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Abstract: A ring R is called semiclean if every element of R can be expressed as sum of a periodic element and a
unit. In this paper, we introduce a new class of ring, which is the ∗ -version of the semiclean ring, i.e. the ∗ -semiclean
ring. A ∗ -ring is ∗ -semiclean if each element is a sum of a ∗ -periodic element and a unit. The term ∗ -semiclean is a
stronger notion than semiclean. In this paper, many properties of ∗ -semiclean rings are discussed. It is proved that if
p ∈ P (R) such that pRp and (1 − p)R(1 − p) are ∗ -semiclean rings, then R is also a ∗ -semiclean ring. As a result,
the matrix ring Mn(R) over a ∗ -semiclean ring is ∗ -semiclean. A characterization that when the group rings RCr and
RG are ∗ -semiclean is done, where R is a finite commutative local ring, Cr is a cyclic group of order r , and G is
a locally finite abelian group. We have also found sufficient conditions when the group rings RC3 , RC4 , RQ8 , and
RQ2n are ∗ -semiclean, where R is a commutative local ring. We have also demonstrated that the group ring Z2D6 is
a ∗ -semiclean ring (which is not a ∗ -clean ring).
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1. Introduction
A ring R is called clean if every element of R can be expressed as a sum of an idempotent and a unit. In
literature, a lot of work is done on this class of ring; see [14, 19], and [22] for more details on it. A ring R is
called ∗ -clean if every element of R can be expressed as sum of a projection and a unit. See [1, 3, 6, 8, 12, 16],
and [18] for more details on it. So far, much work has been done on the ∗ -clean ring, but the ∗ -semiclean ring
has yet to be discovered. The motivation of the paper is to find out about the ∗ concept in the semiclean ring.
In this paper, we are introducing a ∗ -semiclean ring. A ∗ -semiclean ring is the subclass of a semiclean ring
and properly contains the class of a ∗ -clean ring. A ring R is a ∗ -ring (or ring with involution) if there is an
operation ∗ : R → R such that

(a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, (a∗)∗ = a

for all a, b ∈ R . An element p of a ∗ -ring R is known as a projection if p∗ = p = p2 , i.e. p is a self-adjoint
idempotent. An element a of a ∗ -ring R is called ∗ -periodic if there exists a positive integer n > 1 such that
an = p , where p is a projection. A ∗ -ring R is called ∗ -semiclean if each element of R is sum of a ∗ -periodic
element and a unit. Both local and ∗ -clean rings are clearly ∗ -semiclean, and a ∗ -semiclean ring is semiclean.
In Section 2, we look at the various basic properties of ∗ -periodic elements. In Section 3, we obtain various
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properties of ∗ -semiclean rings. Moreover, examples of semiclean rings that are not ∗ -semiclean and ∗ -semiclean
rings that are not ∗ -clean are provided. In Section 4, the matrix extension of the ∗ -semiclean rings is done. In
Section 5, we investigate when a group ring RG is ∗ -semiclean. We provide a characterization that when the
group ring RCr and RG are ∗ -semiclean, where R is a finite commutative local ring, Cr is a cyclic group of
order r , and G is a locally finite abelian group. We obtain several sufficient conditions for the group ring RG

to be ∗ -semiclean, where R is a commutative local ring and G is one of the groups Ci, i = 3, 4 (cyclic group
of order 3 and 4), Q8 (quaternion group of order 8), and Q2n (generalized quaternion group). As a result,
numerous examples of ∗ -rings that are ∗ -semiclean but not ∗ -clean have been discovered. Also, we have shown
that the group ring Z2D6 is ∗ -semiclean but not ∗ -clean.
In the paper, the ring R represents an associative ring with unity. The terms J(R) , U(R) , I(R) , N(R) ,
Pri∗(R) and P (R) represent the Jacobson radical, the group of all units, the set of all idempotents, the set
of all nilpotents, the set of all ∗ -periodic elements, and the set of projections of a ring R , respectively. For a
group ring RG , the classical (or standard) involution ∗ : RG → RG is given by (

∑
g∈G αgg)

∗ =
∑

g∈G αgg
−1 ;

see [15, Proposition 3.2.11] for more details. Also, for a ring R , the ring homomorphism ε : RG → R defined
by

∑
g∈G αgg =

∑
g∈G αg is known as the augmentation mapping of RG . Moreover, the terms Zp , Z(p) , and

Z represent the ring of integers modulo p , the localization of Z at the prime ideal generated by p , and the ring
of integers, respectively.

2. ∗-Periodic elements
Some properties of ∗ -periodic elements are given in this section.

Definition 2.1 Let R be a ∗-ring. An element x ∈ R is called ∗-periodic if xk = xl (where, l and k are
positive integers, l ̸= k ) such that xl(k−l) = p , where p ∈ P (R) .

Theorem 2.2 Let R be a ∗-ring, and x ∈ R . Then the following statements are equivalent:

1. There exists n ∈ N such that xn = p , where p ∈ P (R) .

2. There exists an integer n ≥ 2 such that x = f + a , where fn = f and fn−1 = p , with p ∈ P (R) ,
a ∈ N(R) and xf = fx .

3. x is a ∗-periodic element.

Proof 1. ⇒ 2. Since xn = p = p2 = x2n , which implies xn = x2n for some n ∈ N . Rewrite an element
x as x = xn+1 + (x − xn+1) where (xn+1)n+1 = xn+1 (since (xn+1)n+1 = (xn · x)n+1 = (px)n+1 = pxn+1 =

px = xn · x = xn+1 ) and (xn+1)n = p . Also, (x − xn+1)n = xn(1 − xn)n = p(1 − p)n = p(1 − p) = 0 , i.e.
x− xn+1 ∈ N(R) .
2. ⇒ 3. It follows from [4, Lemma 4.3, Definition 4.4].
3. ⇒ 1. By Definition 2.1, we can say there exist distinct positive integers l and k such that xl(k−l) = p ,
where p ∈ P (R) . Since l(k − l) ∈ N , therefore, there exists n = l(k − l) ∈ N such that xn = p . 2

Let R be a ∗ -ring. According to [2, Proposition 2.1], [3, Theorem 3.2], and [3, Theorem 3.6], x ∈ R is
a strongly-π -∗ -regular element if and only if there exists an integer n ≥ 1 such that xn = pu = up , where
p ∈ P (R) and u ∈ U(R) . For more information on strongly-π -∗ -regular, we can see [5].
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Theorem 2.3 Let R be a ∗-ring, and x ∈ R . Then the following statements are equivalent:

1. x is ∗-periodic element.

