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Abstract: The main goal of this work is to study an initial boundary value problem for a Kirchhoff-type equation with
nonlinear boundary delay and source terms. This paper is devoted to prove the global existence, decay, and the blow up
of solutions. To the best of our knowledge, there are not results on the Kirchhoff type-equation with nonlinear boundary
delay and source terms.
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1. Introduction
In this paper, we study the following initial boundary value problem for a Kirchhoff-type equation with nonlinear
boundary delay and source terms

utt −M
(
∥∇u∥22

)
∆u+ ut = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0, t > 0,

M
(
∥∇u∥22

) ∂u
∂ν

+ µ1|ut|m−2ut + µ2|ut(t− τ)|m−2ut(t− τ) = |u|p−2u, x ∈ Γ1, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t− τ) = f0(x, t− τ), x ∈ Γ1, t > 0,

(1.1)

where Ω ⊂ Rn (n ≥ 1) , ∂Ω = Γ0 ∪Γ1 , mes(Γ0) > 0, Γ0 ∩Γ1 = ∅ , ∂u
∂ν denotes the unit outer normal derivative,

M(s) is a positive C1 -function satisfying M(s) = a + bsγ , γ > 0, a > 0, b ≥ 0 , s ≥ 0 , p, m > 2, µ1 are
positive constants, µ2 is a real number, τ > 0 represents the time delay, and u0, u1, f0 are given functions
belonging to suitable spaces.

The Kirchhoff-type equation was introduced by Kirchhoff [14] in order to study nonlinear vibrations of an
elastic string. Kirchhoff was the first one to study the oscillations of stretched strings and plates. The existence,
decay, and blow-up of solutions in this case have been discussed by many authors. For example, the following
Kirchhoff-type equation

utt −M
(
∥∇u∥22

)
∆u+ g(ut) = f(u). (1.2)
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Eq. (1.2) with M ≡ 1 is reduced to a nonlinear wave equation, which has been extensively studied, see for
instance [8, 10, 15, 16] and the references therein.

When M ̸= 1 , Matsuyama and Ikehata [17] studied (1.2) for g(ut) = δ|ut|put and f(u) = ξ|u|pu . They
proved existence of the global solutions by using Faedo-Galerkin’s method and the decay of energy based on the
method of Nakao [19]. Ono [23] studied (1.2) with M(s) = bs , g(ut) = −∆u , and f(u) = ξ|u|pu . They showed
that the solutions blow up in finite time with negative initial energy. Later, Wu and Tsai [27] studied (1.2) with
different damping terms

(
ut, ∆ut, and |ut|m−2ut

)
, they obtained unique local solution and finite time blow-up

of solutions, we also refer to other studies [3, 24, 30] and the references therein.
In recent years, there are so many results concerning the wave equation with nonlinear source and

boundary damping terms. Vitillaro [26] considered the initial boundary value problem for the following:
utt −∆u = 0, inΩ× (0,∞),

u(x, t) = 0, onΓ0 × (0,∞),

uν = −|ut|m−2ut + |u|p−2u, onΓ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(1.3)

He proved local existence of the solutions, global existence when p ≤ m or the initial data was chosen suitably.
Zhang and Hu [31] proved the asymptotic behavior of the solution for problem (1.3) when the initial data are
inside a stable set, and the nonexistence of the solution when p > m and the initial data is inside an unstable
set. For the wave equation with nonlinear source and boundary damping terms, we also refer to other studies
[1, 6, 7] and the references therein.

The time delay occurs in many physical, chemical, biological, thermal, and economical phenomena because
this phenomena depend not only on the present state but on the past history of system in a more complicated
way. Nicaise and Pignotti [20] studied the following wave equation with a linear boundary term:

utt −∆u+ µ1ut + µ2ut(t− τ) = 0, in Ω× (0,∞),

u(x, t) = 0, on Γ0 × (0,∞),

∂u

∂ν
= −µ1ut(x, t)− µ2ut(x, t− τ), on Γ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

u(x, t− τ) = f0(x, t− τ), in Γ1 × (0,∞),

(1.4)

and proved that the energy is exponentially stable, under the condition µ2 < µ1 . Then, they extended the
result to the time-dependent delay case in the work of Nicaise and Pignotti [21, 22]. Kafini and Messaoudi [12]
studied the following nonlinear damping wave equation with delay

utt − div
(
|∇u|m−2∇u

)
+ µ1ut + µ1ut(t− τ) = b|u|p−2u. (1.5)

The authors established the blow-up result in a nonlinear wave equation with delay and negative initial energy
and p ≥ m . For the related equations with time delay, we also refer to other studies [4, 5, 11, 13, 25, 28, 29]
and the references therein.

