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Abstract: A ring R is called semiclean if every element of R can be expressed as sum of a periodic element and a
unit. In this paper, we introduce a new class of ring, which is the x-version of the semiclean ring, i.e. the *-semiclean
ring. A x-ring is *-semiclean if each element is a sum of a *-periodic element and a unit. The term #*-semiclean is a
stronger notion than semiclean. In this paper, many properties of *-semiclean rings are discussed. It is proved that if
p € P(R) such that pRp and (1 — p)R(1 — p) are *-semiclean rings, then R is also a *-semiclean ring. As a result,
the matrix ring M, (R) over a *-semiclean ring is *-semiclean. A characterization that when the group rings RC, and
RG are *-semiclean is done, where R is a finite commutative local ring, C, is a cyclic group of order r, and G is
a locally finite abelian group. We have also found sufficient conditions when the group rings RC5, RCs, RQs, and
RQ2, are x-semiclean, where R is a commutative local ring. We have also demonstrated that the group ring ZsDs is

a x-semiclean ring (which is not a %-clean ring).
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1. Introduction

A ring R is called clean if every element of R can be expressed as a sum of an idempotent and a unit. In
literature, a lot of work is done on this class of ring; see [14, 19], and [22] for more details on it. A ring R is
called x-clean if every element of R can be expressed as sum of a projection and a unit. See [1, 3, 6, 8, 12, 16],
and [18] for more details on it. So far, much work has been done on the x-clean ring, but the *-semiclean ring
has yet to be discovered. The motivation of the paper is to find out about the * concept in the semiclean ring.
In this paper, we are introducing a *-semiclean ring. A =x-semiclean ring is the subclass of a semiclean ring
and properly contains the class of a #-clean ring. A ring R is a *-ring (or ring with involution) if there is an

operation % : R — R such that
(a+b)"=a"+b", (ab)* =b"a*, (a")"=a

for all a,b € R. An element p of a *-ring R is known as a projection if p* = p = p?, i.e. p is a self-adjoint
idempotent. An element a of a *-ring R is called x-periodic if there exists a positive integer n > 1 such that
a™ = p, where p is a projection. A x-ring R is called *-semiclean if each element of R is sum of a x-periodic
element and a unit. Both local and *-clean rings are clearly *-semiclean, and a x-semiclean ring is semiclean.

In Section 2, we look at the various basic properties of *-periodic elements. In Section 3, we obtain various
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properties of x-semiclean rings. Moreover, examples of semiclean rings that are not *-semiclean and *-semiclean
rings that are not x-clean are provided. In Section 4, the matrix extension of the x-semiclean rings is done. In
Section 5, we investigate when a group ring RG is *-semiclean. We provide a characterization that when the
group ring RC, and RG are x-semiclean, where R is a finite commutative local ring, C, is a cyclic group of
order r, and G is a locally finite abelian group. We obtain several sufficient conditions for the group ring RG
to be x-semiclean, where R is a commutative local ring and G is one of the groups C;, i = 3,4 (cyclic group
of order 3 and 4), Qs (quaternion group of order 8), and @2, (generalized quaternion group). As a result,
numerous examples of x-rings that are *-semiclean but not *-clean have been discovered. Also, we have shown
that the group ring Z,Dg is *-semiclean but not x-clean.

In the paper, the ring R represents an associative ring with unity. The terms J(R), U(R), I(R), N(R),
Pri*(R) and P(R) represent the Jacobson radical, the group of all units, the set of all idempotents, the set
of all nilpotents, the set of all x-periodic elements, and the set of projections of a ring R, respectively. For a
group ring RG, the classical (or standard) involution : RG' — RG is given by (3_,cq99)" =2 cq aggt;
see [15, Proposition 3.2.11] for more details. Also, for a ring R, the ring homomorphism ¢ : RG — R defined
by deG Qg9 = deG ay is known as the augmentation mapping of RG. Moreover, the terms Z,, Z(,), and
Z represent the ring of integers modulo p, the localization of Z at the prime ideal generated by p, and the ring

of integers, respectively.

2. x-Periodic elements

Some properties of *-periodic elements are given in this section.

