

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math (2023) 47: 1406 – 1422 © TÜBİTAK doi:10.55730/1300-0098.3437

*-Semiclean rings

Shefali GUPTA^{*}⁽⁰⁾, Dinesh UDAR⁽⁰⁾

Department of Applied Mathematics, Delhi Technological University, Delhi, India

Received: 06.10.2022 •	Accepted/Published Online: 14.04.2023	•	Final Version: 18.07.2023
-------------------------------	---------------------------------------	---	----------------------------------

Abstract: A ring R is called semiclean if every element of R can be expressed as sum of a periodic element and a unit. In this paper, we introduce a new class of ring, which is the *-version of the semiclean ring, i.e. the *-semiclean ring. A *-ring is *-semiclean if each element is a sum of a *-periodic element and a unit. The term *-semiclean is a stronger notion than semiclean. In this paper, many properties of *-semiclean rings are discussed. It is proved that if $p \in P(R)$ such that pRp and (1-p)R(1-p) are *-semiclean rings, then R is also a *-semiclean ring. As a result, the matrix ring $M_n(R)$ over a *-semiclean ring is *-semiclean. A characterization that when the group rings RC_r and RG are *-semiclean is done, where R is a finite commutative local ring, C_r is a cyclic group of order r, and G is a locally finite abelian group. We have also found sufficient conditions when the group rings RC_3 , RC_4 , RQ_8 , and RQ_{2n} are *-semiclean, where R is a commutative local ring. We have also demonstrated that the group ring \mathbb{Z}_2D_6 is a *-semiclean ring (which is not a *-clean ring).

Key words: Group rings, semiclean rings, *-periodic element

1. Introduction

A ring R is called clean if every element of R can be expressed as a sum of an idempotent and a unit. In literature, a lot of work is done on this class of ring; see [14, 19], and [22] for more details on it. A ring R is called *-clean if every element of R can be expressed as sum of a projection and a unit. See [1, 3, 6, 8, 12, 16], and [18] for more details on it. So far, much work has been done on the *-clean ring, but the *-semiclean ring has yet to be discovered. The motivation of the paper is to find out about the * concept in the semiclean ring. In this paper, we are introducing a *-semiclean ring. A *-semiclean ring is the subclass of a semiclean ring and properly contains the class of a *-clean ring. A ring R is a *-ring (or ring with involution) if there is an operation *: $R \to R$ such that

$$(a+b)^* = a^* + b^*, \quad (ab)^* = b^*a^*, \quad (a^*)^* = a$$

for all $a, b \in R$. An element p of a *-ring R is known as a projection if $p^* = p = p^2$, i.e. p is a self-adjoint idempotent. An element a of a *-ring R is called *-periodic if there exists a positive integer n > 1 such that $a^n = p$, where p is a projection. A *-ring R is called *-semiclean if each element of R is sum of a *-periodic element and a unit. Both local and *-clean rings are clearly *-semiclean, and a *-semiclean ring is semiclean. In Section 2, we look at the various basic properties of *-periodic elements. In Section 3, we obtain various

^{*}Correspondence: guptashefali2018@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: 16S34, 16U99, 16W10

properties of *-semiclean rings. Moreover, examples of semiclean rings that are not *-semiclean and *-semiclean rings that are not *-clean are provided. In Section 4, the matrix extension of the *-semiclean rings is done. In Section 5, we investigate when a group ring RG is *-semiclean. We provide a characterization that when the group ring RC_r and RG are *-semiclean, where R is a finite commutative local ring, C_r is a cyclic group of order r, and G is a locally finite abelian group. We obtain several sufficient conditions for the group ring RGto be *-semiclean, where R is a commutative local ring and G is one of the groups C_i , i = 3, 4 (cyclic group of order 3 and 4), Q_8 (quaternion group of order 8), and Q_{2n} (generalized quaternion group). As a result, numerous examples of *-rings that are *-semiclean but not *-clean have been discovered. Also, we have shown that the group ring \mathbb{Z}_2D_6 is *-semiclean but not *-clean.

In the paper, the ring R represents an associative ring with unity. The terms J(R), U(R), I(R), N(R), $Pri^*(R)$ and P(R) represent the Jacobson radical, the group of all units, the set of all idempotents, the set of all nilpotents, the set of all *-periodic elements, and the set of projections of a ring R, respectively. For a group ring RG, the classical (or standard) involution $*: RG \to RG$ is given by $(\sum_{g \in G} \alpha_g g)^* = \sum_{g \in G} \alpha_g g^{-1}$; see [15, Proposition 3.2.11] for more details. Also, for a ring R, the ring homomorphism $\varepsilon : RG \to R$ defined by $\sum_{g \in G} \alpha_g g = \sum_{g \in G} \alpha_g$ is known as the augmentation mapping of RG. Moreover, the terms \mathbb{Z}_p , $\mathbb{Z}_{(p)}$, and \mathbb{Z} represent the ring of integers modulo p, the localization of \mathbb{Z} at the prime ideal generated by p, and the ring of integers, respectively.

2. *-Periodic elements

Some properties of *-periodic elements are given in this section.

Definition 2.1 Let R be a *-ring. An element $x \in R$ is called *-periodic if $x^k = x^l$ (where, l and k are positive integers, $l \neq k$) such that $x^{l(k-l)} = p$, where $p \in P(R)$.

Theorem 2.2 Let R be a *-ring, and $x \in R$. Then the following statements are equivalent:

- 1. There exists $n \in \mathbb{N}$ such that $x^n = p$, where $p \in P(R)$.
- 2. There exists an integer $n \ge 2$ such that x = f + a, where $f^n = f$ and $f^{n-1} = p$, with $p \in P(R)$, $a \in N(R)$ and xf = fx.
- 3. x is a *-periodic element.

Proof 1. \Rightarrow 2. Since $x^n = p = p^2 = x^{2n}$, which implies $x^n = x^{2n}$ for some $n \in \mathbb{N}$. Rewrite an element x as $x = x^{n+1} + (x - x^{n+1})$ where $(x^{n+1})^{n+1} = x^{n+1}$ (since $(x^{n+1})^{n+1} = (x^n \cdot x)^{n+1} = (px)^{n+1} = px^{n+1} = px = x^n \cdot x = x^{n+1}$) and $(x^{n+1})^n = p$. Also, $(x - x^{n+1})^n = x^n(1 - x^n)^n = p(1 - p)^n = p(1 - p) = 0$, i.e. $x - x^{n+1} \in N(R)$.

2. \Rightarrow 3. It follows from [4, Lemma 4.3, Definition 4.4].

3. \Rightarrow 1. By Definition 2.1, we can say there exist distinct positive integers l and k such that $x^{l(k-l)} = p$, where $p \in P(R)$. Since $l(k-l) \in \mathbb{N}$, therefore, there exists $n = l(k-l) \in \mathbb{N}$ such that $x^n = p$.

Let R be a *-ring. According to [2, Proposition 2.1], [3, Theorem 3.2], and [3, Theorem 3.6], $x \in R$ is a strongly- π -*-regular element if and only if there exists an integer $n \geq 1$ such that $x^n = pu = up$, where $p \in P(R)$ and $u \in U(R)$. For more information on strongly- π -*-regular, we can see [5]. **Theorem 2.3** Let R be a *-ring, and $x \in R$. Then the following statements are equivalent:

- 1. x is *-periodic element.
- 2. x is strongly- π -*-regular element, with $u = 1 \in U(R)$.