Motivated by previous studies, the main contributions of this paper are as follows: There are not results
on the Kirchhoff type-equation with nonlinear boundary delay term. In this paper, we will address the global
existence, general decay, and blow-up result for the problem (1.1).
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The outline of this paper is as follows: In Section 2, we give some preliminary results. In Section 3, we
obtain global existence of the solution of (1.1). Sections 4 and 5 are dedicated to the general decay and blow-up
of solutions, respectively.

2. Preliminaries
In this section we give some notation for function spaces and some preliminary lemmas. We denote by ∥u∥p
and ∥u∥p,Γ1

the usual Lp(Ω) norm and Lp(Γ1) norm, respectively. For Sobolev space H1
0 (Ω) norm, we use the

notation
∥u∥H1

0
= ∥∇u∥2.

To state and prove our results, we need the following assumptions:

(A1) p ≥ 2γ + 2, if n = 1, 2, 2γ + 2 ≤ p ≤ n+ 2

n− 2
, if n ≥ 3.

(A2) |µ2| < µ1.

Let
H1

Γ0
(Ω) =

{
u ∈ H1(Ω)|u|Γ0

= 0
}
.

According to (A1) , we recall the trace Sobolev embedding inequality H1
Γ0
(Ω) ↪→ Lp(Ω) . Let cp and c∗ be the

Poincaré’s type constants defined as the smallest positive constants such that

∥u∥p ≤ cp∥∇u∥2, ∀u ∈ H1(Ω), (2.1)

and
∥u∥q,Γ1

≤ c∗∥∇u∥2, ∀u ∈ H1
Γ0
(Ω). (2.2)

To deal with the time delay term, motivated by Nicaise and Pignotti [20], we introduce a new variable

z(x, ρ, t) = ut(x, t− τρ), x ∈ Γ1, ρ ∈ (0, 1), t > 0, (2.3)

which gives us
τzt(x, ρ, t) + zρ(x, ρ, t) = 0, in Γ1 × (0, 1)× (0,∞). (2.4)

Then, problem (1.1) is equivalent to

utt −M
(
∥∇u∥22

)
∆u+ ut = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0, t > 0,

M
(
∥∇u∥22

) ∂u
∂ν

+ µ1|ut|m−2ut + µ2|z(1, t)|m−2z(1, t) = |u|p−2u, x ∈ Γ1, t > 0,

τzt(ρ, t) + zρ(ρ, t) = 0, x ∈ Γ1, ρ ∈ (0, 1), t > 0,

z(ρ, 0) = f0(−τρ), x ∈ Γ1, ρ ∈ (0, 1),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(2.5)

Let ξ be a positive constant satisfying

τ(m− 1)|µ2| ≤ ξ ≤ τ(mµ1 − |µ2|). (2.6)

We first state a local existence theorem that can be established by Faedo-Galerkin Method, see for instance
[2, 9].
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Theorem 2.1 (Local existence). Assume that (A1)−(A2) hold. Then, for any (u0, u1, f0) ∈ H1
Γ0
(Ω)×L2(Ω)∩

Lm(Γ1)× L2(Γ1 × (0, 1)) be given. Then, there exists a unique local solution u of problem (1.1) such that

u ∈ L∞ (
0, T ;H1

Γ0
(Ω)

)
, ut ∈ L∞ (

[0, T ];L2(Ω)
)
∩ Lm([0, T ]× Γ1),

for some T > 0 .

Now, we define the energy associated with problem (1.1) by

E(t) =
1

2
∥ut∥22 +

a

2
∥∇u∥22 +

b

2γ + 2
∥∇u∥2γ+2

2 +
ξ

m

∫ 1

0

∥z(ρ, t)∥mm,Γ1
dρ− 1

p
∥u∥pp,Γ1

. (2.7)

Lemma 2.2 Let u be a solution of problem (1.1). Then,

E′(t) ≤ −∥ut∥22 −m0

(
∥ut∥mm,Γ1

+ ∥z(1, t)∥mm,Γ1

)
≤ 0. (2.8)

Proof Multiplying the first equation in (2.5) by ut and integrating over Ω , we obtain

d

dt

[1
2
∥ut∥22 +

a

2
∥∇u∥22 +

b

2γ + 2
∥∇u∥2γ+2

2 − 1

p
∥u∥pp,Γ1

]
= −∥ut∥22 − µ1∥ut∥mm,Γ1

− µ2

∫
Γ1

|z(1, t)|m−2z(1, t)utdx.