Definition 2.1 Let R be a *-ring. An element x € R is called -periodic if % = 2! (where, | and k are

positive integers, 1 # k) such that z'*=Y = p  where p € P(R).
Theorem 2.2 Let R be a x-ring, and x € R. Then the following statements are equivalent:

1. There exists n € N such that ™ = p, where p € P(R).

2. There exists an integer n > 2 such that x = f + a, where f* = f and f*~! = p, with p € P(R),
a € N(R) and zf = fx.

3. x is a *-periodic element.

Proof 1. = 2. Since 2" = p = p? = £?", which implies 2" = 22" for some n € N. Rewrite an element

z as x = 2" + (z — ") where (") = 2" (since (") = (2" - 2)" T = (pz)" Tt = pan Tl =
pr =z" -z = z"") and (z"TH)" = p. Also, (z — 2" ™" = 2" (1 —2™)" = p(1 —p)" = p(1 —p) = 0, ie.
r— 2" e N(R).

2. = 3. It follows from [4, Lemma 4.3, Definition 4.4].

3. = 1. By Definition 2.1, we can say there exist distinct positive integers I and k such that z!(*=0) = p,
where p € P(R). Since I(k — 1) € N, therefore, there exists n = [(k — ) € N such that 2" = p. O

Let R be a x-ring. According to [2, Proposition 2.1], [3, Theorem 3.2}, and [3, Theorem 3.6], z € R is
a strongly-7-*-regular element if and only if there exists an integer n > 1 such that =" = pu = up, where

p € P(R) and v € U(R). For more information on strongly-7-*-regular, we can see [5].
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Theorem 2.3 Let R be a x-ring, and x € R. Then the following statements are equivalent:
1. x is x-periodic element.
2. x is strongly-m-*-regular element, with w=1¢€ U(R).

Proof 1. = 2. From Theorem 2.2, we get 2™ = p = p- 1, where p € P(R) and 1 € U(R); therefore, x
satisfies the condition of being strongly-m-x*-regular with « =1 € U(R).

2. = 1. As z is a strongly- - x-regular element, there exists an integer n > 1 such that 2™ = pu. Since u =1,
which implies ™ = p, then by Theorem 2.2, x is *-periodic element. O

The following concept is based on the above.

Definition 2.4 Let R be a x-ring. An element x € R is called *-periodic if it satisfies the conditions given in
Theorem 2.2 or Theorem 2.3.

Let R be a x-ring. According to [18], an element = € R is called (strongly) *-clean if it can be expressed as
z =p+u, where p € P(R) and u € U(R), with (pu = up).

Lemma 2.5 FEvery x-periodic element is strongly-x*-clean.

Proof Let x be a x-periodic element. By Theorem 2.2, an integer n > 1 exists, and p € P(R), such that

2™ =p. Clearly, 1 —p = f is a projection. If we prove that u =z — (1 — p) is a unit, then it will complete the
proof. Define

v=a""tp—(1+z+ - +2" (1 -p).
Rewrite the term w as u = zp — (1 — z)(1 — p). Evaluate the term uv, we have
wo = (ap— (1= 2)(1 =P p~ (Lt 2+ +a")(1 ~p)
=a"p+(I=z)(1+a+-+2""")(1-p)

=p+(1-a")(1-p)
=1.

Clearly, uv = vu. Therefore, we get uv = vu = 1, which implies u is a unit with inverse v. Hence, =z = f + u,

where f € P(R) and u € U(R). Clearly, fu=a+p—ap—1=uf. Hence, element x is strongly *-clean. O

3. *-Semiclean rings

Let R be a x-ring. In 2003, Y. Ye introduced the class of semiclean rings [21]. The notion of x-semiclean
rings can be perceived as a *-versions of the semiclean ring. In this section, the definition and properties of
x-semiclean rings are given.

Definition 3.1 A x-ring R is x-semiclean if every element in it can be written as the sum of a *-periodic

element and a unit.

Proposition 3.2 A x-ring R is x-semiclean if it is semiclean, and every idempotent is a projection.
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Corollary 3.3 The group ring Z, Cs, where C3 is a cyclic group of order 3, is *-semiclean for every prime
p.

