S = {a, b, c, d, e} given by Table 1 and Figure 1. This is a regular
(as x ≤ xex ∀x), duo, and intra-regular (as x ≤ ex2e ∀x) le -semigroup. The right ideal elements of S

are the elements a, b, d and e and coincide with the left ideal elements of S . The results of Section 2 can
be applied. As an ordered semigroup, this is clearly regular and intra-regular; the right ideals of (S, ·,≤) are
the sets {a} , {a, b} , {a, b, c, d} and S and coincide with the left ideals of S , so it is a duo. The results
of Section 3 can be applied. From the ordered semigroup (S, ·,≤) , in the way indicated in [17], the ordered
hypersemigroup (S, ◦,≤) given by Table 2 and the same figure (Figure 1) can be obtained. This is a regular,
duo, and intra-regular ordered hypersemigroup. The results of Section 4 can be applied.
The ordered hypersemigroup (S, ◦,≤) is regular, as

a ∈ (a ◦ a) ∗ {a} = {a} ∗ {a} = a ◦ a = {a} and a ≤ a ,
b ∈ (b ◦ b) ∗ {b} = {a, b} ∗ {b} =

∪
x∈{a,b}

x ◦ b = (a ◦ b) ∪ (b ◦ b) = {a} ∪ {a, b} = {a, b} and b ≤ b ,

c ∈ (c ◦ c) ∗ {c} = {a, c} ∗ {c} =
∪

x∈{a,c}
x ◦ c = (a ◦ c) ∪ (c ◦ c) = {a} ∪ {a, c} = {a, c} and c ≤ c ,

d ∈ (d ◦ d) ∗ {d} = {a, b, c, d} ∗ {d} =
∪

x∈{a,b,c,d}
x ◦ d = (a ◦ d) ∪ (b ◦ d) ∪ (c ◦ d) ∪ (d ◦ d) = {a, b, c, d}

and d ≤ d ,
e ∈ (e ◦ e) ∗ {e} = S ∗ {e} = S and e ≤ e .

The ordered hypersemigroup (S, ◦,≤) is intra-regular as
a ∈ (a ◦ a) ∗ (a ◦ a) = {a} ∗ {a} = {a} and a ≤ a ,
b ∈ (b ◦ b) ∗ (b ◦ b) = {a, b} ∗ {a, b} =

∪
x∈{a,b},y∈{a,b}

x ◦ y = a ◦ a ∪ b ◦ a ∪ a ◦ b ∪ b ◦ b = {a, b} and b ≤ b ,

c ∈ (c ◦ c) ∗ (c ◦ c) = {a, c} ∗ {a, c} =
∪

x,y∈{a,c}
x ◦ y = a ◦ a ∪ c ◦ a ∪ a ◦ c ∪ c ◦ c = {a, c} and c ≤ c ,

d ∈ (d ◦ d) ∗ (d ◦ d) = {a, b, c, d} ∗ {a, b, c, d} =
∪

x,y∈{a,b,c,d}
x ◦ y = {a, b, c, d} and d ≤ d ,

e ∈ (e ◦ e) ∗ (e ◦ e) = S ∗ S = S and e ≤ e .

The ideals of (S, ◦,≤) coincide with the ideals of (S, ·,≤) [17]. The sets {a} , {a, b} , {a, b, c, d} and
S are the right at the same time the left ideals of (S, ◦,≤) and so (S, ◦,≤) is a duo. One can also check it
independently. Consider the set

P∗(S) =
{
{a}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, d}, {a, e}, {b, c}, {b, d}, {b, e}, {c, d},

{c, e}, {d, e}, {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d},

{b, c, e}, {b, d, e}, {c, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e},

{b, c, d, e}, S
}

and check each of its elements. The sets {a} , {a, b} , {a, b, c, d} and S are the only ideals of (S, ◦,≤) .
If we consider the le -semigroup (S, ·,≤) given by Table 3 and Figure 1, this is intra-regular (as x ≤ ex2e

for every x ∈ S ), not regular (c ≰ cec) and not duo. The right ideal elements of S are the elements a and e ,
and the left ideal elements of S are the elements a, b, d, e . As an ordered semigroup, this is clearly intra-regular
and not regular. The right ideals of (S, ·,≤) are the sets {a} and S , and the left ideal elements of (S, ·,≤) are
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the sets {a} , {a, b} , {a, b, c} , {a, b, c, d} , and S . From this ordered semigroup, in the way indicated in [17],
the ordered hypersemigroup (S, ◦,≤) given by Table 4 and Figure 1 can be obtained. This is an intra-regular
ordered hypersemigroup as

a ∈ (a ◦ a) ∗ (a ◦ a) = {a} ∗ {a} = a ◦ a = {a} and a ≤ a ,
b ∈ (b ◦ b) ∗ (b ◦ b) = {a, b} ∗ {a, b} = (a ◦ a) ∪ (b ◦ a) ∪ (a ◦ b) ∪ (b ◦ b) = {a, b} and b ≤ b ,
c ∈ (c ◦ c) ∗ (c ◦ e) = {a, b} ∗ {a, b, c, d, e} = {a, b, c, d, e} and c ≤ c ,
d ∈ (e ◦ d) ∗ (d ◦ e) = {a, b} ∗ {a, b, c, d, e} = {a, b, c, d, e} and d ≤ d ,
e ∈ (e ◦ e) ∗ (e ◦ e) = S ∗ S = S and e ≤ e .

The right ideals of (S, ◦,≤) are the sets {a} and S , and the left ideal of (S, ◦,≤) are the sets {a} , {a, b} ,
{a, b, c} , {a, b, c, d} and S (see [17]). One can also check it independently. Theorem 2.5, Corollary 2.6, Theorem
3.5, and Theorem 4.13 can be applied.

Table 1. The multiplication of the le -semigroup of Example 4.14.

· a b c d e
a a a a a a
b a b b b b
c a b c d d
d a b d d d
e a b d d e

a

b

c

d

e

Figure 1. The order of Example 4.14.

Table 2. The hyperoperation of the example 4.14.

◦ a b c d e
a {a} {a} {a} {a} {a}
b {a} {a, b} {a, b} {a, b} {a, b}
c {a} {a, b} {a, c} {a, b, c, d} {a, b, c, d}
d {a} {a, b} {a, b, c, d} {a, b, c, d} {a, b, c, d}
e {a} {a, b} {a, b, c, d} {a, b, c, d} {a, b, c, d, e}
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Table 3. The multiplication of Table 3 of the example 4.14.

· a b c d e
a a a a a a
b a b b b e
c a b b b e
d a b b b e
e a b b b e

Table 4. The hyperoperation of Table 4 of the example 4.14.

◦ a b c d e
a {a} {a} {a} {a} {a}
b {a} {a, b} {a, b} {a, b} {a, b, c, d, e}
c {a} {a, b} {a, b} {a, b} {a, b, c, d, e}
d {a} {a, b} {a, b} {a, b} {a, b, c, d, e}
e {a} {a, b} {a, b} {a, b} {a, b, c, d, e}

Note: The sets in the proofs of Sections 3 and 4 show the pointless character of the results that is in the same
spirit with the abstract formulation of general topology (the so-called topology without points) initiated by
Koutský, Nöbeling [19, 22] and, even earlier, by Chittenden, Terasaka, Nakamura, Monteiro and Ribeiro; and
provides a further indication that the results of Sections 3 and 4 are based on le -semigroups.
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