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Abstract: In this paper, the Neumann boundary value problem for the Beltrami operator is explicitly solved in a circular
ring domain, solvability conditions for this problem are also given in explicit forms. Moreover, the Neumann problem for
second-order operators with the Bitsadze/Laplace operator as the main part as combinations of the Cauchy-Riemann
and the Beltrami operators is investigated.
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1. Introduction
Explicit solutions to the boundary value problems for some model complex partial differential equations are
given in different domains [1, 4, 6, 7, 9, 20, 28]. As one of the classical boundary value problems in complex
analysis, in a domain D ⊂ C the Neumann problem consists of prescribing the normal derivative of a function
on the boundary of D . The Neumann problem, also known as a flux boundary condition, has been the subject
of many classic studies in the physics and applied sciences [10, 11, 16, 19, 21–23, 29].

The Beltrami equation, a notable generalization of the Cauchy-Riemann equation, in a domain D ⊂ C
takes the form with the complex notation w = u+ iv and z = x+ iy

wz = ρ(z)wz, (1.1)

where ρ : D → C is a measurable function satisfying |ρ(z)| ≤ ρ0 < 1 and

wz = ∂zw =
1

2
(wx + iwy) and wz = ∂zw =

1

2
(wx − iwy)

are formal derivatives of w in z and z , while wx and wy are partial derivatives of w in the variables x and
y , respectively.

In [17], the author obtains the general solution for the inhomogeneous Beltrami equation and gives
the solvability conditions and solutions of the Schwarz and Dirichlet boundary value problems for the Beltrami
operator in the unit disc. As a natural continuation of the latter, in [8], the Neumann boundary value problem is
considered for the Beltrami operator with constant coefficient in the unit disc and authors examine second order
operators with the Poisson/Bitsadze operator as the main part as combinations of the Cauchy–Riemann and
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the Beltrami operators. Moreover, for the Beltrami operator with constant coefficient, the Neumann boundary
value problem in the unit disk sector and the Dirichlet problem in a lens are discussed in [2] and [3], respectively.
The common method in these studies is to transform the Beltrami equation into a singular integral equation
and present the problem’s solution through means of the Neumann series.

This work is intended as an attempt to motivate basic boundary value problems for complex partial
differential equations in a circular ring domain R = {z ∈ C : 0 < r < |z| < 1} . For the studies in ring domain,
see [5, 12–15, 18, 25, 26]. In this paper, our main goal is to give the solvability conditions of the Neumann
boundary value problem for the Beltrami operator and for the Bitsadze/Laplace operator in R . We also obtain
the integral representations for the solutions.

The rest of the paper is organized as follows. In the Preliminaries, we review several basic important
representations and known results without proof. The important point to note in this section, we recall the
Neumann problem for the inhomogeneous Cauchy–Riemann equation in R from [24]. In Section 3, we aim to
solve the Neumann boundary value problems for the inhomogeneous Beltrami equation in the ring domain by
the Neumann series method mentioned above. Section 4 concerns the study of the Neumann problem for the
Bitsadze/Laplace operator by splitting it into two Neumann problems, for the inhomogeneous Cauchy–Riemann
equation and for the inhomogeneous Beltrami equation.

2. Preliminaries
For the convenience of the reader, some relevant essential theorems for complex boundary problems are indicated.

Theorem 2.1 (The complex form of Gauss Theorem) [7] Let D ⊂ C be a bounded domain with smooth
boundary ∂D , and the closure D = D∪∂D . Assume that w ∈ C1(D;C)∩C(D;C) . Then for z = x+iy, x, y ∈
R ∫

D

wz(z)dxdy =
1

2i

∫
∂D

w(z)dz,

∫
D

wz(z)dxdy = − 1

2i

∫
∂D

w(z)dz.