Proof [21, Theorem 3.1] states that the group ring Z,)C3 is semiclean, and [21, proposition 3.1] tells us that

the only idempotents of the group ring Z, Cs are 0, 1, + + 2a+ £a® and 2 — fa — 1a?. Since 0% is 0, 1* is

1, (% + %a + %aQ)* is % + %a+ %a2, and (% - %a - %aQ)* is % — %a — %az, this implies that every idempotent
is a projection. Hence, by Proposition 3.2, Z,)Cs is *-semiclean for every prime p. O

There exists an example of *-ring which is clean but not *-clean ring.

Example 3.4 Let R = Zo X Zy be a commutative ring. Now, define a map * : R — R such that (a,b)* = (b,a).

Then R is a clean ring, but it is not x-clean ring as idempotents do not coincide with projection.

Similarly, there exists a *-ring that is semiclean but not x-semiclean; in fact, we obtain the following relations

between the classes of rings:

x-periodic = strongly-m-*-regular = %-clean = x-semiclean

I I Y I

periodic = strongly-mw-regular = clean = semiclean

The examples given below show that the above relations are irreversible.

Example 3.5 1. Let R= {{8 8} , [(1) ﬂ , [(1) (ﬂ , [8 ﬂ} (where 0,1 € Zs ) be a commutative ring under

the usual addition and multiplication. Clearly, the ring R is semiclean. Now, define a map * : R — R

*
z y| _ z+y Y . 1 1
such that [z w] = L: tytztw Y+ w] . The only way of representing the element [O g| assum

of the periodic and the unit is [8 ﬂ + Ll) (1)] , but [8 ﬂ ¢ Pri*(R). Hence, it is not *-semiclean.

2. By Corollary 3.5, the group ring ZCs, where Cs is a cyclic group of order 3, generated by a, is
x-semiclean. However, the element 2 + 3a of Z7)C3 is not clean. Thus, the group ring ZCs is not

* -clean.

3. The ring F3Cy is finite; therefore, it is clean, but by [16, Ezample 3.12], it is not *-clean.

4. Let R =175 Zs5 be a ring. Define an involution map * : R — R such that (a,b)* = (b,a). The ring R

is strongly-m -reqular, but it is not strongly-m -*-regular as idempotents do not coincide with projections.

5. The ring R = F2Cg is finite, so it is periodic, but by [16, Example 3.10], it is not *-clean, and thus

according to Lemma 2.5, it is not *-periodic.

Theorem 3.6 Let R be a x-ring, with 2 € U(R). Then R is semiclean, and every unit is self-adjoint, i.e.
v*=wv for all v € U(R) if and only if R is x-semiclean and * = 1g.

Proof = Let a € R. Then, by Definition 3.1, we have a = f + v, where f2" = f" and v € U(R). Observe
that (1 —2f")? = 1. Because every unit of R is self-adjoint, 2f"* = 2f™. As a result, 2(f"* — f") = 0.
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Because 2 € U(R), f** = f™, implying that an element a € R is *-semiclean. Because f € R is periodic, and
every periodic is clean, so f = f +v', where f € I(R) and v € U(R). Observe that (1 —2f")2 = 1. Because
every unit of R is self-adjoint, 2f/* =2f . As a result, 2(fl* ffl) = 0. Because 2 € U(R), f/* = f', implying
that f* = f. Hence, a* = a, so x = 1x.

<« Obvious. O

If an element z is self-adjoint square root of 1, it fulfills the conditions 22 =1 and 2* = .
Every element of a *-clean ring in which 2 is invertible is shown to have a sum of no more than 2 units by Jian
Cui and Zhou Wang [3]. We extended this finding to *-semiclean rings using Theorem 3.7 and demonstrated

that each element of a *-semiclean ring can be expressed as the sum of three units.

Theorem 3.7 Let R be a *-semiclean ring with 2 € U(R). Then every element of R is the sum of a self-adjoint

square oot of 1 and two units.