(2.9)

Multiplying the second equation in (2.5) by ξzm−1 and integrating over Γ1 × (0, 1) , we obtain

ξ

m

d

dt

∫
Γ1

∫ 1

0

|z(ρ, t)|mdρdx = − ξ

mτ

∫
Γ1

∫ 1

0

∂

∂ρ
|z(ρ, t)|mdρdx

=
ξ

mτ

(
∥ut∥mm,Γ1

− ∥z(1, t)∥mm,Γ1

)
.

(2.10)

Using Young’s inequality, we have

−µ2

∫
Γ1

|z(1, t)|m−2z(1, t)utdx ≤ (m− 1)|µ2|
m

∥z(1, t)∥mm,Γ1
+

|µ2|
m

∥ut∥mm,Γ1
. (2.11)

Combining (2.9),(2.10), and (2.11), we obtain

E′(t) ≤ −∥ut∥22 −m0

(
∥ut∥mm,Γ1

+ ∥z(1, t)∥mm,Γ1

)
, (2.12)

where m0 = min

{
µ1 −

ξ

mτ
− |µ2|

m
,

ξ

mτ
− (m− 1)|µ2|

m

}
, which is positive by (2.6) 2

Similar as in [18], we can prove the following lemma.

Lemma 2.3 There exists a positive constant C∗ > 1 depending on Γ1 only such that

∥u∥sp,Γ1
≤ C∗

(
∥∇u∥22 + ∥u∥pp,Γ1

)
,

for any u ∈ H1
Γ1
(Ω) , 2 ≤ s ≤ p .
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3. Global existence
In this section, we will prove that the solutions established in Theorem 2.1 are global in time. For this purpose,
we define the functionals

I(t) = I(u(t)) = a∥∇u∥22 + b∥∇u∥2γ+2
2 − ∥u∥pp,Γ1

, (3.1)

and

J(t) = J(u(t)) =
a

2
∥∇u∥22 +

b

2γ + 2
∥∇u∥2γ+2

2 +
ξ

m

∫ 1

0

∥z(ρ, t)∥mm,Γ1
dρ− 1

p
∥u∥pp,Γ1

. (3.2)

Then, it is obvious that

E(t) =
1

2
∥ut∥22 + J(t). (3.3)

In order to show our result, we first establish the following lemma.

Lemma 3.1 Assume that (A1)−(A2) hold, and for any (u0, u1, f0) ∈ H1
Γ0
(Ω)×L2(Ω)∩Lm(Γ1)×L2(Γ1×(0, 1)) ,

such that

I(0) > 0 and α =
cp∗
a

[
2p

a(p− 2)
E(0)

] p−2
2

< 1, (3.4)

then,
I(t) > 0, ∀t > 0. (3.5)

Proof Since I(0) > 0 , then by continuity of u , there exist a time T∗ < T such that

I(t) ≥ 0, ∀t ∈ [0, T∗]. (3.6)

Using (3.1), (3.2), (3.3), and (2.8), we see that

J(t) =
1

p
I(t) +

a(p− 2)

2p
∥∇u∥22 +

b(p− 2γ − 2)

p(2γ + 2)
∥∇u∥2γ+2

2 +
ξ

m

∫ 1

0

∥z(ρ, t)∥mm,Γ1
dρ

≥ a(p− 2)

2p
∥∇u∥22 +

b(p− 2γ − 2)

p(2γ + 2)
∥∇u∥2γ+2

2 ,

(3.7)

and

∥∇u∥22 ≤ 2p

a(p− 2)
J(t) ≤ 2p

a(p− 2)
E(t) ≤ 2p

a(p− 2)
E(0). (3.8)

Exploiting (2.2), (3.4), and (3.7), we get 2

∥u∥pp,Γ1
≤ cp∗∥∇u∥p2 ≤ cp∗

a

[
2p

a(p− 2)
E(0)

] p−2
2

a∥∇u∥22 = αa∥∇u∥22 < a∥∇u∥22, ∀t ∈ [0, T∗]. (3.9)

Therefore, we have
I(t) > 0, ∀t ∈ [0, T∗]. (3.10)

By repeating the procedure, T∗ is extended to T . The proof is completed.