Theorem 2.2 (Cauchy integral formula) Let γ be a simply closed smooth curve and D be the inner domain,
bounded by γ . If w is an analytic function in D , continuous in D and z ∈ D , then

w(z) =
1

2πi

∫
γ

w(ζ)
dζ

ζ − z
. (2.1)

Theorem 2.3 (Cauchy-Pompeiu representation) [6] Under the assumptions of Theorem 2.1, we have for
z ∈ D that

w(z) =
1

2πi

∫
∂D

w(ζ)
dζ

ζ − z
− 1

π

∫
D

wζ(ζ)
dξdη

ζ − z

and

w(z) = − 1

2πi

∫
∂D

w(ζ)
dζ

ζ − z
− 1

π

∫
D

wζ(ζ)
dξdη

ζ − z

where ζ = ξ + iη .
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Definition 2.4 [27] For f ∈ L1(D;C) the integral operator

Tf(z) = − 1

π

∫
D

f(ζ)
dξdη

ζ − z
(2.2)

is called the Pompeiu operator and differentiable in distributional sense with respect to z̄ if f ∈ L1(D;C) ,
furthermore

∂zTf = f (2.3)

in D . If f ∈ Lp(D;C), p > 1, the Pompeiu operator Tf is differentiable in distributional sense with respect to
z and

∂zTf(z) =: Πf(z) = − 1

π

∫
D

f(ζ)
dξdη

(ζ − z)2
. (2.4)

It is worth pointing out that on the boundary of R , the normal derivative is given by the formula

∂νz
=

{
z∂z + z∂z, |z| = 1,
− z

r∂z −
z
r∂z, |z| = r.

The following theorem is proved in [24]:

Theorem 2.5 [24]The Neumann problem for the inhomogeneous Cauchy-Riemann equation in R ,

wz = f, λ|z|∂νz
w = γ on ∂R, w(z0) = c, λ =

{
1, |z| = 1,

−1, |z| = r,

for f ∈ Cα(R;C) , 0 < α < 1 , γ ∈ C(∂R;C) , c ∈ C , z0 ∈ R given is solvable by a function from W 1+α
z (R;C)

with continuous weak z -derivative on R if and only if for z ∈ R

1

2πi

∫
∂R

[
γ(ζ)− ζf(ζ)

] dζ

1− zζ
+

1

π

∫
R

f(ζ)
dξdη

(1− zζ)
2 = 0,

1

2πi

∫
∂R

[
γ(ζ)− ζf(ζ)

] dζ

r2 − zζ
+
r2

π

∫
R

f(ζ)
dξdη

(r2 − zζ)
2 = 0.

Moreover if γ and f satisfy the condition

1

2πi

∫
∂R

[
γ(ζ)− ζf(ζ)

] dζ
ζ

= 0

then the solution is uniquely given by
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w(z) =c− 1

2πi

∫
|ζ|=1

[
γ(ζ)− ζf(ζ)

]
log

(
1− zζ

1− z0ζ

)
dζ

ζ

+
1

2πi

∫
|ζ|=r

[
γ(ζ)− ζf(ζ)

]
log

(
r2 − zζ

r2 − z0ζ

)
dζ

ζ

− 1

π

∫
R

f(ζ)
z − z0

(ζ − z0)(ζ − z)
dξdη.

(2.5)

3. Neumann problems for the Beltrami operator in the ring domain
In this section, we deal with the Neumann problem for the inhomogeneous Beltrami equation in R

wz + qwz = f(z), z ∈ R, (3.1)

λ|z|∂νz
w = γ on ∂R, w(z0) = c, λ =

{
1, |z| = 1,

−1, |z| = r,
(3.2)

where f ∈ Lp(R;C), p > 2, γ ∈ C(∂R;C) , c ∈ C , z0 ∈ R, and q ∈ C, |q| < 1.

We can rewrite (3.1) and (3.2) in the form

wz = f(z)− qwz, z ∈ R, (3.3)

λ|ζ|∂νζ
w = γ on ∂R, w(z0) = c, λ =

{
1, |ζ| = 1,

−1, |ζ| = r.
(3.4)

Since
λ|ζ|∂νζ

w = ζwζ + ζwζ = γ, ζ ∈ ∂R,

it follows that

wζ =
γ(ζ)− ζf(ζ)

ζ − qζ
, ζ ∈ ∂R. (3.5)

According to Theorem 2.5, the above problem (3.3)-(3.4) is solvable if and only if for z ∈ R

1

2πi

∫
∂R

γ(ζ)
dζ

1− zζ
− 1

2πi

∫
∂R

ζ (f(ζ)− qwζ(ζ))
dζ

1− zζ

+
1

π

∫
R

(f(ζ)− qwζ(ζ))
dξdη

(1− zζ)
2 = 0,

(3.6)

and
1

2πi

∫
∂R

γ(ζ)
dζ

r2 − zζ
− 1

2πi

∫
∂R

ζ (f(ζ)− qwζ(ζ))
dζ

r2 − zζ

+
r2

π

∫
R

(f(ζ)− qwζ(ζ))
dξdη

(r2 − zζ)
2 = 0.