Proof Let a € R. Then %/t = f + v, where f € Pri*(R) and v € U(R). Because f € Pri*(R), f* = f*",
and f" = p = p*. According to Lemma 2.5, f = f +v , where f = (1—-p) € P(R) and v e U(R). Thus,
a=(2-2p)—1+20 +20=(1—-2p)+ 20 + 20, where (1 —2p)* =1—2p and (1 —2p)? =1, with 20,
20 € U(R). O

An ideal I of a *-ring R is called *-invariant if I* C I. Lemma 3.8 extends an involution % of R to the factor
ring R/I, which is still denoted by .

Lemma 3.8 Let R be x-semiclean and I be x-invariant ideal, then the ring R/I is x-semiclean. In particular,

the ring R/J(R) is x-semiclean.

Proof By [21, Proposition 2.1], the homomorphic image of semiclean is semiclean. Also, the homomorphic
image of projection is projection. Thus, the result holds. Since an ideal J(R) is *-invariant, therefore, R/J(R)
is *-semiclean. O

Every polynomial ring over a commutative ring is not *-semiclean, as shown in Example 3.9.

Example 3.9 Let R be a commutative ring. Then the polynomial ring R[x] is not *-semiclean.

Proof By [21, Example 3.2], the polynomial ring R[z] is never semiclean. Hence, for any involution x*, the
ring R[z] is not x-semiclean. O
Let R be a *-ring and R[[z]] be a power series ring. Then, on R[[z]], an induced involution * is defined as
(Y aix)* =37 afat. In 2003, Yuanging Ye [21] proved that the ring R[[z]] is semiclean if and only if R

is semiclean. This result has been extended to *-semiclean by Proposition 3.10.

Proposition 3.10 The ring R|[z]] is *-semiclean if and only if R is *x-semiclean.

Proof = Let R[[z]] be %-semiclean. Because R = R[[z]]/(x) and (x) is a *- invariant ideal of R[[z]], R is
x-semiclean according to Lemma 3.8.

< Let R be x-semiclean and g(z) = Y. a;z° € R[[z]]. If ap = f + v, where f € Pri*(R) and v € U(R),
then g(z) = f+ (v+ Y 1o, a;z'), where f € Pri*(R) C Pri*(R[[z]]) and v+ > 0, aya’ € U(R[[z]]). As a

result, g(z) € R[[z]] is *-semiclean. O
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Every x-clean ring is a *x-semiclean ring, but the converse is not true. By Theorem 3.11, we demonstrate that,

under certain conditions, the converse will also hold.

Theorem 3.11 Let R be a torsion free ring, and z € R such that z = b+wv, where b € Pri*(R) and v € U(R).
If v= =1, then z is *-clean.

Proof Casel: Let v=1
Rewrite an element z € R as z = b+ 1, b¥ = b’ (where, [ and k are positive integers such that [ > k), and

b=k = p = p* € P(R).
We have (z —1)* = (2 — 1)! because b* = b’ which implies that (1 —2)%* = (1 — 2)? and (1 — 2)2*2=2k) = p.
As aresult, 1—2z is *-periodic, and thus, according to Lemma 2.5, an element 1—z is *-clean, i.e. 1—z = f+u,

where f = (1—p) € P(R), and u € U(R). To put it simply, z = p+u , where p € P(R) and u=-ue U(R).

Case II: Let v = —1
Then an element z € R is rewritten as z =0 —1.

1. Let b=b" (where, n is a positive integer such that n > 1).
Then z = b1 4+ (=1 +b—b""1). Because b € Pri*(R) and b = b", an element b~ € P(R). An
element —1 +b —b"~! is a unit in R, with the inverse (2771 — 1 4+2"73p 4+ 27 4p2 4 ... 4 p"=2 4 (1 —
2n=2)pn=1)(1 — 2"=1)~1 € R. Hence, z = b — 1 is *-clean.

2. Let bF = bl (where, | and k are positive integers such that [ > k).
Then z = b*(=F) 4 (=14 b —bF0=F)). Because b € Pri*(R) and b* = b', an element b*~%) ¢ P(R). An

element —1 + b — b*(=F) is a unit in R. Hence, z = b — 1 is %-clean.