Proof 1. \Rightarrow 2. From Theorem 2.2, we get $x^n = p = p \cdot 1$, where $p \in P(R)$ and $1 \in U(R)$; therefore, x satisfies the condition of being strongly- π -*-regular with $u = 1 \in U(R)$.

2. \Rightarrow 1. As x is a strongly- π -*-regular element, there exists an integer $n \ge 1$ such that $x^n = pu$. Since u = 1, which implies $x^n = p$, then by Theorem 2.2, x is *-periodic element.

The following concept is based on the above.

Definition 2.4 Let R be a *-ring. An element $x \in R$ is called *-periodic if it satisfies the conditions given in Theorem 2.2 or Theorem 2.3.

Let R be a *-ring. According to [18], an element $x \in R$ is called (strongly) *-clean if it can be expressed as x = p + u, where $p \in P(R)$ and $u \in U(R)$, with (pu = up).

Lemma 2.5 Every *-periodic element is strongly-*-clean.

Proof Let x be a *-periodic element. By Theorem 2.2, an integer $n \ge 1$ exists, and $p \in P(R)$, such that $x^n = p$. Clearly, 1 - p = f is a projection. If we prove that u = x - (1 - p) is a unit, then it will complete the proof. Define

$$v = x^{n-1}p - (1 + x + \dots + x^{n-1})(1-p).$$

Rewrite the term u as u = xp - (1 - x)(1 - p). Evaluate the term uv, we have

$$uv = (xp - (1 - x)(1 - p))(x^{n-1}p - (1 + x + \dots + x^{n-1})(1 - p))$$

= $x^n p + (1 - x)(1 + x + \dots + x^{n-1})(1 - p)$
= $p + (1 - x^n)(1 - p)$
= 1.

Clearly, uv = vu. Therefore, we get uv = vu = 1, which implies u is a unit with inverse v. Hence, x = f + u, where $f \in P(R)$ and $u \in U(R)$. Clearly, fu = a + p - ap - 1 = uf. Hence, element x is strongly *-clean. \Box

3. *-Semiclean rings

Let R be a *-ring. In 2003, Y. Ye introduced the class of semiclean rings [21]. The notion of *-semiclean rings can be perceived as a *-versions of the semiclean ring. In this section, the definition and properties of *-semiclean rings are given.

Definition 3.1 $A \ast$ -ring R is \ast -semiclean if every element in it can be written as the sum of a \ast -periodic element and a unit.

Proposition 3.2 A *-ring R is *-semiclean if it is semiclean, and every idempotent is a projection.

Corollary 3.3 The group ring $\mathbb{Z}_{(p)}C_3$, where C_3 is a cyclic group of order 3, is *-semiclean for every prime p.

Proof [21, Theorem 3.1] states that the group ring $\mathbb{Z}_{(p)}C_3$ is semiclean, and [21, proposition 3.1] tells us that the only idempotents of the group ring $\mathbb{Z}_{(p)}C_3$ are 0, 1, $\frac{1}{3} + \frac{1}{3}a + \frac{1}{3}a^2$ and $\frac{2}{3} - \frac{1}{3}a - \frac{1}{3}a^2$. Since 0^{*} is 0, 1^{*} is 1, $(\frac{1}{3} + \frac{1}{3}a + \frac{1}{3}a^2)^*$ is $\frac{1}{3} + \frac{1}{3}a + \frac{1}{3}a^2$, and $(\frac{2}{3} - \frac{1}{3}a - \frac{1}{3}a^2)^*$ is $\frac{2}{3} - \frac{1}{3}a - \frac{1}{3}a^2$, this implies that every idempotent is a projection. Hence, by Proposition 3.2, $\mathbb{Z}_{(p)}C_3$ is *-semiclean for every prime p.

There exists an example of *-ring which is clean but not *-clean ring.

Example 3.4 Let $R = \mathbb{Z}_2 \times \mathbb{Z}_2$ be a commutative ring. Now, define a map $* : R \to R$ such that $(a, b)^* = (b, a)$. Then R is a clean ring, but it is not *-clean ring as idempotents do not coincide with projection.

Similarly, there exists a *-ring that is semiclean but not *-semiclean; in fact, we obtain the following relations between the classes of rings:

The examples given below show that the above relations are irreversible.

Example 3.5 1. Let $R = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\}$ (where $0, 1 \in \mathbb{Z}_2$) be a commutative ring under the usual addition and multiplication. Clearly, the ring R is semiclean. Now, define a map $*: R \to R$ such that $\begin{bmatrix} x & y \\ z & w \end{bmatrix}^* = \begin{bmatrix} x+y & y \\ x+y+z+w & y+w \end{bmatrix}$. The only way of representing the element $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ as sum of the periodic and the unit is $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, but $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \notin Pri^*(R)$. Hence, it is not *-semiclean.

- 2. By Corollary 3.3, the group ring $\mathbb{Z}_{(7)}C_3$, where C_3 is a cyclic group of order 3, generated by a, is *-semiclean. However, the element 2 + 3a of $\mathbb{Z}_{(7)}C_3$ is not clean. Thus, the group ring $\mathbb{Z}_{(7)}C_3$ is not *-clean.
- 3. The ring F_3C_8 is finite; therefore, it is clean, but by [16, Example 3.12], it is not *-clean.
- 4. Let $R = \mathbb{Z}_5 \bigoplus \mathbb{Z}_5$ be a ring. Define an involution map $*: R \to R$ such that $(a, b)^* = (b, a)$. The ring R is strongly- π -regular, but it is not strongly- π -*-regular as idempotents do not coincide with projections.
- 5. The ring $R = F_{7^2}C_8$ is finite, so it is periodic, but by [16, Example 3.10], it is not *-clean, and thus according to Lemma 2.5, it is not *-periodic.

Theorem 3.6 Let R be a *-ring, with $2 \in U(R)$. Then R is semiclean, and every unit is self-adjoint, i.e. $v^* = v$ for all $v \in U(R)$ if and only if R is *-semiclean and $* = 1_R$.

Proof \Rightarrow Let $a \in R$. Then, by Definition 3.1, we have a = f + v, where $f^{2n} = f^n$ and $v \in U(R)$. Observe that $(1 - 2f^n)^2 = 1$. Because every unit of R is self-adjoint, $2f^{n*} = 2f^n$. As a result, $2(f^{n*} - f^n) = 0$.

Because $2 \in U(R)$, $f^{n*} = f^n$, implying that an element $a \in R$ is *-semiclean. Because $f \in R$ is periodic, and every periodic is clean, so f = f' + v', where $f' \in I(R)$ and $v' \in U(R)$. Observe that $(1 - 2f')^2 = 1$. Because every unit of R is self-adjoint, $2f'^* = 2f'$. As a result, $2(f'^* - f') = 0$. Because $2 \in U(R)$, $f'^* = f'$, implying that $f^* = f$. Hence, $a^* = a$, so $* = 1_R$. \Leftarrow Obvious.

If an element x is self-adjoint square root of 1, it fulfills the conditions $x^2 = 1$ and $x^* = x$.