2. x is strongly-π -∗-regular element, with u = 1 ∈ U(R) .

Proof 1. ⇒ 2. From Theorem 2.2, we get xn = p = p · 1 , where p ∈ P (R) and 1 ∈ U(R) ; therefore, x

satisfies the condition of being strongly-π -∗ -regular with u = 1 ∈ U(R) .
2. ⇒ 1. As x is a strongly-π -∗ -regular element, there exists an integer n ≥ 1 such that xn = pu . Since u = 1 ,
which implies xn = p , then by Theorem 2.2, x is ∗ -periodic element. 2

The following concept is based on the above.

Definition 2.4 Let R be a ∗-ring. An element x ∈ R is called ∗-periodic if it satisfies the conditions given in
Theorem 2.2 or Theorem 2.3.

Let R be a ∗ -ring. According to [18], an element x ∈ R is called (strongly) ∗ -clean if it can be expressed as
x = p+ u , where p ∈ P (R) and u ∈ U(R) , with (pu = up) .

Lemma 2.5 Every ∗-periodic element is strongly-∗-clean.

Proof Let x be a ∗ -periodic element. By Theorem 2.2, an integer n ≥ 1 exists, and p ∈ P (R) , such that
xn = p . Clearly, 1− p = f is a projection. If we prove that u = x− (1− p) is a unit, then it will complete the
proof. Define

v = xn−1p− (1 + x+ · · ·+ xn−1)(1− p).

Rewrite the term u as u = xp− (1− x)(1− p) . Evaluate the term uv , we have

uv = (xp− (1− x)(1− p))(xn−1p− (1 + x+ · · ·+ xn−1)(1− p))

= xnp+ (1− x)(1 + x+ · · ·+ xn−1)(1− p)

= p+ (1− xn)(1− p)

= 1.

Clearly, uv = vu . Therefore, we get uv = vu = 1 , which implies u is a unit with inverse v . Hence, x = f + u ,
where f ∈ P (R) and u ∈ U(R) . Clearly, fu = a+ p− ap− 1 = uf . Hence, element x is strongly ∗ -clean. 2

3. ∗-Semiclean rings

Let R be a ∗ -ring. In 2003, Y. Ye introduced the class of semiclean rings [21]. The notion of ∗ -semiclean
rings can be perceived as a ∗ -versions of the semiclean ring. In this section, the definition and properties of
∗ -semiclean rings are given.

Definition 3.1 A ∗-ring R is ∗-semiclean if every element in it can be written as the sum of a ∗-periodic
element and a unit.

Proposition 3.2 A ∗-ring R is ∗-semiclean if it is semiclean, and every idempotent is a projection.
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Corollary 3.3 The group ring Z(p)C3 , where C3 is a cyclic group of order 3 , is ∗-semiclean for every prime
p .

Proof [21, Theorem 3.1] states that the group ring Z(p)C3 is semiclean, and [21, proposition 3.1] tells us that
the only idempotents of the group ring Z(p)C3 are 0 , 1 , 1

3 + 1
3a+

1
3a

2 and 2
3 − 1

3a−
1
3a

2 . Since 0∗ is 0 , 1∗ is
1 , ( 13 + 1

3a+
1
3a

2)∗ is 1
3 + 1

3a+
1
3a

2 , and ( 23 − 1
3a−

1
3a

2)∗ is 2
3 − 1

3a−
1
3a

2 , this implies that every idempotent
is a projection. Hence, by Proposition 3.2, Z(p)C3 is ∗ -semiclean for every prime p . 2

There exists an example of ∗ -ring which is clean but not ∗ -clean ring.

Example 3.4 Let R = Z2×Z2 be a commutative ring. Now, define a map ∗ : R → R such that (a, b)∗ = (b, a) .
Then R is a clean ring, but it is not ∗-clean ring as idempotents do not coincide with projection.

Similarly, there exists a ∗ -ring that is semiclean but not ∗ -semiclean; in fact, we obtain the following relations
between the classes of rings:

∗ -periodic ⇒ strongly-π -∗ -regular ⇒ ∗ -clean ⇒ ∗ -semiclean
⇓ ⇓ ⇓ ⇓

periodic ⇒ strongly-π -regular ⇒ clean ⇒ semiclean

The examples given below show that the above relations are irreversible.

Example 3.5 1. Let R = {
[
0 0
0 0

]
,

[
1 0
0 1

]
,

[
1 1
0 0

]
,

[
0 1
0 1

]
} (where 0, 1 ∈ Z2 ) be a commutative ring under

the usual addition and multiplication. Clearly, the ring R is semiclean. Now, define a map ∗ : R → R

such that
[
x y
z w

]∗
=

[
x+ y y

x+ y + z + w y + w

]
. The only way of representing the element

[
1 1
0 0

]
as sum

of the periodic and the unit is
[
0 1
0 1

]
+

[
1 0
0 1

]
, but

[
0 1
0 1

]
/∈ Pri∗(R) . Hence, it is not ∗-semiclean.

2. By Corollary 3.3, the group ring Z(7)C3 , where C3 is a cyclic group of order 3 , generated by a , is
∗-semiclean. However, the element 2 + 3a of Z(7)C3 is not clean. Thus, the group ring Z(7)C3 is not
∗-clean.

3. The ring F3C8 is finite; therefore, it is clean, but by [16, Example 3.12], it is not ∗-clean.

4. Let R = Z5

⊕
Z5 be a ring. Define an involution map ∗ : R → R such that (a, b)∗ = (b, a) . The ring R

is strongly-π -regular, but it is not strongly-π -∗-regular as idempotents do not coincide with projections.

5. The ring R = F72C8 is finite, so it is periodic, but by [16, Example 3.10], it is not ∗-clean, and thus
according to Lemma 2.5, it is not ∗-periodic.

Theorem 3.6 Let R be a ∗-ring, with 2 ∈ U(R) . Then R is semiclean, and every unit is self-adjoint, i.e.
v∗ = v for all v ∈ U(R) if and only if R is ∗-semiclean and ∗ = 1R .