4. Matrix extension of x-semiclean rings

If R is a x-ring, then M, (R) the ring of n X n matrices over R inherits the natural involution from R: if
A = (ai;), then A* is the transpose of (a;j;). In 2010, Lia Vas [18] proved that if both pRp and (1 —p)R(1—p)
are x-clean rings (here p is a projection), then R is x-clean. As a result, the M, (R) (ring of n X n matrices

over R) is x-clean. This result has been extended to x-semiclean rings in this section.

Lemma 4.1 If pRp and (1 —p)R(1 — p) are both x-semiclean, where p € P(R), then R is also x-semiclean.

Proof Foreach p € R, write 1 — p =p. Apply the Pierce decomposition of the ring R:

R— {pRp pRp] .
pRp pRp

Let M = [TZ ﬂ € R. Thus, m = a + u, where a € Pri*(pRp) such that a¥* = al* (where, I; and k; are

possitive integers such that I3 > ki) and u is a unit in pRp with inverse uw;. Then, ¢ — nujo € pPRp. So

q —ouin = b+ v, where b € Pri*(pRp) such that b*2 = b2 (where, I, and ko are possitive integers such that
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ly > ko) and v is a unit in pRp with inverse vy . Thus,

_latu n _|la 0O U n
M_{ 0 b—l—v—i—nulo}_[O b]+[0 v—i—ouln}

is unit in R.

U
To show: [o - ouln}

p 0] |u n p —wn| |u n||lp —uwin| |u O . . u 0
Compute, [—0u1 p] [0 v—i—ouln] [0 7 } = {O v} {0 P ] = [0 v} . Since the matrices [0 v}’

p 9 , and P ove units in ng gRg , therefore, v " is unit in R.
—ou; P 0 D pRp DRpD o v+oun

a 0 a 01" a 0] a 0]F0M
To show: [0 b} is x-periodic, i.e. [0 b] = [0 b} and [0 b} € P(R) (where, [ and k are the

possitive integer such that { > k).
Without loss of generality, let ko > k1 .

afr = gh = glh—Fk)+k1 — gs(li—ki)+ka )
ko _ pla _ p(la—k ko _ ps(la—k k
bk2 = pl2 = plla—ka2)+ka — ps(lz 2)+2,and

ak2 — gkit(k2a—k1) — gs(li—ki)+ka

Let k£ = k’g and [ = (ll — kl)(lg — k2) + ]{52. Then, ak = al and bk = bl.
k l
a O a® 0 a 0 a 0 a 0f . ..
Thus, {0 b} = [0 bk] = {0 bl] = {0 b} . Hence, {O b} is periodic.

As a € Pri*(pRp) and a* = a'. Thus, a*~*) = p,, where p, € P(pRp).
Similarly, b € Pri*(pRp) and b* = b'. Thus, b*(=%) =1 — p,, where p, € P(DRp).

k(l—k) k(l—k)
a 0 _|a 0 _m 0
Compute, [O b] = [ 0 bk(l_k)} = [O 1 _pJ € P(R).

This proves that matrix M is *x-semiclean. Therefore, R is *-semiclean. O

By Lemma 4.1, and an inductive argument, the next result holds.

Theorem 4.2 If pi,ps,- - ,pn are orthogonal projections with 1 = p1+pa+---+pn, and p; Rp; is *-semiclean

for each i, then R is x-semiclean.

The following two conclusions follow directly from Theorem 4.2.
Corollary 4.3 If R is x-semiclean, then so is M, (R).

Corollary 4.4 If N=N, @ NP --- P N,, are modules and End(N;) is x-semiclean for each i, then End(N)

is *-semiclean.

5. *-Semiclean group rings

In this section, we obtain several results pertaining to commutative and noncommutative x-semiclean group

rings. Throughout this section, we are considering standard involution on the group ring RG.
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Theorem 5.1 If RG is a *-semiclean ring, then so is ((R/J(R))G.