Every element of a *-clean ring in which 2 is invertible is shown to have a sum of no more than 2 units by Jian Cui and Zhou Wang [3]. We extended this finding to *-semiclean rings using Theorem 3.7 and demonstrated that each element of a *-semiclean ring can be expressed as the sum of three units.

Theorem 3.7 Let R be a *-semiclean ring with $2 \in U(R)$. Then every element of R is the sum of a self-adjoint square root of 1 and two units.

Proof Let $a \in R$. Then $\frac{a+1}{2} = f + v$, where $f \in Pri^*(R)$ and $v \in U(R)$. Because $f \in Pri^*(R)$, $f^n = f^{2n}$, and $f^n = p = p^*$. According to Lemma 2.5, f = f' + v', where $f' = (1 - p) \in P(R)$ and $v' \in U(R)$. Thus, a = (2 - 2p) - 1 + 2v' + 2v = (1 - 2p) + 2v' + 2v, where $(1 - 2p)^* = 1 - 2p$ and $(1 - 2p)^2 = 1$, with 2v', $2v \in U(R)$.

An ideal I of a *-ring R is called *-invariant if $I^* \subseteq I$. Lemma 3.8 extends an involution * of R to the factor ring R/I, which is still denoted by *.

Lemma 3.8 Let R be *-semiclean and I be *-invariant ideal, then the ring R/I is *-semiclean. In particular, the ring R/J(R) is *-semiclean.

Proof By [21, Proposition 2.1], the homomorphic image of semiclean is semiclean. Also, the homomorphic image of projection is projection. Thus, the result holds. Since an ideal J(R) is *-invariant, therefore, R/J(R) is *-semiclean.

Every polynomial ring over a commutative ring is not *-semiclean, as shown in Example 3.9.

Example 3.9 Let R be a commutative ring. Then the polynomial ring R[x] is not *-semiclean.

Proof By [21, Example 3.2], the polynomial ring R[x] is never semiclean. Hence, for any involution *, the ring R[x] is not *-semiclean.

Let R be a *-ring and R[[x]] be a power series ring. Then, on R[[x]], an induced involution * is defined as $(\sum_{i=0}^{\infty} \alpha_i x^i)^* = \sum_{i=0}^{\infty} \alpha_i^* x^i$. In 2003, Yuanqing Ye [21] proved that the ring R[[x]] is semiclean if and only if R is semiclean. This result has been extended to *-semiclean by Proposition 3.10.

Proposition 3.10 The ring R[[x]] is *-semiclean if and only if R is *-semiclean.

Proof \Rightarrow Let R[[x]] be *-semiclean. Because $R \cong R[[x]]/(x)$ and (x) is a *- invariant ideal of R[[x]], R is *-semiclean according to Lemma 3.8.

 $\Leftarrow \text{ Let } R \text{ be } *-\text{semiclean and } g(x) = \sum_{i=0}^{\infty} \alpha_i x^i \in R[[x]]. \text{ If } \alpha_0 = f + v, \text{ where } f \in Pri^*(R) \text{ and } v \in U(R),$ then $g(x) = f + (v + \sum_{i=1}^{\infty} \alpha_i x^i), \text{ where } f \in Pri^*(R) \subseteq Pri^*(R[[x]]) \text{ and } v + \sum_{i=1}^{\infty} \alpha_i x^i \in U(R[[x]]).$ As a result, $g(x) \in R[[x]]$ is *-semiclean. Every *-clean ring is a *-semiclean ring, but the converse is not true. By Theorem 3.11, we demonstrate that, under certain conditions, the converse will also hold.

Theorem 3.11 Let R be a torsion free ring, and $z \in R$ such that z = b + v, where $b \in Pri^*(R)$ and $v \in U(R)$. If $v = \pm 1$, then z is *-clean.

Proof Case I: Let v = 1Rewrite an element $z \in R$ as z = b + 1, $b^k = b^l$ (where, l and k are positive integers such that l > k), and $b^{k(l-k)} = p = p^* \in P(R)$.

We have $(z-1)^k = (z-1)^l$ because $b^k = b^l$, which implies that $(1-z)^{2k} = (1-z)^{2l}$ and $(1-z)^{2k(2l-2k)} = p$. As a result, 1-z is *-periodic, and thus, according to Lemma 2.5, an element 1-z is *-clean, i.e. 1-z = f+u, where $f = (1-p) \in P(R)$, and $u \in U(R)$. To put it simply, z = p + u', where $p \in P(R)$ and $u' = -u \in U(R)$.

Case II: Let v = -1Then an element $z \in R$ is rewritten as z = b - 1.

- 1. Let $b = b^n$ (where, *n* is a positive integer such that n > 1). Then $z = b^{n-1} + (-1 + b - b^{n-1})$. Because $b \in Pri^*(R)$ and $b = b^n$, an element $b^{n-1} \in P(R)$. An element $-1 + b - b^{n-1}$ is a unit in *R*, with the inverse $(2^{n-1} - 1 + 2^{n-3}b + 2^{n-4}b^2 + \dots + b^{n-2} + (1 - 2^{n-2})b^{n-1})(1 - 2^{n-1})^{-1} \in R$. Hence, z = b - 1 is *-clean.
- 2. Let $b^k = b^l$ (where, l and k are positive integers such that l > k). Then $z = b^{k(l-k)} + (-1+b-b^{k(l-k)})$. Because $b \in Pri^*(R)$ and $b^k = b^l$, an element $b^{k(l-k)} \in P(R)$. An element $-1 + b - b^{k(l-k)}$ is a unit in R. Hence, z = b - 1 is *-clean.

4. Matrix extension of *-semiclean rings

If R is a *-ring, then $M_n(R)$ the ring of $n \times n$ matrices over R inherits the natural involution from R: if $A = (a_{ij})$, then A^* is the transpose of (a_{ij}^*) . In 2010, Lia Vaš [18] proved that if both pRp and (1-p)R(1-p) are *-clean rings (here p is a projection), then R is *-clean. As a result, the $M_n(R)$ (ring of $n \times n$ matrices over R) is *-clean. This result has been extended to *-semiclean rings in this section.

Lemma 4.1 If pRp and (1-p)R(1-p) are both *-semiclean, where $p \in P(R)$, then R is also *-semiclean. **Proof** For each $p \in R$, write $1 - p = \overline{p}$. Apply the Pierce decomposition of the ring R:

$$R = \begin{bmatrix} pRp & pR\overline{p} \\ \overline{p}Rp & \overline{p}R\overline{p} \end{bmatrix}$$

Let $M = \begin{bmatrix} m & n \\ o & q \end{bmatrix} \in R$. Thus, m = a + u, where $a \in Pri^*(pRp)$ such that $a^{k_1} = a^{l_1}$ (where, l_1 and k_1 are possitive integers such that $l_1 > k_1$) and u is a unit in pRp with inverse u_1 . Then, $q - nu_1 o \in \overline{p}R\overline{p}$. So $q - ou_1n = b + v$, where $b \in Pri^*(\overline{p}R\overline{p})$ such that $b^{k_2} = b^{l_2}$ (where, l_2 and k_2 are possitive integers such that