Proof ⇒ Let a ∈ R . Then, by Definition 3.1, we have a = f + v , where f2n = fn and v ∈ U(R) . Observe
that (1 − 2fn)2 = 1 . Because every unit of R is self-adjoint, 2fn∗ = 2fn . As a result, 2(fn∗ − fn) = 0 .
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Because 2 ∈ U(R) , fn∗ = fn , implying that an element a ∈ R is ∗ -semiclean. Because f ∈ R is periodic, and
every periodic is clean, so f = f

′
+ v

′ , where f
′ ∈ I(R) and v

′ ∈ U(R) . Observe that (1− 2f
′
)2 = 1 . Because

every unit of R is self-adjoint, 2f ′∗
= 2f

′ . As a result, 2(f ′∗−f
′
) = 0 . Because 2 ∈ U(R) , f ′∗

= f
′ , implying

that f∗ = f . Hence, a∗ = a , so ∗ = 1R .
⇐ Obvious. 2

If an element x is self-adjoint square root of 1, it fulfills the conditions x2 = 1 and x∗ = x .
Every element of a ∗ -clean ring in which 2 is invertible is shown to have a sum of no more than 2 units by Jian
Cui and Zhou Wang [3]. We extended this finding to ∗ -semiclean rings using Theorem 3.7 and demonstrated
that each element of a ∗ -semiclean ring can be expressed as the sum of three units.

Theorem 3.7 Let R be a ∗-semiclean ring with 2 ∈ U(R) . Then every element of R is the sum of a self-adjoint
square root of 1 and two units.

Proof Let a ∈ R . Then a+1
2 = f + v , where f ∈ Pri∗(R) and v ∈ U(R) . Because f ∈ Pri∗(R) , fn = f2n ,

and fn = p = p∗ . According to Lemma 2.5, f = f
′
+ v

′ , where f
′
= (1 − p) ∈ P (R) and v

′ ∈ U(R) . Thus,
a = (2 − 2p) − 1 + 2v

′
+ 2v = (1 − 2p) + 2v

′
+ 2v , where (1 − 2p)∗ = 1 − 2p and (1 − 2p)2 = 1 , with 2v

′ ,
2v ∈ U(R) . 2

An ideal I of a ∗ -ring R is called ∗ -invariant if I∗ ⊆ I . Lemma 3.8 extends an involution ∗ of R to the factor
ring R/I , which is still denoted by ∗ .

Lemma 3.8 Let R be ∗-semiclean and I be ∗-invariant ideal, then the ring R/I is ∗-semiclean. In particular,
the ring R/J(R) is ∗-semiclean.

Proof By [21, Proposition 2.1], the homomorphic image of semiclean is semiclean. Also, the homomorphic
image of projection is projection. Thus, the result holds. Since an ideal J(R) is ∗ -invariant, therefore, R/J(R)

is ∗ -semiclean. 2

Every polynomial ring over a commutative ring is not ∗ -semiclean, as shown in Example 3.9.

Example 3.9 Let R be a commutative ring. Then the polynomial ring R[x] is not ∗-semiclean.

Proof By [21, Example 3.2], the polynomial ring R[x] is never semiclean. Hence, for any involution ∗ , the
ring R[x] is not ∗ -semiclean. 2

Let R be a ∗ -ring and R[[x]] be a power series ring. Then, on R[[x]] , an induced involution ∗ is defined as
(
∑∞

i=0 αix
i)∗ =

∑∞
i=0 α

∗
i x

i . In 2003, Yuanqing Ye [21] proved that the ring R[[x]] is semiclean if and only if R

is semiclean. This result has been extended to ∗ -semiclean by Proposition 3.10.

Proposition 3.10 The ring R[[x]] is ∗-semiclean if and only if R is ∗-semiclean.

Proof ⇒ Let R[[x]] be ∗ -semiclean. Because R ∼= R[[x]]/(x) and (x) is a ∗ - invariant ideal of R[[x]] , R is
∗ -semiclean according to Lemma 3.8.
⇐ Let R be ∗ -semiclean and g(x) =

∑∞
i=0 αix

i ∈ R[[x]]. If α0 = f + v , where f ∈ Pri∗(R) and v ∈ U(R) ,
then g(x) = f + (v +

∑∞
i=1 αix

i) , where f ∈ Pri∗(R) ⊆ Pri∗(R[[x]]) and v +
∑∞

i=1 αix
i ∈ U(R[[x]]) . As a

result, g(x) ∈ R[[x]] is ∗ -semiclean. 2
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Every ∗ -clean ring is a ∗ -semiclean ring, but the converse is not true. By Theorem 3.11, we demonstrate that,
under certain conditions, the converse will also hold.

Theorem 3.11 Let R be a torsion free ring, and z ∈ R such that z = b+v , where b ∈ Pri∗(R) and v ∈ U(R) .
If v = ±1 , then z is ∗-clean.

Proof Case I: Let v = 1

Rewrite an element z ∈ R as z = b + 1 , bk = bl (where, l and k are positive integers such that l > k ), and
bk(l−k) = p = p∗ ∈ P (R) .
We have (z− 1)k = (z− 1)l because bk = bl , which implies that (1− z)2k = (1− z)2l and (1− z)2k(2l−2k) = p .
As a result, 1−z is ∗ -periodic, and thus, according to Lemma 2.5, an element 1−z is ∗ -clean, i.e. 1−z = f+u ,
where f = (1−p) ∈ P (R), and u ∈ U(R) . To put it simply, z = p+u

′ , where p ∈ P (R) and u
′
= −u ∈ U(R) .

Case II: Let v = −1

Then an element z ∈ R is rewritten as z = b− 1 .

1. Let b = bn (where, n is a positive integer such that n > 1).
Then z = bn−1 + (−1 + b − bn−1) . Because b ∈ Pri∗(R) and b = bn , an element bn−1 ∈ P (R) . An
element −1 + b − bn−1 is a unit in R , with the inverse (2n−1 − 1 + 2n−3b + 2n−4b2 + · · · + bn−2 + (1 −
2n−2)bn−1)(1− 2n−1)−1 ∈ R . Hence, z = b− 1 is ∗ -clean.

2. Let bk = bl (where, l and k are positive integers such that l > k ).
Then z = bk(l−k) +(−1+ b− bk(l−k)) . Because b ∈ Pri∗(R) and bk = bl , an element bk(l−k) ∈ P (R) . An
element −1 + b− bk(l−k) is a unit in R . Hence, z = b− 1 is ∗ -clean.