Proof Define a map ¥ : RG — (R/J(R))G as V(3 cqag9) = > cq ¥(ag)g, ¥(ay) = ag + J(R). Note
that ¥ is an onto map. The map W preserves an involution * as W(3 cqcag9)" = (P(3,cq@g9))" Let
Z € (R/J(R))G. Since ¥ is an onto map, there exists an element x € RG, which is defined as = = f + u,
where f € Pri*(RG) and u € U(RG). So, T = ¥(f) + ¥(u), where ¥(f) € Pri*((R/J(R))G) and
U(u) € U(R/J(R))G). Hence, ((R/J(R))G is a *-semiclean ring. O

5.1. Abelian group rings
In 2015 [6], Gao, Chen, and Li found out that when the group rings RC5, RCy, RSs, and RQs are x-clean,

where R is a commutative local ring. In this section, we have extended this result to x-semiclean rings. As
a consequence, many examples of group rings that are x-semiclean but not *-clean have been obtained. In
Theorem 5.7 and 5.8, a characterization that when the group rings RC, and RG are x-semiclean is obtained
(respectively). Here, R is a finite commutative local ring, C. is a cyclic group of order r, and G is a locally

finite abelian group.

Proposition 5.2 ([13]) If R is local, G is a locally finite p-group, and p € J(R), then the group ring RG is
local.

We now investigate when RC'3 is *-semiclean.

In 2015 [6], Gao, Chen, and Li investigated the group rings RC5 and Z,C5 and proved that if (—3)pz;1 =
1(mod p), then the group ring Z,C3 is not x-clean; however, Theorem 5.3(3) demonstrates that it is *-
semiclean. Furthermore, in Theorem 5.3(2), we relaxed the requirement that RC3 be clean, allowing us to

broaden the class of rings (rings that are x-semiclean but not %-clean are obtained). Omne such example is

Z7yCs, which is explained below.

Theorem 5.3 Let R be a commutative local ring and G = C5 = (x) be a cyclic group of order 3.
1. If 3¢ U(R), then RCj5 is x-semiclean.
2. If 3€ U(R) and the equation 2> + 2z + 1 =0 has no solutions in R, then the ring RC3 is *-semiclean.
3. If 2 € U(R), then RCs5 is x-semiclean if RC5 is clean and U(RC3) is a torsion group.
Proof
1. Since 3 € J(R), by Proposition 5.2, RCj5 is local. Hence, RCj5 is a *-semiclean.

2. According to [10, Theorem 2.7], the ring RCj is a semiclean ring. By [6, Theorem 2.4], if the equation
22+ z+1 =0 has no solution in R, then every idempotent of the ring RC3 is a projection. Hence, by

Proposition 3.2, the ring RC5 is a x-semiclean ring.

3. If RC5 is clean and 2 € U(RCj5), then by [20, Proposition 2.5], RC3 is a 2-good ring. If an element
a € RC35, then there exist uy,us € U(RC3) such that a = uj +ug, according to the definition of a 2-good
ring. Because U(RC3) is a torsion group, there exists m € N such that u]* = 1 = 1*, implying that
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u; € Pri*(RCs) and ug € U(RC3). Thus, element a is #-semiclean. Since a is an arbitary element of

RC3, therefore, every element of RC5 is x-semiclean. Hence, RC5 is a *-semiclean ring.

b5

The examples given below are the direct consequences of Theorem 5.3

Example 5.4 1. By Theorem 5.3(1), the ring Z3Cs is *-semiclean.

2. The ring Z(7)C3 is *-semiclean because the equation 22+ 2+1=0 has no solution in Zzy, but it is not

*-clean because, according to [14], Z,)Cs is clean if and only if p % 1(mod3).

3. By [22, Corollary 19], we can say that Z,Cs3, where p > 2 is prime, is clean. Also, as 2 € U(Z,Cs), by
Theorem 5.3(3a), we conclude Z,C3 is *-semiclean, but by [6, Example 2.7], for p > 3, if (73)1)7_1 =

1(mod p), it is not *-clean.
We now investigate when RCy is *-semiclean.

In 2015 [6], Gao, Chen, and Li investigated the group rings RC4 and Z,Cy, and proved that if p = 1(mod 4),
then the group ring Z,Cy is not x-clean; however, Theorem 5.5(2b) demonstrates that it is *-semiclean. Fur-
thermore, in Theorem 5.5(2a), we relaxed the requirement that RCy be clean, allowing us to broaden the

class of rings (rings that are x-semiclean but not x-clean are obtained). One such example is Z5)Cy, which is

explained below.