 $l_2 > k_2$) and v is a unit in $\overline{p}R\overline{p}$ with inverse v_1 . Thus,

$$M = \begin{bmatrix} a+u & n \\ o & b+v+nu_1o \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} + \begin{bmatrix} u & n \\ o & v+ou_1n \end{bmatrix}$$

To show: $\begin{bmatrix} u & n \\ o & v + ou_1 n \end{bmatrix}$ is unit in R. Compute, $\begin{bmatrix} p & 0 \\ -ou_1 & \overline{p} \end{bmatrix} \begin{bmatrix} u & n \\ o & v + ou_1 n \end{bmatrix} \begin{bmatrix} p & -u_1 n \\ 0 & \overline{p} \end{bmatrix} = \begin{bmatrix} u & n \\ 0 & v \end{bmatrix} \begin{bmatrix} p & -u_1 n \\ 0 & \overline{p} \end{bmatrix} = \begin{bmatrix} u & 0 \\ 0 & v \end{bmatrix}$. Since the matrices $\begin{bmatrix} u & 0 \\ 0 & v \end{bmatrix}$, $\begin{bmatrix} p & 0 \\ -ou_1 & \overline{p} \end{bmatrix}$, and $\begin{bmatrix} p & -u_1 n \\ 0 & \overline{p} \end{bmatrix}$ are units in $\begin{bmatrix} pRp & pR\overline{p} \\ \overline{p}Rp & \overline{p}R\overline{p} \end{bmatrix}$, therefore, $\begin{bmatrix} u & n \\ o & v + ou_1 n \end{bmatrix}$ is unit in R. To show: $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ is *-periodic, i.e. $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}^k = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}^l$ and $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}^{k(l-k)} \in P(R)$ (where, l and k are the possitive integer such that l > k). Without loss of generality, let $k_2 \ge k_1$. $a^{k_1} = a^{l_1} = a^{(l_1-k_1)+k_1} = a^{s(l_1-k_1)+k_1},$ $b^{k_2} = b^{l_2} = b^{(l_2-k_2)+k_2} = b^{s(l_2-k_2)+k_2},$ and $a^{k_2} = a^{k_1+(k_2-k_1)} = a^{s(l_1-k_1)+k_2}.$ Let $k = k_2$ and $l = (l_1 - k_1)(l_2 - k_2) + k_2$. Then, $a^k = a^l$ and $b^k = b^l$. Thus, $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}^k = \begin{bmatrix} a^k & 0 \\ 0 & b^k \end{bmatrix} = \begin{bmatrix} a^l & 0 \\ 0 & b^l \end{bmatrix}^l$. Hence, $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ is periodic.

As $a \in Pri^*(pRp)$ and $a^k = a^l$. Thus, $a^{k(l-k)} = p_1$, where $p_1 \in P(pRp)$. Similarly, $b \in Pri^*(\overline{p}R\overline{p})$ and $b^k = b^l$. Thus, $b^{k(l-k)} = 1 - p_2$, where $p_2 \in P(\overline{p}R\overline{p})$. Compute, $\begin{bmatrix} a & 0\\ 0 & b \end{bmatrix}^{k(l-k)} = \begin{bmatrix} a^{k(l-k)} & 0\\ 0 & b^{k(l-k)} \end{bmatrix} = \begin{bmatrix} p_1 & 0\\ 0 & 1 - p_2 \end{bmatrix} \in P(R)$.

This proves that matrix M is *-semiclean. Therefore, R is *-semiclean.

By Lemma 4.1, and an inductive argument, the next result holds.

Theorem 4.2 If p_1, p_2, \dots, p_n are orthogonal projections with $1 = p_1 + p_2 + \dots + p_n$, and $p_i R p_i$ is *-semiclean for each *i*, then *R* is *-semiclean.

The following two conclusions follow directly from Theorem 4.2.

Corollary 4.3 If R is *-semiclean, then so is $M_n(R)$.

Corollary 4.4 If $N = N_1 \bigoplus N_2 \bigoplus \cdots \bigoplus N_n$ are modules and $End(N_i)$ is *-semiclean for each *i*, then End(N) is *-semiclean.

5. *-Semiclean group rings

In this section, we obtain several results pertaining to commutative and noncommutative \ast -semiclean group rings. Throughout this section, we are considering standard involution on the group ring RG.

Theorem 5.1 If RG is a *-semiclean ring, then so is ((R/J(R))G).

Proof Define a map $\Psi : RG \to (R/J(R))G$ as $\Psi(\sum_{g \in G} \alpha_g g) = \sum_{g \in G} \Psi(\alpha_g)g$, $\Psi(\alpha_g) = \alpha_g + J(R)$. Note that Ψ is an onto map. The map Ψ preserves an involution * as $\Psi(\sum_{g \in G} \alpha_g g)^* = (\Psi(\sum_{g \in G} \alpha_g g))^*$. Let $\overline{x} \in (R/J(R))G$. Since Ψ is an onto map, there exists an element $x \in RG$, which is defined as x = f + u, where $f \in Pri^*(RG)$ and $u \in U(RG)$. So, $\overline{x} = \Psi(f) + \Psi(u)$, where $\Psi(f) \in Pri^*((R/J(R))G)$ and $\Psi(u) \in U((R/J(R))G)$. Hence, ((R/J(R))G) is a *-semiclean ring.

5.1. Abelian group rings

In 2015 [6], Gao, Chen, and Li found out that when the group rings RC_3 , RC_4 , RS_3 , and RQ_8 are *-clean, where R is a commutative local ring. In this section, we have extended this result to *-semiclean rings. As a consequence, many examples of group rings that are *-semiclean but not *-clean have been obtained. In Theorem 5.7 and 5.8, a characterization that when the group rings RC_r and RG are *-semiclean is obtained (respectively). Here, R is a finite commutative local ring, C_r is a cyclic group of order r, and G is a locally finite abelian group.

Proposition 5.2 ([13]) If R is local, G is a locally finite p-group, and $p \in J(R)$, then the group ring RG is local.

We now investigate when RC_3 is *-semiclean.

In 2015 [6], Gao, Chen, and Li investigated the group rings RC_3 and \mathbb{Z}_pC_3 and proved that if $(-3)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, then the group ring \mathbb{Z}_pC_3 is not *-clean; however, Theorem 5.3(3) demonstrates that it is *-semiclean. Furthermore, in Theorem 5.3(2), we relaxed the requirement that RC_3 be clean, allowing us to broaden the class of rings (rings that are *-semiclean but not *-clean are obtained). One such example is $\mathbb{Z}_{(7)}C_3$, which is explained below.

Theorem 5.3 Let R be a commutative local ring and $G = C_3 = \langle x \rangle$ be a cyclic group of order 3.

- 1. If $3 \notin U(R)$, then RC_3 is *-semiclean.
- 2. If $3 \in U(R)$ and the equation $z^2 + z + 1 = 0$ has no solutions in R, then the ring RC_3 is *-semiclean.
- 3. If $2 \in U(R)$, then RC_3 is *-semiclean if RC_3 is clean and $U(RC_3)$ is a torsion group.