2

4. Matrix extension of ∗-semiclean rings

If R is a ∗ -ring, then Mn(R) the ring of n × n matrices over R inherits the natural involution from R : if
A = (aij) , then A∗ is the transpose of (a∗ij) . In 2010, Lia Vaš [18] proved that if both pRp and (1−p)R(1−p)

are ∗ -clean rings (here p is a projection), then R is ∗ -clean. As a result, the Mn(R) (ring of n× n matrices
over R) is ∗ -clean. This result has been extended to ∗ -semiclean rings in this section.

Lemma 4.1 If pRp and (1− p)R(1− p) are both ∗-semiclean, where p ∈ P (R) , then R is also ∗-semiclean.

Proof For each p ∈ R , write 1− p = p . Apply the Pierce decomposition of the ring R :

R =

[
pRp pRp
pRp pRp

]
.

Let M =

[
m n
o q

]
∈ R . Thus, m = a + u , where a ∈ Pri∗(pRp) such that ak1 = al1 (where, l1 and k1 are

possitive integers such that l1 > k1 ) and u is a unit in pRp with inverse u1 . Then, q − nu1o ∈ pRp . So
q − ou1n = b+ v , where b ∈ Pri∗(pRp) such that bk2 = bl2 (where, l2 and k2 are possitive integers such that
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l2 > k2 ) and v is a unit in pRp with inverse v1 . Thus,

M =

[
a+ u n
o b+ v + nu1o

]
=

[
a 0
0 b

]
+

[
u n
o v + ou1n

]
.

To show:
[
u n
o v + ou1n

]
is unit in R .

Compute,
[

p 0
−ou1 p

] [
u n
o v + ou1n

] [
p −u1n
0 p

]
=

[
u n
0 v

] [
p −u1n
0 p

]
=

[
u 0
0 v

]
. Since the matrices

[
u 0
0 v

]
,[

p 0
−ou1 p

]
, and

[
p −u1n
0 p

]
are units in

[
pRp pRp
pRp pRp

]
, therefore,

[
u n
o v + ou1n

]
is unit in R .

To show:
[
a 0
0 b

]
is ∗ -periodic, i.e.

[
a 0
0 b

]k
=

[
a 0
0 b

]l
and

[
a 0
0 b

]k(l−k)

∈ P (R) (where, l and k are the

possitive integer such that l > k ).
Without loss of generality, let k2 ⩾ k1 .

ak1 = al1 = a(l1−k1)+k1 = as(l1−k1)+k1 ,
bk2 = bl2 = b(l2−k2)+k2 = bs(l2−k2)+k2 , and
ak2 = ak1+(k2−k1) = as(l1−k1)+k2 .
Let k = k2 and l = (l1 − k1)(l2 − k2) + k2 . Then, ak = al and bk = bl .

Thus,
[
a 0
0 b

]k
=

[
ak 0
0 bk

]
=

[
al 0
0 bl

]
=

[
a 0
0 b

]l
. Hence,

[
a 0
0 b

]
is periodic.

As a ∈ Pri∗(pRp) and ak = al . Thus, ak(l−k) = p1 , where p1 ∈ P (pRp) .
Similarly, b ∈ Pri∗(pRp) and bk = bl . Thus, bk(l−k) = 1− p2 , where p2 ∈ P (pRp) .

Compute,
[
a 0
0 b

]k(l−k)

=

[
ak(l−k) 0

0 bk(l−k)

]
=

[
p1 0
0 1− p2

]
∈ P (R).

This proves that matrix M is ∗ -semiclean. Therefore, R is ∗ -semiclean. 2

By Lemma 4.1, and an inductive argument, the next result holds.

Theorem 4.2 If p1, p2, · · · , pn are orthogonal projections with 1 = p1+p2+ · · ·+pn , and piRpi is ∗-semiclean
for each i , then R is ∗-semiclean.

The following two conclusions follow directly from Theorem 4.2.

Corollary 4.3 If R is ∗-semiclean, then so is Mn(R) .

Corollary 4.4 If N = N1

⊕
N2

⊕
· · ·

⊕
Nn are modules and End(Ni) is ∗-semiclean for each i , then End(N)

is ∗-semiclean.

5. ∗-Semiclean group rings

In this section, we obtain several results pertaining to commutative and noncommutative ∗ -semiclean group
rings. Throughout this section, we are considering standard involution on the group ring RG .
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Theorem 5.1 If RG is a ∗-semiclean ring, then so is ((R/J(R))G .

Proof Define a map Ψ : RG → (R/J(R))G as Ψ(
∑

g∈G αgg) =
∑

g∈G Ψ(αg)g , Ψ(αg) = αg + J(R) . Note
that Ψ is an onto map. The map Ψ preserves an involution ∗ as Ψ(

∑
g∈G αgg)

∗ = (Ψ(
∑

g∈G αgg))
∗ . Let

x ∈ (R/J(R))G . Since Ψ is an onto map, there exists an element x ∈ RG , which is defined as x = f + u ,
where f ∈ Pri∗(RG) and u ∈ U(RG) . So, x = Ψ(f) + Ψ(u) , where Ψ(f) ∈ Pri∗((R/J(R))G) and
Ψ(u) ∈ U((R/J(R))G) . Hence, ((R/J(R))G is a ∗ -semiclean ring. 2

5.1. Abelian group rings

In 2015 [6], Gao, Chen, and Li found out that when the group rings RC3 , RC4 , RS3 , and RQ8 are ∗ -clean,
where R is a commutative local ring. In this section, we have extended this result to ∗ -semiclean rings. As
a consequence, many examples of group rings that are ∗ -semiclean but not ∗ -clean have been obtained. In
Theorem 5.7 and 5.8, a characterization that when the group rings RCr and RG are ∗ -semiclean is obtained
(respectively). Here, R is a finite commutative local ring, Cr is a cyclic group of order r , and G is a locally
finite abelian group.

Proposition 5.2 ([13]) If R is local, G is a locally finite p-group, and p ∈ J(R) , then the group ring RG is
local.

We now investigate when RC3 is ∗ -semiclean.