Theorem 5.5 Let R be a commutative local ring and G = Cy = () be a cyclic group of order 4.
1. If 2¢ U(R), then RCy is *-semiclean.
2. If 2€ U(R), then RCy is x-semiclean if any of the condition given below is satisfied.

(a) The equation z* +1 =0 has no solutions in R.

(b) RCy is clean and U(RCY) is torsion group.
Proof
1. Since 2 € J(R), by Proposition 5.2, RCj is local. Hence, RCj is a *-semiclean.

2. (a) According to [10, Theorem 2.7], the ring RCj is a semiclean ring. By [6, Theorem 2.10], if the
equation z? + 1 = 0 has no solution in R, then every idempotent of the ring RC} is a projection.

Hence, by Proposition 3.2, the ring RC} is a *-semiclean ring.
(b) The proof is similar to the proof of Theorem 5.3(3).
The examples given below are the direct consequences of Theorem 5.5.

Example 5.6 1. The ring Z5)Cy is *-semiclean because the equation 2241 =0 has no solution in L),

but it is not x-clean because, according to [14], Z)Cy is not clean.
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2. By [22, Corollary 19], we can say that Z,Cys, where p > 2 is prime, is clean. Also, as 2 € U(Z,Cy), by
Theorem 5.5(2b), we conclude Z,Cy is *-semiclean, but by [6, Corollary 2.11], for p=1 (mod 4), Z,C4

18 not *-clean.

By using Theorem 5.7 and Theorem 5.8, we can find various other examples of *-semiclean rings that are not

x-clean. Some of them are listed in Example 5.9.

Theorem 5.7 Let R be a finite commutative local ring.
1. If 2€ U(R) and C,. = (x) is a cyclic group of order r, then RC, is *-semiclean.

2. If 2 € J(R), C,. = () is a cyclic group of order r = 2°t (s > 0), where 2 /t, and v is the cyclic
permutation on the set J = {1,2,--- t — 1} defined as v : J — J by j — 2j(mod t), then RC, is
*-semiclean.

Proof

1. Let x € RC,. The group ring RC, is periodic because it is finite. Thus, according to [21, Lemma
5.1], RC, is clean. Furthermore, 2 € U(R). Thus, by [20, Proposition 2.5], RC, is a 2-good ring, i.e.
x = uy + ug, where uy,us € U(RC,). As RC, is periodic, according to [2, Proposition 2.3], U(RC,) is a
torsion group. Because u; € U(RC,), there exists n € N such that u} =1 = 1*. Thus, uy; € Pri*(RC,)
and uy € U(RC,). As a result, an element x meets the condition of being x-semiclean. Hence, RC, is
x-semiclean.

2. Let s > 1. Then C, = Co: x Cy. Thus, RC, = (RC3:)C;, where C; = (z) is a cyclic group of
order ¢t. By [13, Theorem|, R* = RCy- is the local ring. Since (R/J(R)) is a field of char = 2 and
(R/J(R))Cy — (R /J(R')) is ring epimorphism, therefore, (R /J(R')) is also a field of char = 2. Let
a=ag+ a1z + axr®+ -+ a2t~ be an idempotent element of (R,/J(R,))Ct. Because 2 = 0 and
xt =1, it follows that a® = a2 + av(l)x'yu) + .- av(t,l)m”(t_l). Because ~ is the cyclic permutation on
the set J = {1,2,--- ,t — 1}, therefore, a2 = ag and a? = a; = ay = --- = a;_;. So the idempotents
of (R/J(R)C, are 0, 1, 1+ a+ -+ a1, and 2 + 22 + -+ + 2~1. Because 0* = 0, 1* = 1,
A4+z+ -zt HY* =1+a+--+attand (x+2%+ - +2t"H)* =2 +22+--- + 271, implying that
(R/ /J (R/))Ct has four idempotents, all of which are projections. Now, because C; is a locally finite group,
J(R)C, € J(R'Cy). As the (char(R'/J(R)),t) = 1, therefore, (R /J(R'))C; is semisimple, implying
that R J(C,) = J(R'Cy). Therefore, we get (R /J(R))Cy = R'Cy/J(R)C, = R'Cy/J(R Cy). Thus,
the factor ring R Cy/J(R C;) = R'C; will also have only four idempotents : 0, 1, T4+ Z 4 --- + "1,