Proof

- 1. Since $3 \in J(R)$, by Proposition 5.2, RC_3 is local. Hence, RC_3 is a *-semiclean.
- 2. According to [10, Theorem 2.7], the ring RC_3 is a semiclean ring. By [6, Theorem 2.4], if the equation $z^2 + z + 1 = 0$ has no solution in R, then every idempotent of the ring RC_3 is a projection. Hence, by Proposition 3.2, the ring RC_3 is a *-semiclean ring.
- 3. If RC_3 is clean and $2 \in U(RC_3)$, then by [20, Proposition 2.5], RC_3 is a 2-good ring. If an element $a \in RC_3$, then there exist $u_1, u_2 \in U(RC_3)$ such that $a = u_1 + u_2$, according to the definition of a 2-good ring. Because $U(RC_3)$ is a torsion group, there exists $m \in \mathbb{N}$ such that $u_1^m = 1 = 1^*$, implying that

 $u_1 \in Pri^*(RC_3)$ and $u_2 \in U(RC_3)$. Thus, element *a* is *-semiclean. Since *a* is an arbitrary element of RC_3 , therefore, every element of RC_3 is *-semiclean. Hence, RC_3 is a *-semiclean ring.

The examples given below are the direct consequences of Theorem 5.3.

Example 5.4 1. By Theorem 5.3(1), the ring \mathbb{Z}_3C_3 is *-semiclean.

- 2. The ring $\mathbb{Z}_{(7)}C_3$ is *-semiclean because the equation $z^2 + z + 1 = 0$ has no solution in $\mathbb{Z}_{(7)}$, but it is not *-clean because, according to [14], $\mathbb{Z}_{(p)}C_3$ is clean if and only if $p \ncong 1 \pmod{3}$.
- 3. By [22, Corollary 19], we can say that \mathbb{Z}_pC_3 , where p > 2 is prime, is clean. Also, as $2 \in U(\mathbb{Z}_pC_3)$, by Theorem 5.3(3a), we conclude \mathbb{Z}_pC_3 is *-semiclean, but by [6, Example 2.7], for p > 3, if $(-3)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, it is not *-clean.

We now investigate when RC_4 is *-semiclean.

In 2015 [6], Gao, Chen, and Li investigated the group rings RC_4 and \mathbb{Z}_pC_4 , and proved that if $p \equiv 1 \pmod{4}$, then the group ring \mathbb{Z}_pC_4 is not *-clean; however, Theorem 5.5(2b) demonstrates that it is *-semiclean. Furthermore, in Theorem 5.5(2a), we relaxed the requirement that RC_4 be clean, allowing us to broaden the class of rings (rings that are *-semiclean but not *-clean are obtained). One such example is $\mathbb{Z}_{(5)}C_4$, which is explained below.

Theorem 5.5 Let R be a commutative local ring and $G = C_4 = \langle x \rangle$ be a cyclic group of order 4.

- 1. If $2 \notin U(R)$, then RC_4 is *-semiclean.
- 2. If $2 \in U(R)$, then RC_4 is *-semiclean if any of the condition given below is satisfied.
 - (a) The equation $z^2 + 1 = 0$ has no solutions in R.
 - (b) RC_4 is clean and $U(RC_4)$ is torsion group.

Proof

- 1. Since $2 \in J(R)$, by Proposition 5.2, RC_4 is local. Hence, RC_4 is a *-semiclean.
- 2. (a) According to [10, Theorem 2.7], the ring RC_4 is a semiclean ring. By [6, Theorem 2.10], if the equation $z^2 + 1 = 0$ has no solution in R, then every idempotent of the ring RC_4 is a projection. Hence, by Proposition 3.2, the ring RC_4 is a *-semiclean ring.
 - (b) The proof is similar to the proof of Theorem 5.3(3).

The examples given below are the direct consequences of Theorem 5.5.

Example 5.6 1. The ring $\mathbb{Z}_{(5)}C_4$ is *-semiclean because the equation $z^2 + 1 = 0$ has no solution in $\mathbb{Z}_{(5)}$, but it is not *-clean because, according to [14], $\mathbb{Z}_{(5)}C_4$ is not clean.

2. By [22, Corollary 19], we can say that \mathbb{Z}_pC_4 , where p > 2 is prime, is clean. Also, as $2 \in U(\mathbb{Z}_pC_4)$, by Theorem 5.5(2b), we conclude \mathbb{Z}_pC_4 is *-semiclean, but by [6, Corollary 2.11], for $p \equiv 1 \pmod{4}$, \mathbb{Z}_pC_4 is not *-clean.

By using Theorem 5.7 and Theorem 5.8, we can find various other examples of *-semiclean rings that are not *-clean. Some of them are listed in Example 5.9.

Theorem 5.7 Let R be a finite commutative local ring.

- 1. If $2 \in U(R)$ and $C_r = \langle x \rangle$ is a cyclic group of order r, then RC_r is *-semiclean.
- 2. If $2 \in J(R)$, $C_r = \langle x \rangle$ is a cyclic group of order $r = 2^s t$ $(s \ge 0)$, where 2 /t, and γ is the cyclic permutation on the set $J = \{1, 2, \dots, t-1\}$ defined as $\gamma : J \to J$ by $j \to 2j \pmod{t}$, then RC_r is *-semiclean.