(3.7)
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Moreover if γ satisfies the condition

1

2πi

∫
∂R

γ(ζ)
dζ

ζ
=

1

2πi

∫
∂R

ζ (f(ζ)− qwζ(ζ))
dζ

ζ
, (3.8)

then its solution is given by the form

w(z) =c− 1

2πi

∫
∂R

γ(ζ) log

(
|ζ|2 − zζ

|ζ|2 − z0ζ

)
dζ

ζ

+
1

2πi

∫
∂R

ζ (f(ζ)− qwζ(ζ)) log

(
|ζ|2 − zζ

|ζ|2 − z0ζ

)
dζ

ζ

− 1

π

∫
R

(f(ζ)− qwζ(ζ))
z − z0

(ζ − z0)(ζ − z)
dξdη.

(3.9)

Hence, by (3.5), we have

1

2πi

∫
∂R

ζwζ(ζ) log

(
|ζ|2 − zζ

|ζ|2 − z0ζ

)
dζ

ζ
=

1

2πi

∫
∂R

|ζ|2 γ(ζ)− ζf(ζ)

ζ2 − q|ζ|2
log

(
|ζ|2 − zζ

|ζ|2 − z0ζ

)
dζ

ζ
.

Therefore, the solution (3.9) can be written in the form

w(z) =c− 1

2πi

∫
∂R

(
γ(ζ)− ζf(ζ)

)
ζ − qζ

log

(
|ζ|2 − zζ

|ζ|2 − z0ζ

)
dζ

− 1

π

∫
R

(f(ζ)− qwζ(ζ))
z − z0

(ζ − z0)(ζ − z)
dξdη

(3.10)

with some simplifications.
The derivative of (3.10) with respect to z implies

wz(z) = ψ(z) + Π[f − qwz](z), z ∈ R, (3.11)

where

ψ(z) =
1

2πi

∫
∂R

γ(ζ)− ζf(ζ)

ζ − qζ

dζ

ζ − z
, (3.12)

and

Π[k](z) =
1

π

∫
R

k(ζ)
dξdη

(ζ − z)2
. (3.13)

(3.13) is the singular integral operator called as Π operator previously defined by (2.4). Also, we remark
that Π operator is bounded on Lp(R;C), p > 2.

According to [27, Lemma 3.1], and under the conditions on q and p , it may be concluded that

|q|||Π||Lp(R;C) < 1. (3.14)
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Therefore I + qΠ is an invertible operator, and by applying Fredholm alternative to (3.11), its solution
can be given by the following Neumann series

f(z)− qwz(z) =

∞∑
m=0

(−1)m(qΠ)m [f − qψ] (z), z ∈ R. (3.15)

The condition (3.14) enables the convergence of the above series (3.15).
Inserting the representation (3.15) in (3.10), we have the solution of the problem (3.1) - (3.2) as

w(z) =c− 1

2πi

∫
∂R

(
γ(ζ)− ζf(ζ)

)
ζ − qζ

log

(
|ζ|2 − zζ

|ζ|2 − z0ζ

)
dζ

− 1

π

∫
R

∞∑
m=0

(−1)m(qΠ)m [f − qψ] (ζ)
z − z0

(ζ − z0)(ζ − z)
dξdη,

(3.16)

where ψ and Π are defined by (3.12) - (3.13).
Reconsidering solvability conditions (3.6) - (3.7), by (3.5), we have

1

2πi

∫
∂R

ζ (f(ζ)− qwζ(ζ))
dζ

1− zζ
=

1

2πi

∫
∂R

(
f(ζ)− qζγ(ζ)

) |ζ|2

ζ2 − q|ζ|2
dζ

1− zζ
(3.17)

and
1

2πi

∫
∂R

ζ (f(ζ)− qwζ(ζ))
dζ

r2 − zζ
=

1

2πi

∫
∂R

(
f(ζ)− qζγ(ζ)

) |ζ|2

ζ2 − q|ζ|2
dζ

r2 − zζ
. (3.18)