In 2015 [6], Gao, Chen, and Li investigated the group rings RC3 and ZpC3 and proved that if (−3)
p−1
2 ≡

1(mod p) , then the group ring ZpC3 is not ∗ -clean; however, Theorem 5.3(3) demonstrates that it is ∗ -
semiclean. Furthermore, in Theorem 5.3(2) , we relaxed the requirement that RC3 be clean, allowing us to
broaden the class of rings (rings that are ∗ -semiclean but not ∗ -clean are obtained). One such example is
Z(7)C3 , which is explained below.

Theorem 5.3 Let R be a commutative local ring and G = C3 = ⟨x⟩ be a cyclic group of order 3.

1. If 3 /∈ U(R) , then RC3 is ∗-semiclean.

2. If 3 ∈ U(R) and the equation z2 + z + 1 = 0 has no solutions in R , then the ring RC3 is ∗-semiclean.

3. If 2 ∈ U(R) , then RC3 is ∗-semiclean if RC3 is clean and U(RC3) is a torsion group.

Proof

1. Since 3 ∈ J(R) , by Proposition 5.2, RC3 is local. Hence, RC3 is a ∗ -semiclean.

2. According to [10, Theorem 2.7], the ring RC3 is a semiclean ring. By [6, Theorem 2.4], if the equation
z2 + z + 1 = 0 has no solution in R , then every idempotent of the ring RC3 is a projection. Hence, by
Proposition 3.2, the ring RC3 is a ∗ -semiclean ring.

3. If RC3 is clean and 2 ∈ U(RC3) , then by [20, Proposition 2.5], RC3 is a 2 -good ring. If an element
a ∈ RC3 , then there exist u1, u2 ∈ U(RC3) such that a = u1+u2 , according to the definition of a 2 -good
ring. Because U(RC3) is a torsion group, there exists m ∈ N such that um

1 = 1 = 1∗ , implying that
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u1 ∈ Pri∗(RC3) and u2 ∈ U(RC3) . Thus, element a is ∗ -semiclean. Since a is an arbitary element of
RC3 , therefore, every element of RC3 is ∗ -semiclean. Hence, RC3 is a ∗ -semiclean ring.

2

The examples given below are the direct consequences of Theorem 5.3.

Example 5.4 1. By Theorem 5.3(1), the ring Z3C3 is ∗-semiclean.

2. The ring Z(7)C3 is ∗-semiclean because the equation z2 + z + 1 = 0 has no solution in Z(7) , but it is not
∗-clean because, according to [14], Z(p)C3 is clean if and only if p ≇ 1(mod3) .

3. By [22, Corollary 19], we can say that ZpC3 , where p > 2 is prime, is clean. Also, as 2 ∈ U(ZpC3) , by

Theorem 5.3(3a), we conclude ZpC3 is ∗-semiclean, but by [6, Example 2.7], for p > 3 , if (−3)
p−1
2 ≡

1(mod p) , it is not ∗-clean.

We now investigate when RC4 is ∗ -semiclean.

In 2015 [6], Gao, Chen, and Li investigated the group rings RC4 and ZpC4 , and proved that if p ≡ 1(mod 4) ,
then the group ring ZpC4 is not ∗ -clean; however, Theorem 5.5(2b) demonstrates that it is ∗ -semiclean. Fur-
thermore, in Theorem 5.5(2a) , we relaxed the requirement that RC4 be clean, allowing us to broaden the
class of rings (rings that are ∗ -semiclean but not ∗ -clean are obtained). One such example is Z(5)C4 , which is
explained below.

Theorem 5.5 Let R be a commutative local ring and G = C4 = ⟨x⟩ be a cyclic group of order 4.

1. If 2 /∈ U(R) , then RC4 is ∗-semiclean.

2. If 2 ∈ U(R) , then RC4 is ∗-semiclean if any of the condition given below is satisfied.

(a) The equation z2 + 1 = 0 has no solutions in R .

(b) RC4 is clean and U(RC4) is torsion group.

Proof

1. Since 2 ∈ J(R) , by Proposition 5.2, RC4 is local. Hence, RC4 is a ∗ -semiclean.

2. (a) According to [10, Theorem 2.7], the ring RC4 is a semiclean ring. By [6, Theorem 2.10], if the
equation z2 + 1 = 0 has no solution in R , then every idempotent of the ring RC4 is a projection.
Hence, by Proposition 3.2, the ring RC4 is a ∗ -semiclean ring.

(b) The proof is similar to the proof of Theorem 5.3(3).

2

The examples given below are the direct consequences of Theorem 5.5.

Example 5.6 1. The ring Z(5)C4 is ∗-semiclean because the equation z2 + 1 = 0 has no solution in Z(5) ,
but it is not ∗-clean because, according to [14], Z(5)C4 is not clean.
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2. By [22, Corollary 19], we can say that ZpC4 , where p > 2 is prime, is clean. Also, as 2 ∈ U(ZpC4) , by
Theorem 5.5(2b) , we conclude ZpC4 is ∗-semiclean, but by [6, Corollary 2.11], for p ≡ 1 (mod 4) , ZpC4

is not ∗-clean.

By using Theorem 5.7 and Theorem 5.8, we can find various other examples of ∗ -semiclean rings that are not
∗ -clean. Some of them are listed in Example 5.9.

Theorem 5.7 Let R be a finite commutative local ring.

1. If 2 ∈ U(R) and Cr = ⟨x⟩ is a cyclic group of order r , then RCr is ∗-semiclean.

2. If 2 ∈ J(R) , Cr = ⟨x⟩ is a cyclic group of order r = 2st (s ≥ 0) , where 2 ̸ |t , and γ is the cyclic
permutation on the set J = {1, 2, · · · , t − 1} defined as γ : J → J by j → 2j(mod t) , then RCr is
∗-semiclean.

Proof

1. Let x ∈ RCr . The group ring RCr is periodic because it is finite. Thus, according to [21, Lemma
5.1], RCr is clean. Furthermore, 2 ∈ U(R) . Thus, by [20, Proposition 2.5], RCr is a 2 -good ring, i.e.
x = u1 + u2 , where u1, u2 ∈ U(RCr) . As RCr is periodic, according to [2, Proposition 2.3], U(RCr) is a
torsion group. Because u1 ∈ U(RCr) , there exists n ∈ N such that un

1 = 1 = 1∗ . Thus, u1 ∈ Pri∗(RCr)

and u2 ∈ U(RCr) . As a result, an element x meets the condition of being ∗ -semiclean. Hence, RCr is
∗ -semiclean.