Theorem 3.2 Assume that the conditions of Lemma 3.1 hold, then the solution of problem (1.1) is global and
bounded.
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Proof It suffices to show that
∥ut∥22 + ∥∇u∥22,

is bounded independently of t . By using (2.8), (3.3), and (3.7), we have

E(0) ≥ E(t) =
1

2
∥ut∥22 + J(t) ≥ 1

2
∥ut∥22 +

a(p− 2)

2p
∥∇u∥22, (3.11)

which means,
∥ut∥22 + ∥∇u∥22 ≤ CE(0), (3.12)

where C is a positive constant. 2

4. General decay

In this section, we state and prove the decay result of solution to problem (1.1). For this goal, we set

F (t) := E(t) + ε

∫
Ω

uutdx+
ε

2
∥u∥22, (4.1)

where ε is a positive constant to be specified later.

Lemma 4.1 Let u be a solution of problem (1.1). Then, there exist two positive constants α1 and α2 depending
on ε such that

α1E(t) ≤ F (t) ≤ α2E(t). (4.2)

Theorem 4.2 Let (u0, u1, f0) ∈ H1
Γ0
(Ω)× L2(Ω) ∩ Lm(Γ1)× L2(Γ1 × (0, 1)) . Assume that (A1)− (A2) hold.

Then, there exist two positive constant K and k such that

E(t) ≤ Ke−kt, t ≥ 0.

Proof Taking a derivative of (4.1) with respect to t , using (2.5) and (2.8), we obtain

F ′(t) = E′(t) + ε∥ut∥22 + ε

∫
Ω

uuttdx+ ε

∫
Ω

uutdx

≤ −m0∥ut∥mm,Γ1
−m0∥z(1, t)∥mm,Γ1

− (1− ε)∥ut∥22 − aε∥∇u∥22 − bε∥∇u∥2γ+2
2

+ε∥u∥pp,Γ1
− εµ1

∫
Γ1

|ut|m−2utudΓ− εµ2

∫
Γ1

|z(1, t)|m−2z(1, t)udΓ.

(4.3)

By using Young’s inequality for η > 0 , we get

µ1

∫
Γ1

|ut|m−2utudΓ ≤ µm
1 η∥u∥mm,Γ1

+ c(η)∥ut∥mm,Γ1
≤ µm

1 ηcm∗ ∥∇u∥m2 + c(η)∥ut∥mm,Γ1

≤ ηc1∥∇u∥22 + c(η)∥ut∥mm,Γ1
,

(4.4)

and

µ2

∫
Ω

|z(1, t)|m−2z(1, t)udx ≤ ηc2∥∇u∥22 + c(η)∥z(1, t)∥mm,Γ1
, (4.5)
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where c1 and c2 are positive constants which depend only on m and E(0) . Combining (4.4)-(4.5) with (4.3),
we obtain

F ′(t) ≤ −(m0 − εc(η))∥ut∥mm,Γ1
− (m0 − εc(η))∥z(1, t)∥mm,Γ1

− (1− ε)∥ut∥22
−ε(a− η(c1 + c2))∥∇u∥22 − εb∥∇u∥2γ+2

2 + ε∥u∥pp,Γ1
.

(4.6)

First, we choose η so small satisfying
a− η(c1 + c2) > 0.

For any fixed η , we choose ε so small that (4.2) remains valid and

m0 − εc(η) > 0, 1− ε > 0.

Consequently, inequality (4.6) becomes

F ′(t) ≤ −c3E(t), ∀t > 0. (4.7)

Using (4.2), we obtain

F ′(t) ≤ −c3E(t) ≤ c3
α2

F (t), ∀t > 0. (4.8)

A simple integration of (4.8), leads to
F (t) ≤ c4e

−kt, ∀t > 0. (4.9)

Again (4.2), gives
E(t) ≤ Ke−kt, ∀t > 0. (4.10)

2

5. Blow-up

In this section, we state and prove the finite time blow-up of solutions to problem (1.1) with E(0) < 0 .

Theorem 5.1 Let (A1)− (A2) and E(0) < 0 holds. Then, the solution of problem (1.1) blows up in finite time
T ∗ and

T ∗ ≤ 1− σ

ωσΨ
σ

1−σ (0)
.