By applying the Gauss theorem, we obtain

1

π

∫
R

wζ(ζ)
dξdη

(1− zζ)
2 = − 1

2πi

∫
∂R

w(ζ)
dζ

(1− zζ)
2 − 2z

π

∫
R

w(ζ)
dξdη

(1− zζ)
3 (3.19)

and
1

π

∫
R

wζ(ζ)
dξdη

(r2 − zζ)
2 = − 1

2πi

∫
∂R

w(ζ)
dζ

(r2 − zζ)
2 − 2z

π

∫
R

w(ζ)
dξdη

(r2 − zζ)
3 . (3.20)

Substituting (3.17)-(3.18) and with (3.19)-(3.20) into (3.6)-(3.7), respectively, it gives solvability condi-
tions of the problem

1

2πi

∫
∂R

(
ζγ(ζ)− ζf(ζ)

)
ζ − qζ

dζ

1− zζ
+

1

π

∫
R

f(ζ)
dξdη

(1− zζ)
2

+
q

2πi

∫
∂R

w(ζ)
dζ

(1− zζ)
2 +

2zq

π

∫
R

w(ζ)
dξdη

(1− zζ)
3 = 0,

(3.21)
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and

1

2πi

∫
∂R

(
ζγ(ζ)− ζf(ζ)

)
ζ − qζ

dζ

r2 − zζ
+
r2

π

∫
R

f(ζ)
dξdη

(r2 − zζ)
2

+
q

2πi

∫
∂R

w(ζ)
dζ

(r2 − zζ)
2 +

2zq

π

∫
R

w(ζ)
dξdη

(r2 − zζ)
3 = 0,

(3.22)

where w(z) is defined by (3.16).
Similarly, the Condition (3.8) can be deduced as

1

2πi

∫
∂R

γ(ζ)

ζ − qζ
dζ =

1

2πi

∫
∂R

ζf(ζ)

ζ − qζ
dζ, (3.23)

since by aid of (3.5)
1

2πi

∫
∂R

ζwζ(ζ)
dζ

ζ
=

1

2πi

∫
∂R

ζ
(
γ(ζ)− ζf(ζ)

)
ζ − qζ

dζ

ζ
. (3.24)

Thus, we prove the following result:

Theorem 3.1 The Neumann problem (3.1)-(3.2) is solvable if and only if the conditions (3.21) and (3.22) are
satisfied. Moreover if γ and f satisfy the condition (3.23), then the solution is uniquely expressed by (3.16).

The following result can be obtained if the function f is taken as zero in the above theorem:

Corollary 3.2 The Neumann problem for the homogeneous Beltrami equation in the ring domain R ,

wz + qwz = 0, z ∈ R, (3.25)

λ|z|∂νz
w = γ on ∂R, w(z0) = c, λ =

{
1, |z| = 1,

−1, |z| = r,
(3.26)

where γ ∈ C(∂R;C) , c ∈ C , z0 ∈ R, and q ∈ C, |q| < 1 is solvable if and only if the conditions

1

2πi

∫
∂R

γ(ζ)
ζ

ζ − qζ

dζ

1− zζ

+
q

2πi

∫
∂R

w(ζ)
dζ

(1− zζ)
2 +

2zq

π

∫
R

w(ζ)
dξdη

(1− zζ)
3 = 0,

(3.27)

and

1

2πi

∫
∂R

γ(ζ)
ζ

ζ − qζ

dζ

r2 − zζ

+
q

2πi

∫
∂R

w(ζ)
dζ

(r2 − zζ)
2 +

2zq

π

∫
R

w(ζ)
dξdη

(r2 − zζ)
3 = 0,

(3.28)
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are satisfied.
Moreover if γ satisfies the condition

1

2πi

∫
∂R

γ(ζ)
dζ

ζ − qζ
= 0, (3.29)

then the solution is uniquely expressed by

w(z) =c− 1

2πi

∫
∂R

γ(ζ)

ζ − qζ
log

(
|ζ|2 − zζ

|ζ|2 − z0ζ

)
dζ

+
q

π

∫
R

∞∑
m=0

(−1)m(qΠ)m [φ] (ζ)
z − z0

(ζ − z0)(ζ − z)
dξdη,

(3.30)

where φ and Π are defined by

φ(z) =
1

2πi

∫
∂R

γ(ζ)

ζ − qζ

dζ

ζ − z
, (3.31)

and

Π[wz](z) =
1

π

∫
R

wζ(ζ)
dξdη

(ζ − z)2
. (3.32)

4. Neumann problem for the Bitsadze/Laplace operator in the ring domain

In this section, we discuss a Neumann problem for second order operators of the following form

wz z + qwzz = f (4.1)

for f ∈ Lp(R;C), p > 2, and q ∈ C, |q| < 1 .
Indeed, Operator (4.1) is nothing but a combining of operators

wz and wz + cwz.