2. Let s ≥ 1 . Then Cr
∼= C2s × Ct . Thus, RCr

∼= (RC2s)Ct , where Ct = ⟨x⟩ is a cyclic group of
order t . By [13, Theorem], R

′
= RC2s is the local ring. Since (R/J(R)) is a field of char = 2 and

(R/J(R))C2s → (R
′
/J(R

′
)) is ring epimorphism, therefore, (R

′
/J(R

′
)) is also a field of char = 2 . Let

a = a0 + a1x + a2x
2 + · · · + at−1x

t−1 be an idempotent element of (R
′
/J(R

′
))Ct . Because 2 = 0 and

xt = 1 , it follows that a2 = a20 + aγ(1)x
γ(1) + · · · aγ(t−1)x

γ(t−1) . Because γ is the cyclic permutation on
the set J = {1, 2, · · · , t − 1} , therefore, a20 = a0 and a21 = a1 = a2 = · · · = at−1 . So the idempotents
of (R

′
/J(R

′
))Ct are 0, 1, 1 + x + · · · + xt−1 , and x + x2 + · · · + xt−1 . Because 0∗ = 0 , 1∗ = 1 ,

(1 + x+ · · ·+ xt−1)∗ = 1+ x+ · · ·+ xt−1 and (x+ x2 + · · ·+ xt−1)∗ = x+ x2 + · · ·+ xt−1 , implying that
(R

′
/J(R

′
))Ct has four idempotents, all of which are projections. Now, because Ct is a locally finite group,

J(R
′
)Ct ⊆ J(R

′
Ct) . As the (char(R′

/J(R
′
)), t) = 1 , therefore, (R

′
/J(R

′
))Ct is semisimple, implying

that R
′
J(Ct) = J(R

′
Ct) . Therefore, we get (R

′
/J(R

′
))Ct

∼= R
′
Ct/J(R

′
)Ct = R

′
Ct/J(R

′
Ct) . Thus,

the factor ring R
′
Ct/J(R

′
Ct) = R′Ct will also have only four idempotents : 0, 1, 1 + x + · · · + xt−1 ,

and x + x2 + · · · + xt−1 , all of which are projections. Since the order of the ring R′Ct is finite, R′Ct is
clean. Thus, R′Ct is ∗ -clean, i.e. for each a ∈ R′Ct , there exist p ∈ P (R′Ct) and u ∈ U(R′Ct) , such
that a = p + u . Moreover, in R

′
Ct the elements m1 = 0, m2 = 1, m3 = t−1(1 + x + · · · + xt−1) , and

m4 = t−1((t−1)−x−x2−· · ·−xt−1) are projections such that m1 = 0, m2 = 1, m3 = 1+x+ · · ·+xt−1 ,
and m4 = x + x2 + · · · + xt−1 which implies there exists a n1 = p ∈ P (R

′
Ct) such that n1 = p for

p ∈ P (R′Ct) . There is also n2 = u ∈ U(R
′
Ct) such that n2 = u for u ∈ U(R′Ct) . Thus, there exists an

element n3 = p+ u ∈ R
′
Ct such that n3 = p+ u for p+ u ∈ R′Ct . Then n3 = a , i.e. a− n3 ∈ J(R

′
Ct) .
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Since R
′ is finite, R′ is an artinian ring, which implies J(R

′
) is nilpotent. Thus, J(R′

)Ct is nil-ideal. By
[11, Corollary 4.3], J(R

′
)Ct is nilpotent. Since J(R

′
Ct) = J(R

′
)Ct , the ideal J(R

′
Ct) is also nilpotent.

Since a−n3 ∈ J(R
′
Ct) , therefore, a−n3 = a− (p+u) = k for some k ∈ J(R

′
Ct) . Simplifying it, we get

a = p+u+ k , where p ∈ P (R
′
Ct) , u ∈ U(R

′
Ct) , and k ∈ J(R

′
Ct) . Thus, a = p+ v , where p ∈ P (R

′
Ct)

and v = (u + k) ∈ U(R
′
Ct) . As a result, an element a meets the condition of being ∗ -clean. Hence,

RCr = R
′
Ct is ∗ -clean. Thus, RCr is ∗ -semiclean.

2

Theorem 5.8 Let R be a finite commutative local ring and G be a locally finite abelian group.

1. If 2 ∈ U(R) , then RG is ∗-semiclean.

2. If 2 ∈ J(R) and G is a locally finite 2-group, then RG is ∗-semiclean.

3. If 2 ∈ J(R) with R/J(R) ∼= F2 and exponent of G is r , where r is an odd positive integer, and a q ∈ N
exists such that 2q ≡ −1(mod r) , then RG is ∗-semiclean.

Proof

1. Let x ∈ RG . Since G is a locally finite abelian group, there exists a finite subgroup H such that x ∈ RH .
The rest of the proof is similar to that of Theorem 5.7(1).

2. Since 2 ∈ J(R) , by Proposition 5.2, RG is local. Hence, RG is ∗ -semiclean.

3. We will first show that the group ring RG′ is ∗ -clean for any arbitary finite abelian group, say G
′

(with odd exponent say r ) such that 2q ≡ −1(mod r) for some q ∈ N . Let a = x1 + x2 + · · · + xt be
the idempotent element of (R/J(R))G

′ , where xi ∈ G
′ for i = 1 to t . Then (x1 + x2 + · · · + xt)

2 =

x2
1 + x2

2 + · · · + x2
t = x1 + x2 + · · · + xt . Thus, {x1, x2, · · · , xt} = {x2

1, x
2
2, · · · , x2

t} . Furthermore,

if x ∈ {x1, x2, · · · , xt} , then x2k ∈ {x1, x2, · · · , xt} for some k ∈ N . Thus, an element x can be
rewritten as x = (xk1

+ x2
k1

+ · · · + x2m1

k1
) + · · · + (xkj

+ x2
kj

+ · · · + x2mj

kj
) . Here the elements xki

are

distinct and mi ’s are the smallest positive integers such that x2mi+1

ki
= xki

. Evaluating x∗ , we have

x∗ = (x−1
k1

+ x−2
k1

+ · · · + x−2m1

k1
) + · · · + (x−1

kj
+ x−2

kj
+ · · · + x−2mj

kj
) . Since, for some q ∈ N , we have

2q ≡ −1(mod p) , thus, clearly a∗ = a , i.e. every idempotent of (R/J(R))G
′ is a projection. Now,

as the order of (R/J(R))G
′ is finite, it is a clean ring. As a result, the ring (R/J(R))G

′ is ∗ -clean.
Now, as G is a locally finite group, therefore, J(R)G

′ ⊆ J(RG
′
) . Since order of every element of G

′ is
invertible in (R/J(R)) , therefore, (R/J(R))G

′ is semisimple. Thus, J(R)G
′
= J(RG

′
) . Therefore, we

get (R/J(R))G
′ ∼= RG

′
/J(RG

′
) . Thus, every idempotent of RG

′
/J(RG

′
) is a projection. Being the ring

RG
′
/J(RG

′
) = RG′ of finite order, it is a clean ring. Thus, it is a ∗ -clean ring.