Proof Set
H(t) = −E(t), (5.1)

then (2.8) gives
H ′(t) = −E′(t) ≥ m0

(
∥ut∥mm,Γ1

+ ∥z(1, t)∥mm,Γ1

)
≥ 0, (5.2)

and H(t) is an increasing function. From (2.7) and (5.1), we see that

0 < H(0) ≤ H(t) ≤ 1

p
∥u∥pp,Γ1

. (5.3)

Next, we define

Ψ(t) = H(t)1−σ + ε

∫
Ω

utudx+
ε

2
∥u∥22, (5.4)
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where ε is a positive constants to be specified later and

0 < σ ≤ p−m

p(m− 1)
. (5.5)

Taking a derivative of Ψ(t) and using (2.5), we have

Ψ′(t) = (1− σ)H ′(t)H(t)−σ + ε∥ut∥22 + ε

∫
Ω

uuttdx+ ε

∫
Ω

uutdx

= (1− σ)H ′(t)H(t)−σ + ε∥ut∥22 − εa∥∇u∥22 − εb∥∇u∥2γ+2
2 + ε∥u∥pp,Γ1

−εµ1

∫
Γ1

|ut|m−2utudΓ− εµ2

∫
Γ1

|z(1, t)|m−2z(1, t)udΓ.

(5.6)

Applying Young’s inequality for η > 0 , we have

µ1

∫
Γ1

|ut|m−2utudΓ ≤ µm
1 ηm

m
∥u∥mm,Γ1

+
m− 1

m
η−

m
m−1 ∥ut∥mm,Γ1

≤ µm
1 ηm

m
∥u∥mm,Γ1

+
m− 1

mm0
η−

m
m−1H ′(t).

(5.7)

Similarly,

µ2

∫
Ω

|z(1, t)|m−2z(1, t)udΓ ≤ |µ2|mηm

m
∥u∥mm,Γ1

+
m− 1

mm0
η−

m
m−1H ′(t). (5.8)

A substitution of (5.7)-(5.8) into (5.6), we have

Ψ′(t) ≥
{
(1− σ)H(t)−σ − ε

m− 1

mm0
η−

m
m−1

}
H ′(t) + ε∥ut∥22 − εa∥∇u∥22 − εb∥∇u∥2γ+2

2

+ε∥u∥pp,Γ1
− (µm

1 + |µ2|m)ηm

m
∥u∥mm,Γ1

.

(5.9)

Using (2.7) and (5.1), for a constant µ > 0 , we see that

Ψ′(t) ≥
{
(1− σ)H(t)−σ − ε

m− 1

mm0
η−

m
m−1

}
H ′(t) + ε

(
1 +

µ

2

)
∥ut∥22 + εa

(µ
2
− 1

)
∥∇u∥22

+εb

(
µ

2γ + 2
− 1

)
∥∇u∥2γ+2

2 + ε

(
1− µ

p

)
∥u∥pp,Γ1

− (µm
1 + |µ2|m)ηm

m
∥u∥mm,Γ1

+
µξ

m

∫ 1

0

∥z(ρ, t)∥mm,Γ1
dρ+ µεH(t).

(5.10)

Therefore, by taking η = (kH(t)−σ)
−m−1

m where k > 0 to be specified later, we see that

Ψ′(t) ≥
{
(1− σ)− εk

(m− 1)

mm0

}
H(t)−σH ′(t) + ε

(
1 +

µ

2

)
∥ut∥22 + εa

(µ
2
− 1

)
∥∇u∥22

+εb

(
µ

2γ + 2
− 1

)
∥∇u∥2γ+2

2 + ε

(
1− µ

p

)
∥u∥pp,Γ1

+
µξ

m

∫ 1

0

∥z(ρ, t)∥mm,Γ1
dρ

− (µm
1 + |µ2|m)

m
k1−mH(t)σ(m−1)∥u∥mm,Γ1

+ µεH(t).

(5.11)
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Exploiting (5.3), we have

H(t)σ(m−1)∥u∥mm,Γ1
≤ Cm

p H(t)σ(m−1)∥u∥mp,Γ1
≤

Cm
p

pσ
∥u∥σp(m−1)+m

p,Γ1
. (5.12)

Combining (5.11) and (5.12), we get

Ψ′(t) ≥
{
(1− σ)− εk

(m− 1)

mm0

}
H(t)−σH ′(t) + ε

(
1 +

µ

2

)
∥ut∥22 + εa

(µ
2
− 1

)
∥∇u∥22

+εb

(
µ

2γ + 2
− 1

)
∥∇u∥2γ+2

2 + ε

(
1− µ

p

)
∥u∥pp,Γ1

+
µξ

m

∫ 1

0

∥z(ρ, t)∥mm,Γ1
dρ

−ε
(µm

1 + |µ2|m)

m

Cm
p k1−m

pσ
∥u∥σp(m−1)+m

p,Γ1
+ µεH(t).