Proof

- 1. Let $x \in RC_r$. The group ring RC_r is periodic because it is finite. Thus, according to [21, Lemma 5.1], RC_r is clean. Furthermore, $2 \in U(R)$. Thus, by [20, Proposition 2.5], RC_r is a 2-good ring, i.e. $x = u_1 + u_2$, where $u_1, u_2 \in U(RC_r)$. As RC_r is periodic, according to [2, Proposition 2.3], $U(RC_r)$ is a torsion group. Because $u_1 \in U(RC_r)$, there exists $n \in \mathbb{N}$ such that $u_1^n = 1 = 1^*$. Thus, $u_1 \in Pri^*(RC_r)$ and $u_2 \in U(RC_r)$. As a result, an element x meets the condition of being *-semiclean. Hence, RC_r is *-semiclean.
- 2. Let $s \geq 1$. Then $C_r \cong C_{2^s} \times C_t$. Thus, $RC_r \cong (RC_{2^s})C_t$, where $C_t = \langle x \rangle$ is a cyclic group of order t. By [13, Theorem], $R' = RC_{2^s}$ is the local ring. Since (R/J(R)) is a field of char = 2 and $(R/J(R))C_{2^s} \to (R'/J(R'))$ is ring epimorphism, therefore, (R'/J(R')) is also a field of char = 2. Let $a = a_0 + a_1 x + a_2 x^2 + \dots + a_{t-1} x^{t-1}$ be an idempotent element of $(R'/J(R'))C_t$. Because 2 = 0 and $x^{t} = 1$, it follows that $a^{2} = a_{0}^{2} + a_{\gamma(1)}x^{\gamma(1)} + \cdots + a_{\gamma(t-1)}x^{\gamma(t-1)}$. Because γ is the cyclic permutation on the set $J = \{1, 2, \dots, t-1\}$, therefore, $a_0^2 = a_0$ and $a_1^2 = a_1 = a_2 = \dots = a_{t-1}$. So the idempotents of $(R'/J(R'))C_t$ are 0, 1, $1 + x + \dots + x^{t-1}$, and $x + x^2 + \dots + x^{t-1}$. Because $0^* = 0, 1^* = 1$, $(1 + x + \dots + x^{t-1})^* = 1 + x + \dots + x^{t-1}$ and $(x + x^2 + \dots + x^{t-1})^* = x + x^2 + \dots + x^{t-1}$, implying that $(R'/J(R'))C_t$ has four idempotents, all of which are projections. Now, because C_t is a locally finite group, $J(R')C_t \subseteq J(R'C_t)$. As the $(\operatorname{char}(R'/J(R')),t) = 1$, therefore, $(R'/J(R'))C_t$ is semisimple, implying that $R'J(C_t) = J(R'C_t)$. Therefore, we get $(R'/J(R'))C_t \cong R'C_t/J(R')C_t = R'C_t/J(R'C_t)$. Thus, the factor ring $R'C_t/J(R'C_t) = \overline{R'C_t}$ will also have only four idempotents : $\overline{0}$, $\overline{1}$, $\overline{1} + \overline{x} + \cdots + \overline{x}^{t-1}$, and $\overline{x} + \overline{x}^2 + \cdots + \overline{x}^{t-1}$, all of which are projections. Since the order of the ring $\overline{R'C_t}$ is finite, $\overline{R'C_t}$ is clean. Thus, $\overline{R'C_t}$ is *-clean, i.e. for each $\overline{a} \in \overline{R'C_t}$, there exist $\overline{p} \in P(\overline{R'C_t})$ and $\overline{u} \in U(\overline{R'C_t})$, such that $\overline{a} = \overline{p} + \overline{u}$. Moreover, in $R'C_t$ the elements $m_1 = 0$, $m_2 = 1$, $m_3 = t^{-1}(1 + x + \cdots + x^{t-1})$, and $m_4 = t^{-1}((t-1) - x - x^2 - \dots - x^{t-1})$ are projections such that $\overline{m_1} = \overline{0}, \ \overline{m_2} = \overline{1}, \ \overline{m_3} = \overline{1} + \overline{x} + \dots + \overline{x}^{t-1},$ and $\overline{m_4} = \overline{x} + \overline{x^2} + \cdots + \overline{x^{t-1}}$ which implies there exists a $n_1 = p \in P(R'C_t)$ such that $\overline{n_1} = \overline{p}$ for $\overline{p} \in P(\overline{R'C_t})$. There is also $n_2 = u \in U(R'C_t)$ such that $\overline{n_2} = \overline{u}$ for $\overline{u} \in U(\overline{R'C_t})$. Thus, there exists an element $n_3 = p + u \in R'C_t$ such that $\overline{n_3} = \overline{p} + \overline{u}$ for $\overline{p} + \overline{u} \in \overline{R'C_t}$. Then $\overline{n_3} = \overline{a}$, i.e. $a - n_3 \in J(R'C_t)$.

Since R' is finite, R' is an artinian ring, which implies J(R') is nilpotent. Thus, $J(R')C_t$ is nil-ideal. By [11, Corollary 4.3], $J(R')C_t$ is nilpotent. Since $J(R'C_t) = J(R')C_t$, the ideal $J(R'C_t)$ is also nilpotent. Since $a - n_3 \in J(R'C_t)$, therefore, $a - n_3 = a - (p+u) = k$ for some $k \in J(R'C_t)$. Simplifying it, we get a = p + u + k, where $p \in P(R'C_t)$, $u \in U(R'C_t)$, and $k \in J(R'C_t)$. Thus, a = p + v, where $p \in P(R'C_t)$ and $v = (u + k) \in U(R'C_t)$. As a result, an element a meets the condition of being *-clean. Hence, $RC_r = R'C_t$ is *-clean. Thus, RC_r is *-semiclean.

Theorem 5.8 Let R be a finite commutative local ring and G be a locally finite abelian group.

- 1. If $2 \in U(R)$, then RG is *-semiclean.
- 2. If $2 \in J(R)$ and G is a locally finite 2-group, then RG is *-semiclean.
- 3. If $2 \in J(R)$ with $R/J(R) \cong \mathbb{F}_2$ and exponent of G is r, where r is an odd positive integer, and a $q \in \mathbb{N}$ exists such that $2^q \equiv -1 \pmod{r}$, then RG is *-semiclean.

Proof

- 1. Let $x \in RG$. Since G is a locally finite abelian group, there exists a finite subgroup H such that $x \in RH$. The rest of the proof is similar to that of Theorem 5.7(1).
- 2. Since $2 \in J(R)$, by Proposition 5.2, RG is local. Hence, RG is *-semiclean.
- 3. We will first show that the group ring $\overline{RG'}$ is *-clean for any arbitary finite abelian group, say G' (with odd exponent say r) such that $2^q \equiv -1 (mod r)$ for some $q \in \mathbb{N}$. Let $a = x_1 + x_2 + \dots + x_t$ be the idempotent element of (R/J(R))G', where $x_i \in G'$ for i = 1 to t. Then $(x_1 + x_2 + \dots + x_t)^2 = x_1^2 + x_2^2 + \dots + x_t^2 = x_1 + x_2 + \dots + x_t$. Thus, $\{x_1, x_2, \dots, x_t\} = \{x_1^2, x_2^2, \dots, x_t^2\}$. Furthermore, if $x \in \{x_1, x_2, \dots, x_t\}$, then $x^{2^k} \in \{x_1, x_2, \dots, x_t\}$ for some $k \in \mathbb{N}$. Thus, an element x can be rewritten as $x = (x_{k_1} + x_{k_1}^2 + \dots + x_{k_1}^{2^{m_1}}) + \dots + (x_{k_j} + x_{k_j}^2 + \dots + x_{k_j}^{2^{m_j}})$. Here the elements x_{k_i} are distinct and m_i 's are the smallest positive integers such that $x_{k_i}^{2^{m_i+1}} = x_{k_i}$. Evaluating x^* , we have $x^* = (x_{k_1}^{-1} + x_{k_1}^{-2} + \dots + x_{k_1}^{2^{m_1}}) + \dots + (x_{k_j}^{-1} + x_{k_j}^{-2} + \dots + x_{k_j}^{2^{m_j}})$. Since, for some $q \in \mathbb{N}$, we have $2^q \equiv -1 (mod p)$, thus, clearly $a^* = a$, i.e. every idempotent of (R/J(R))G' is a projection. Now, as the order of (R/J(R))G' is finite, it is a clean ring. As a result, the ring (R/J(R))G' is *-clean. Now, as G is a locally finite group, therefore, $J(R)G' \subseteq J(RG')$. Since order of every element of G' is invertible in (R/J(R)), therefore, (R/J(R))G' is semisimple. Thus, J(R)G' = J(RG'). Therefore, we get $(R/J(R))G' \cong RG'/J(RG')$. Thus, every idempotent of RG'/J(RG') is a projection. Being the ring $RG'/J(RG') = \overline{RG'}$ of finite order, it is a clean ring. Thus, it is a *-clean ring. Let $z \in RG$. Since G is a locally finite abelian group, there exists a finite abelian subgroup H such that

 $z \in RH$. For $l_1 = z \in RH$, there exists a $\overline{z} \in \overline{RH}$ such that $\overline{l_1} = \overline{z}$. Because $\overline{z} \in \overline{RH}$, and because, as explained above, the group ring \overline{RH} is a *-clean, there exists $\overline{p} \in P(\overline{RH})$ and $\overline{u} \in U(\overline{RH})$, such that