Let z ∈ RG . Since G is a locally finite abelian group, there exists a finite abelian subgroup H such that
z ∈ RH . For l1 = z ∈ RH , there exists a z ∈ RH such that l1 = z . Because z ∈ RH , and because, as
explained above, the group ring RH is a ∗ -clean, there exists p ∈ P (RH) and u ∈ U(RH) , such that
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z = p + u . Because J(RH) is the ∗ -invariant nil ideal of a ∗ -ring RH , there exists a n1 = p ∈ P (RH)

such that n1 = p for p ∈ P (RH) . There is also n2 = u ∈ U(RH) such that n2 = u for u ∈ U(RH) .
Thus, there exists an element n3 = p+ u ∈ RH such that n3 = p+ u for p+ u ∈ RH . Thus, n3 = z , i.e.
z − n3 ∈ J(RH) . Also, the ideal J(RH) is nilpotent. Since z − n3 ∈ J(RH) , z − n3 = z − (p+ u) = k

for some k ∈ J(RH) . Simplifying it, we get z = p + u + k , where p ∈ P (RH) , u ∈ U(RH) , and
k ∈ J(RH) . Thus, z = p + v , where p ∈ P (RH) , and v = (u + k) ∈ U(RH) . As a result, element z

meets the condition of being ∗ -clean. Hence, RH is ∗ -clean. Thus, RH is ∗ -semiclean, which implies
RG is ∗ -semiclean.

2

The examples given below are the direct consequences of Theorem 5.7 and Theorem 5.8. These are ∗ -semiclean
but not ∗ -clean group rings.

Example 5.9 1. The ring F3C8 is ∗-semiclean, but by [16, Example 3.12], it is not ∗-clean.

2. The ring F7(C4 × C8) is ∗-semiclean, but by [16, Example 3.10(1)], it is not ∗-clean.

3. The ring F3C35 is ∗-semiclean, but by [8, Example 3.3], it is not ∗-clean.

5.2. Non-abelian group rings
In this section, we investigate when a non-abelian group ring RG is ∗ -semi-clean, where R is a commutative
local ring and G is Q8 , Q2n , D2n , and D6 .

5.2.1. Quaternion group Q8

The group ring ZpQ8 was studied by Gao in [6], and it was shown that it is not ∗ -clean; however, by Theorem
5.10, we obtain that it is ∗ -semiclean.

Theorem 5.10 Let R be a commutative local ring and G = Q8 = ⟨x, y|x4 = 1, x2 = y2, yx = x−1y⟩ be a
quaternion group of order 8.

1. If 2 /∈ U(R) , then RQ8 is ∗-semiclean.

2. If 2 ∈ U(R) , RQ8 is clean and U(RQ8) is a torsion group, then RQ8 is ∗-semiclean.

Proof

1. As R is local, Q8 is a finite 2-group, and 2 ∈ J(R) , therefore, by Proposition 5.2, RQ8 is local. Thus,
RQ8 is a ∗ -semiclean ring.

2. The proof is similar to the proof of Theorem 5.3(3).

2

The example given below is the direct consequence of Theorem 5.10.

Example 5.11 The ring ZpQ8 (where p > 2 is prime) is clean. Furthermore, because 2 ∈ U(ZpQ8) , we can
conclude from Theorem 5.10(2) that ZpQ8 is ∗-semi-clean. However, according to [6, Example 3.9], ZpQ8 is
not ∗-clean.

1417



GUPTA and UDAR/Turk J Math

5.2.2. Generalized quaternion group Q2n and Dihedral group D2n

The group ring FqQ2n was studied by Hongdi Huang in [7] and it was shown that if 4|n and gcd(q, 2n) = 1 ,
then it is not ∗ -clean; however, by Theorem 5.12, we obtain that it is ∗ -semiclean.

Theorem 5.12 Let R be a finite commutative local ring and G = Q2n = ⟨x, y|x4 = 1, y
n
2 = x2, yx = y−1⟩ be

the generalised quaternion group of order 2n or G = D2n =< x, y|yn = x2 = 1, xyx−1 = y−1 > be the dihedral
group of order 2n .

1. If 2 ∈ U(R) , then RQ2n and RD2n are ∗-semiclean.

2. If 2 ∈ J(R) , then RQ2n and RD2n (where n is a power of 2) are ∗-semiclean.

Proof

1. The proof is similar to the proof of Theorem 5.7(1).

2. As R is local, Q2n and D2n are finite 2-groups, and 2 ∈ J(R) , therefore, by Proposition 5.2, RQ2n and
RD2n are local. Thus, RQ2n and RD2n are ∗ -semiclean rings.

2

The example given below is the direct consequence of Theorem 5.12.

Example 5.13 The ring FqQ2n (where gcd(q, 2) = 1) is clean. Furthermore, because 2 ∈ U(FqQ2n) , we can
conclude from Theorem 5.12(1) that FqQ2n is ∗-semi-clean. However, according to [7, Theorem 4.7], FqQ2n

is not ∗-clean if 4|n and gcd(q, 2n) = 1 .

In 2015 [6], Gao, Chen, and Li investigated the group ring Z2D6 , and proved that it is not ∗ -clean; however,
Example 5.14 demonstrates that it is ∗ -semiclean. To prove Z2D6 is ∗ -semiclean, we have shown that every
element is written as sum of a ∗ -periodic element and a unit. To check this, we first represented every element
of Z2D6 in a matrix, and by using the SAGE [17] software obtain units, ∗ -periodic elements. We then checked
whether every element of Z2D6 can be written as the sum of a ∗ -periodic element and unit of it. By [9],
the matrix representation σ(ω) of an element ω = α0 + α1y + α2y

2 + α3x + α4yx + α5y
2x ∈ RD6 , where

D6 = ⟨x, y|y3 = x2 = 1, xyx−1 = y−1⟩ is a dihedral group of order 6 , as given by σ(ω) =

[
A B
BT AT

]
, where

A = circ
[
α0 α1 α2

]
and B = circ

[
α3 α4 α5

]
. The codes for this are given below.