We are thus led to the following Neumann problem

wz z + qwzz = f(z), z ∈ R,

λ|z|∂νz
w = γ0 on ∂R, λ|z|∂νz

wz = γ1 on ∂R, λ =

{
1, |z| = 1,

−1, |z| = r,

w(z0) = c0, wz(z0) = c1, z0 ∈ R.

(4.2)

Problem (4.2) is resolved into

wz = g, z ∈ R, λ|z|∂νz
w = γ0 on ∂R,w(z0) = c0, (4.3)

gz + qgz = f(z), z ∈ R, λ|z|∂νz
g = γ1 on ∂R, g(z0) = c1 (4.4)

1580



GENÇTÜRK/Turk J Math

with λ defined as above.
According to Theorem 3.1, solution of the Neumann Problem (4.4) can be given by

g(z) =c− 1

2πi

∫
∂R

γ1(ζ)

ζ − qζ
log

(
|ζ|2 − zζ

|ζ|2 − z0ζ

)
dζ

+
q

π

∫
R

∞∑
m=0

(−1)m(qΠ)m [ψ1] (ζ)
z − z0

(ζ − z0)(ζ − z)
dξdη,

(4.5)

where ψ1 and Π are defined by

ψ1(z) =
1

2πi

∫
∂R

γ1(ζ)− ζf(ζ)

ζ − qζ

dζ

ζ − z
, (4.6)

and

Π[k](z) =
1

π

∫
R

k(ζ)
dξdη

(ζ − z)2
(4.7)

with condition
1

2πi

∫
∂R

γ1(ζ)

ζ − qζ
dζ =

1

2πi

∫
∂R

ζf(ζ)

ζ − qζ
dζ (4.8)

if and only if the following conditions are satisfied:

1

2πi

∫
∂R

(
ζγ1(ζ)− ζf(ζ)

)
ζ − qζ

dζ

1− zζ
+

1

π

∫
R

f(ζ)
dξdη

(1− zζ)
2

+
q

2πi

∫
∂R

g(ζ)
dζ

(1− zζ)
2 +

2zq

π

∫
R

g(ζ)
dξdη

(1− zζ)
3 = 0,

(4.9)

and

1

2πi

∫
∂R

(
ζγ1(ζ)− ζf(ζ)

)
ζ − qζ

dζ

r2 − zζ
+
r2

π

∫
R

f(ζ)
dξdη

(r2 − zζ)
2

+
q

2πi

∫
∂R

g(ζ)
dζ

(r2 − zζ)
2 +

2zq

π

∫
R

g(ζ)
dξdη

(r2 − zζ)
3 = 0.

(4.10)

By Theorem 2.5, the Neumann problem (4.3) is uniquely solvable if and only if

1

2πi

∫
∂R

[
γ0(ζ)− ζg(ζ)

] dζ

1− zζ
+

1

π

∫
R

g(ζ)
dξdη

(1− zζ)
2 = 0, (4.11)

1

2πi

∫
∂R

[
γ0(ζ)− ζg(ζ)

] dζ

r2 − zζ
+
r2

π

∫
R

g(ζ)
dξdη

(r2 − zζ)
2 = 0. (4.12)
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Moreover if γ0 and g satisfy the condition

1

2πi

∫
∂R

[
γ0(ζ)− ζg(ζ)

] dζ
ζ

= 0 (4.13)

then the solution is uniquely expressed by

w(z) =c0 −
1

2πi

∫
|ζ|=1

[
γ0(ζ)− ζg(ζ)

]
log

(
1− zζ

1− z0ζ

)
dζ

ζ

+
1

2πi

∫
|ζ|=r

[
γ0(ζ)− ζg(ζ)

]
log

(
r2 − zζ

r2 − z0ζ

)
dζ

ζ

− 1

π

∫
R

g(ζ)
z − z0

(ζ − z0)(ζ − z)
dξdη,

(4.14)

where g(z) is defined by (4.5).

Theorem 4.1 The Neumann problem (4.2) is uniquely solvable if and only if the functions f, γ0, γ1 satisfy
conditions (4.9)-(4.10) and (4.11)-(4.12). Moreover, (4.8) and (4.13) are satisfied, then the solution is uniquely
given by (4.14).
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