 $\overline{z} = \overline{p} + \overline{u}$. Because J(RH) is the *-invariant nil ideal of a *-ring RH, there exists a $n_1 = p \in P(RH)$ such that $\overline{n_1} = \overline{p}$ for $\overline{p} \in P(\overline{RH})$. There is also $n_2 = u \in U(RH)$ such that $\overline{n_2} = \overline{u}$ for $\overline{u} \in U(\overline{RH})$. Thus, there exists an element $n_3 = p + u \in RH$ such that $\overline{n_3} = \overline{p} + \overline{u}$ for $\overline{p} + \overline{u} \in \overline{RH}$. Thus, $\overline{n_3} = \overline{z}$, i.e. $z - n_3 \in J(RH)$. Also, the ideal J(RH) is nilpotent. Since $z - n_3 \in J(RH)$, $z - n_3 = z - (p + u) = k$ for some $k \in J(RH)$. Simplifying it, we get z = p + u + k, where $p \in P(RH)$, $u \in U(RH)$, and $k \in J(RH)$. Thus, z = p + v, where $p \in P(RH)$, and $v = (u + k) \in U(RH)$. As a result, element zmeets the condition of being *-clean. Hence, RH is *-clean. Thus, RH is *-semiclean, which implies RG is *-semiclean.

The examples given below are the direct consequences of Theorem 5.7 and Theorem 5.8. These are *-semiclean but not *-clean group rings.

Example 5.9 1. The ring F_3C_8 is *-semiclean, but by [16, Example 3.12], it is not *-clean.

- 2. The ring $F_7(C_4 \times C_8)$ is *-semiclean, but by [16, Example 3.10(1)], it is not *-clean.
- 3. The ring F_3C_{35} is *-semiclean, but by [8, Example 3.3], it is not *-clean.

5.2. Non-abelian group rings

In this section, we investigate when a non-abelian group ring RG is *-semi-clean, where R is a commutative local ring and G is Q_8 , Q_{2n} , D_{2n} , and D_6 .

5.2.1. Quaternion group Q_8

The group ring $\mathbb{Z}_p Q_8$ was studied by Gao in [6], and it was shown that it is not *-clean; however, by Theorem 5.10, we obtain that it is *-semiclean.

Theorem 5.10 Let R be a commutative local ring and $G = Q_8 = \langle x, y | x^4 = 1, x^2 = y^2, yx = x^{-1}y \rangle$ be a quaternion group of order 8.

- 1. If $2 \notin U(R)$, then RQ_8 is *-semiclean.
- 2. If $2 \in U(R)$, RQ_8 is clean and $U(RQ_8)$ is a torsion group, then RQ_8 is *-semiclean.

Proof

- 1. As R is local, Q_8 is a finite 2-group, and $2 \in J(R)$, therefore, by Proposition 5.2, RQ_8 is local. Thus, RQ_8 is a *-semiclean ring.
- 2. The proof is similar to the proof of Theorem 5.3(3).

The example given below is the direct consequence of Theorem 5.10.

Example 5.11 The ring $\mathbb{Z}_p Q_8$ (where p > 2 is prime) is clean. Furthermore, because $2 \in U(\mathbb{Z}_p Q_8)$, we can conclude from Theorem 5.10(2) that $\mathbb{Z}_p Q_8$ is *-semi-clean. However, according to [6, Example 3.9], $\mathbb{Z}_p Q_8$ is not *-clean.

5.2.2. Generalized quaternion group Q_{2n} and Dihedral group D_{2n}

The group ring F_qQ_{2n} was studied by Hongdi Huang in [7] and it was shown that if 4|n and gcd(q, 2n) = 1, then it is not *-clean; however, by Theorem 5.12, we obtain that it is *-semiclean.

Theorem 5.12 Let R be a finite commutative local ring and $G = Q_{2n} = \langle x, y | x^4 = 1, y^{\frac{n}{2}} = x^2, y^x = y^{-1} \rangle$ be the generalised quaternion group of order 2n or $G = D_{2n} = \langle x, y | y^n = x^2 = 1, xyx^{-1} = y^{-1} \rangle$ be the dihedral group of order 2n.

- 1. If $2 \in U(R)$, then RQ_{2n} and RD_{2n} are *-semiclean.
- 2. If $2 \in J(R)$, then RQ_{2n} and RD_{2n} (where n is a power of 2) are *-semiclean.

Proof

- 1. The proof is similar to the proof of Theorem 5.7(1).
- 2. As R is local, Q_{2n} and D_{2n} are finite 2-groups, and $2 \in J(R)$, therefore, by Proposition 5.2, RQ_{2n} and RD_{2n} are local. Thus, RQ_{2n} and RD_{2n} are *-semiclean rings.

The example given below is the direct consequence of Theorem 5.12.

Example 5.13 The ring F_qQ_{2n} (where gcd(q, 2) = 1) is clean. Furthermore, because $2 \in U(F_qQ_{2n})$, we can conclude from Theorem 5.12(1) that F_qQ_{2n} is *-semi-clean. However, according to [7, Theorem 4.7], F_qQ_{2n} is not *-clean if 4|n and gcd(q, 2n) = 1.

In 2015 [6], Gao, Chen, and Li investigated the group ring $\mathbb{Z}_2 D_6$, and proved that it is not *-clean; however, Example 5.14 demonstrates that it is *-semiclean. To prove $\mathbb{Z}_2 D_6$ is *-semiclean, we have shown that every element is written as sum of a *-periodic element and a unit. To check this, we first represented every element of $\mathbb{Z}_2 D_6$ in a matrix, and by using the SAGE [17] software obtain units, *-periodic elements. We then checked whether every element of $\mathbb{Z}_2 D_6$ can be written as the sum of a *-periodic element and unit of it. By [9], the matrix representation $\sigma(\omega)$ of an element $\omega = \alpha_0 + \alpha_1 y + \alpha_2 y^2 + \alpha_3 x + \alpha_4 y x + \alpha_5 y^2 x \in RD_6$, where $D_6 = \langle x, y | y^3 = x^2 = 1, xyx^{-1} = y^{-1} \rangle$ is a dihedral group of order 6, as given by $\sigma(\omega) = \begin{bmatrix} A & B \\ B^T & A^T \end{bmatrix}$, where $A = circ \begin{bmatrix} \alpha_0 & \alpha_1 & \alpha_2 \end{bmatrix}$ and $B = circ \begin{bmatrix} \alpha_3 & \alpha_4 & \alpha_5 \end{bmatrix}$. The codes for this are given below.