Example 5.14 Consider the ring Z2D6 . The group of all units of Z2D6 is U(Z2D6) = {x, yx, y2x,
1, y+y2+x+yx+y2x, 1+y+y2+x+yx, 1+y+y2+x+y2x, 1+y+y2+yx+y2x, y, y2, 1+y+x+yx+y2x, 1+y2+

x+ yx+ y2x} . The set of all ∗-peridic elements of Z2D6 is Pri∗(Z2D6) = {0, x, yx, x+ yx, y2x, x+ y2x, yx+

y2x, x+ yx+ y2x, 1, 1+ x, 1+ yx, 1+ x+ yx, 1+ y2x, 1+ x+ y2x, 1+ yx+ y2x, 1+ x+ yx+ y2x, y, y+ x+ yx+

y2x, 1+y, 1+y+x+yx+y2x, y2, y2+x+yx+y2x, 1+y2, 1+y2+x+yx+y2x, y+y2, y+y2+x, y+y2+yx, y+

y2+x+yx, y+y2+y2x, y+y2+x+y2x, y+y2+yx+y2x, y+y2+x+yx+y2x, 1+y+y2, 1+y+y2+x, 1+y+

y2+yx, 1+y+y2+x+yx, 1+y+y2+y2x, 1+y+y2+x+y2x, 1+y+y2+yx+y2x, 1+y+y2+x+yx+y2x} .
Every element of Z2D6 can be written as the sum of a ∗-periodic element and a unit. Thus, we can say that
the group ring Z2D6 is ∗-semiclean, but by [6, Theorem 3.4], it is not ∗-clean.
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Code for the construction of a matrix representation of Z2D6 .

Type = In t eg e r (3 )
F i e ld = GF( In t eg e r ( 2 ) )
Vector = Fie ld ∗Type

CM = [ matrix . c i r c u l a n t ( a ) for a in Vector ]
Length = len (CM)

Matrices_64 = [ ]
for x in range ( Length ) :
for y in range ( Length ) :
CB = block_matrix ( In t eg e r ( 2 ) , I n t e g e r ( 2 ) , [CM[ x ] ,CM[ y ] ,CM[ y ] . T,CM[ x ] . T] )
Matrices_64 . append (CB)

Code to find the units of Z2D6 .

Elements = Fie ld ∗ In t eg e r (1 )
Zero = Elements [ I n t eg e r ( 0 ) ] [ I n t eg e r ( 0 ) ]
One = Elements [ I n t eg e r ( 1 ) ] [ I n t eg e r ( 0 ) ]

Identity_row = [ One , Zero , Zero , Zero , Zero , Zero ]
Ident ity_Matrix = matrix . c i r c u l a n t ( Identity_row )
Matrices_Unit = [ ]
List_Matrices_64 = l i s t ( range ( len ( Matrices_64 ) ) )

for x in List_Matrices_64 :
y = x
while y <=List_Matrices_64 [ len ( List_Matrices_64)− In t eg e r ( 1 ) ] :
i f y not in List_Matrices_64 :
y = y+In t eg e r (1 )

else :
mul_r = Matrices_64 [ x ] ∗ Matrices_64 [ y ]
i f mul_r == Identity_Matrix :
mul_r_rev = Matrices_64 [ y ] ∗ Matrices_64 [ x ]
i f mul_r_rev == Identity_Matrix :
Matrices_Unit . append ( x )
Matrices_Unit . append ( y )
break
y = y+Int eg e r (1 )
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Code to find the ∗-periodic element of Z2D6 .

Zero_row = [ Zero for x in range ( I n t eg e r ( 6 ) ) ]
Zero_Matrix = matrix . c i r c u l a n t ( Zero_row )

Zero_row_3 = [ Zero for x in range ( In t eg e r ( 3 ) ) ]
One_row_3 = [ One for x in range ( I n t eg e r ( 3 ) ) ]
Combination_row_3 = [ Zero , One , One ]
Zero_matrix_3 = matrix . c i r c u l a n t ( Zero_row_3 )
One_matrix_3 = matrix . c i r c u l a n t (One_row_3)
Comb_matrix_3 = matrix . c i r c u l a n t ( Combination_row_3 )

Pro j e c t i on1 = block_matrix ( 2 , 2 , [ One_matrix_3 , Zero_matrix_3 , Zero_matrix_3 , One_matrix_3 ] )
Pro j e c t i on2 = block_matrix ( 2 , 2 , [ Comb_matrix_3 , Zero_matrix_3 , Zero_matrix_3 , Comb_matrix_3 ] )

Matr i ce s_StrPer iod ic = [ ]
N = In t eg e r (1000000)

for x in range ( len ( Matrices_64 ) ) :
r e s = Matrices_64 [ x ]
i = In t eg e r (1 )
while i <=N:
r e s = r e s ∗ Matrices_64 [ x ]
i f r e s == Identity_Matrix or r e s == Zero_Matrix or r e s == Pro j e c t i on1
or r e s == Pro j e c t i on2 :
Matr i ce s_StrPer iod ic . append ( [ x , i+In t eg e r ( 1 ) ] )
break
i = i+In t eg e r (1 )

Code to check whether every element of Z2D6 can be written as the sum of ∗-periodic ele-
ment and unit of it.

Matrices_Star_Semiclean = [ ]
Star_Semiclean_map = [ ]

StarPer iod ic_Set = set ( x [ I n t eg e r ( 0 ) ] for x in Matr i ces_StrPer iod ic )
Unit_set = set ( Matrices_Unit )

for x in StarPer iod ic_Set :
for y in Unit_set :
r e s = Matrices_64 [ x]+Matrices_64 [ y ]
i f r e s in Matrices_64 :
index = Matrices_64 . index ( r e s )
i f index not in Matrices_Star_Semiclean :
Matrices_Star_Semiclean . append ( index )
Star_Semiclean_map . append ( [ x , y , index ] )
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