(5.13)

Applying Lemma 2.3 for s = σp(m− 1) +m < p , we get

∥u∥σp(m−1)+m
p,Γ1

≤ C∗

(
∥∇u∥22 + ∥u∥pp,Γ1

)
. (5.14)

Combining (5.14) with (5.13), we obtain

Ψ′(t) ≥
{
(1− σ)− ε

(m− 1)k

mm0

}
H(t)−σH ′(t) + ε

(
1 +

µ

2

)
∥ut∥22

+ε
(
a
(µ
2
− 1

)
− cσk

1−m
)
∥∇u∥22 + εb

(
µ

2γ + 2
− 1

)
∥∇u∥2γ+2

2

+ε

((
1− µ

p

)
− cσk

1−m

)
∥u∥pp,Γ1

+
µξ

m

∫ 1

0

∥z(ρ, t)∥mm,Γ1
dρ+ µεH(t),

(5.15)

where cσ =
C∗(µ

m
1 + |µ2|m)

m

Cm
p

pσ
.

At this point, we choose 2γ + 2 < µ < p such that

µ

2
− 1 > 0,

µ

2γ + 2
− 1 > 0, 1− µ

p
> 0.

When µ is fixed, we choose k large enough such that

a
(µ
2
− 1

)
− cσk

1−m > 0,

(
1− µ

p

)
− cσk

1−m > 0.

Once k and µ are fixed, we select ε > 0 small enough so that

(1− σ)− εk
(m− 1)

mm0
> 0, Ψ(0) = H(0)1−σ + ε

∫
Ω

u1u0dx+
ε

2
∥u0∥22 > 0.

Then inequality (5.15) becomes

Ψ′(t) ≥ K
(
∥ut∥22 + ∥∇u∥22 + ∥∇u∥2γ+2

2 + ∥u∥pp,Γ1
+H(t)

)
, (5.16)
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where K is a positive constant.

On the other hand, we will estimate Ψ
1

1−σ (t) . Applying Hölder and Youngs inequalities, we have

∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−σ

≤ C∥u∥
1

1−σ
p ∥ut∥

1
1−σ

2 ≤ C

(
∥u∥

µ
1−σ
p + ∥ut∥

θ
1−σ

2

)
, (5.17)

for 1
µ + 1

θ = 1 . Take θ = 2(1− σ) which gives µ
1−σ = 2

1−2σ . Then, (5.17) becomes

∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−σ

≤ C

(
∥u∥

2
1−2σ
p + ∥ut∥22

)
, (5.18)

It follows from (3.12) and (5.3), we have

∥u∥
2

1−2σ
p ≤ c

2
1−2σ
p ∥∇u∥

2
1−2σ

2 ≤ c
2

1−2σ
p (CE(0))

1
1−2σ ≤ c

2
1−2σ
p (CE(0))

2
1−2σ

H(t)

H(0)
. (5.19)

Similar to (5.19), we have

∥u∥
2

1−σ

2 ≤ c
2

1−σ

2 (CE(0))
1

1−σ ≤ c
2

1−σ

2 (CE(0))
1

1−σ
H(t)

H(0)
≤ c

2
1−σ

2 (CE(0))
1

1−σ

∥u∥pp,Γ1

pH(0)
. (5.20)

Combining (5.19)-(5.20) and (5.4), we get

Ψ
1

1−σ (t) ≤ K̃
(
∥ut∥22 + ∥u∥pp,Γ1

+H(t)
)
, (5.21)

where K̃ is a positive constant.
It follows from (5.16) and (5.21), we find that

Ψ′(t) ≥ ωΨ
1

1−σ (t), ∀t > 0, (5.22)

where κ is a positive constant.
A simple integration of (5.22) over (0, t) yields

Ψ
σ

1−σ (t) ≥ 1

Ψ− σ
1−σ (0)− ωσt

1−σ

.

Consequently, the solution of problem (1.1) blows up in finite time T ∗ . 2
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