Example 5.14 Consider the ring \mathbb{Z}_2D_6 . The group of all units of \mathbb{Z}_2D_6 is $U(\mathbb{Z}_2D_6) = \{x, yx, y^2x, y^$

Code for the construction of a matrix representation of $\mathbb{Z}_2 D_6$.

```
Type = Integer (3)
Field = GF(Integer (2))
Vector = Field*Type
CM = [matrix.circulant(a) for a in Vector]
Length = len(CM)
Matrices_64 = []
for x in range(Length):
for y in range(Length):
CB = block_matrix(Integer (2), Integer (2), [CM[x], CM[y], CM[y].T, CM[x].T])
Matrices_64.append(CB)
```

Code to find the units of $\mathbb{Z}_2 D_6$.

```
Elements = Field * Integer(1)
Zero = Elements [Integer (0)] [Integer (0)]
One = Elements [Integer (1)] [Integer (0)]
Identity_row = [One, Zero, Zero, Zero, Zero, Zero]
Identity_Matrix = matrix.circulant(Identity_row)
Matrices_Unit = []
List_Matrices_64 = list(range(len(Matrices_64)))
for x in List Matrices 64:
v = x
while y <=List_Matrices_64 [len(List_Matrices_64)-Integer(1)]:
if y not in List Matrices 64:
y = y + Integer(1)
else:
mul_r = Matrices_{64} [x] * Matrices_{64} [y]
if mul_r == Identity_Matrix:
mul_r_rv = Matrices_64[y] * Matrices_64[x]
if mul_r_rev == Identity_Matrix:
Matrices_Unit.append(x)
Matrices_Unit.append(y)
break
y = y + Integer(1)
```

```
Code to find the *-periodic element of \mathbb{Z}_2 D_6.
```

```
\operatorname{Zero\_row} = [\operatorname{Zero} \operatorname{for} x \operatorname{in} \operatorname{range}(\operatorname{Integer}(6))]
Zero Matrix = matrix.circulant(Zero row)
Zero row 3 = [Zero for x in range(Integer(3))]
One\_row\_3 = [One for x in range(Integer(3))]
Combination\_row\_3 = [Zero, One, One]
Zero matrix 3 = \text{matrix.circulant}(\text{Zero row } 3)
One\_matrix\_3 = matrix.circulant(One\_row\_3)
Comb_matrix_3 = matrix.circulant(Combination_row_3)
Projection1 = block_matrix (2,2,[One_matrix_3,Zero_matrix_3,Zero_matrix_3,One_matrix_3])
Projection 2 = block_matrix (2,2, [Comb_matrix_3, Zero_matrix_3, Zero_matrix_3, Comb_matrix_3])
Matrices\_StrPeriodic = []
N = Integer(1000000)
for x in range(len(Matrices_64)):
res = Matrices 64 [x]
i = Integer(1)
while i <=N:
res = res * Matrices 64 [x]
if res == Identity_Matrix or res == Zero_Matrix or res == Projection1
or res = Projection2 :
Matrices_StrPeriodic.append([x, i+Integer(1)])
break
i = i + Integer(1)
```

Code to check whether every element of $\mathbb{Z}_2 D_6$ can be written as the sum of *-periodic element and unit of it.

```
Matrices_Star_Semiclean = []
Star_Semiclean_map = []
StarPeriodic_Set = set(x[Integer(0)] for x in Matrices_StrPeriodic)
Unit_set = set(Matrices_Unit)
for x in StarPeriodic_Set:
for y in Unit_set:
res = Matrices_64[x]+Matrices_64[y]
if res in Matrices_64:
index = Matrices_64.index(res)
if index not in Matrices_Star_Semiclean:
Matrices_Star_Semiclean.append(index)
Star_Semiclean_map.append([x,y,index])
```

GUPTA and UDAR/Turk J Math

Acknowledgment

The authors are greatful to the referee for his/her helpful suggestions and comments.

References

- Chen J, Cui J. Two questions of L. Vas on *-clean rings. Bulletin of the Australian Mathematical Society 2013; 88 (3): 499-505. https://doi.org/10.1017/S0004972713000117
- [2] Chin A. A note on strongly π -regular rings. Acta Mathematica Hungarica 2004; 102 (4): 337-342. https://doi.org/10.1023/b:amhu.0000024683.13344.cf
- [3] Cui J, Wang Z. A note on strongly-*-clean rings. Journal of the Korean Mathematical Society 2015; 52 (4): 839-851. https://doi.org/10.4134/JKMS.2015.52.4.839
- [4] Cui J, Danchev P. Some new characterizations of periodic rings. Journal of Algebra and Its Applications 2020; 19 (12): 2050235. https://doi.org/10.1142/S0219498820502357
- [5] Danchev P, Cui J. On Strongly π-Regular Rings with Involution. Communications in Mathematics 2023; 31 (1): 73-80. https://doi.org/10.46298/cm.10273
- [6] Gao Y, Chen J, Li Y. Some *-clean group rings. Algebra Colloquium 2015; 22 (1): 169-180. https://doi.org/10.1142/S1005386715000152
- Huang H, Li Y, Tang G. On *-clean non-commutative group rings. Journal of Algebra and Its Applications 2016; 15 (08): 1650150. https://doi.org/10.1142/S0219498816501504
- [8] Huang H, Li Y, Yuan P. On *-clean group rings II. Communications in Algebra 2016; 44 (7): 3171-3181. https://doi.org/10.1080/00927872.2015.1044106
- [9] Hurley T. Group rings and rings of matrices. International Journal of Pure and Applied Mathematics 2006; 31 (3): 319-335.
- [10] Klingler L, Loper KA, McGovern WW, Toeniskoetter M. Semiclean group rings. Journal of Pure and Applied Algebra 2021; 225 (11): 106744. https://doi.org/10.1016/j.jpaa.2021.106744
- [11] Lam TY. A first course in noncommutative rings. New York: Springer-Verlag, 1991.
- [12] Li Y, Parmenter MM, Yuan P. On *-clean group rings. Journal of Algebra and Its Applications 2015; 14 (01): 1550004. https://doi.org/10.1142/S0219498815500048
- [13] Nicholson WK. Local group rings. Canadian Mathematical Bulletin 1972; 15 (1): 137-138. https://doi.org/10.4153/CMB-1972-025-1
- Immormino NA, McGovern WW. Examples of clean commutative group rings. Journal of Algebra 2014; 405: 168-178. https://doi.org/10.1016/j.jalgebra.2014.01.030
- [15] Sehgal SK, Milies CP. An introduction to group rings. Kluwer Academic Publishers 2002.
- [16] Tang G, Wu Y, Li Y. *-Cleanness of finite group rings. Communications in Algebra 2017; 45 (10): 4190-4195. https://doi.org/10.1080/00927872.2016.1240802
- [17] The SAGE Group, SAGE: Mathematical software, version 2.10.
- [18] Vaš L. *-Clean rings; some clean and almost clean Baer*-rings and von Neumann algebras. Journal of Algebra 2010; 324 (12): 3388-3400. https://doi.org/10.1016/j.jalgebra.2010.10.011
- [19] Wang Z, Chen JL. 2-clean rings. Canadian Mathematical Bulletin 2009; 52 (1): 145-153. https://doi.org/10.4153/CMB-2009-017-5
- [20] Wang Y, Ren Y. 2-good rings and their extensions. Bulletin of the Korean Mathematical Society 2013; 50 (5): 1711-1723. https://doi.org/10.4134/BKMS.2013.50.5.1711

GUPTA and UDAR/Turk J Math

- [21] Ye Y. Semiclean rings. Communications in Algebra 2003; 31 (11): 5609-5625. https://doi.org/10.1080/00927870600796144
- [22] Zhou Y. On clean group rings. In Advances in ring theory Birkhäuser Basel 2010; 335-345.