and T+ T2+ --- +z 1, all of which are projections. Since the order of the ring R'C; is finite, R'C} is
clean. Thus, R'C; is *-clean, i.e. for each @ € R'C}, there exist p € P(R'Cy) and T € U(TC}), such
that @ = p + w. Moreover, in R/Ct the elements m; =0, mg =1, mz =t 1(1+ a2+ -+ 2'71), and
my=t"1((t—1)—z—2?—--.—2'"1) are projections such that m; =0, Mz =1, Mz = 1+T+-- -+ !,
and g = T+ 22 + --- + T~ which implies there exists a ny = p € P(R,C’t) such that my = p for
p e P(R'Cy). There is also ny = u € U(R'C;) such that 71 =u for @ € U(R'C}). Thus, there exists an
element n3 = p+u € R C, such that i =p+7u for p+u € R'C,. Then 3 =@, i.e. a—ng € J(R,Ct).
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Since R’ is finite, R’ is an artinian ring, which implies J (R/) is nilpotent. Thus, J (Rl)Ct is nil-ideal. By
[11, Corollary 4.3], J(R')C} is nilpotent. Since J(R C;) = J(R')C;, the ideal J(R C;) is also nilpotent.
Since a —n3 € J(R'C;), therefore, a —ns = a — (p+u) = k for some k € J(R C;). Simplifying it, we get
a=p+u+k, where pe P(R'C,), ue URC,),and k € J(R'C,). Thus, a = p+v, where p € P(R'C})
and v = (u+ k) € U(R/Ct). As a result, an element a meets the condition of being x-clean. Hence,

RC, = R/Ct is *-clean. Thus, RC, is x-semiclean.

Theorem 5.8 Let R be a finite commutative local ring and G be a locally finite abelian group.

1.

2.

3.

If 2 € U(R), then RG is %-semiclean.
If 2€ J(R) and G is a locally finite 2-group, then RG is *-semiclean.

If 2 € J(R) with R/J(R) = Fy and exponent of G is r, where r is an odd positive integer, and a ¢ € N

exists such that 29 = —1(mod 1), then RG is *-semiclean.

Proof

1.

2.

3.

1416

Let x € RG. Since G is a locally finite abelian group, there exists a finite subgroup H such that x € RH .
The rest of the proof is similar to that of Theorem 5.7(1).

Since 2 € J(R), by Proposition 5.2, RG is local. Hence, RG is *-semiclean.

’

We will first show that the group ring RG’ is x-clean for any arbitary finite abelian group, say G
(with odd exponent say r) such that 29 = —1(mod r) for some ¢ € N. Let a = 21 + z92 + -+ + x4 be
the idempotent element of (R/J(R))G , where x; € G for i = 1 to t. Then (z1 + @y + --- 4+ 24)% =
3+ 2+ 4+ a7 =2 + x93+ - +a¢. Thus, {1,209, -+ ,2¢} = {2%,23,--- ,27}. Furthermore,
if © € {xy,29,--+ , 24}, then 22 € {x1,29, -+ ,2¢} for some k € N . Thus, an element x can be
rewritten as © = (zg, + 27, + - + xiiﬂl) + o (g + xij + o xijj ). Here the elements xj, are

distinct and m;’s are the smallest positive integers such that xi:”“ = x,. Evaluating x*, we have

-1 —92 _gm1
SC* — (Ikl +xk1 +...+xk1

Y+ + (x,;Jl + x,;jz + o F x,zfmj). Since, for some ¢ € N, we have
29 = —1(mod p), thus, clearly a* = a, i.e. every idempotent of (R/J(R))G/ is a projection. Now,
as the order of (R/J(R))G is finite, it is a clean ring. As a result, the ring (R/J(R))G is %-clean.
Now, as G is a locally finite group, therefore, .J (R)Gl cJ (RG/). Since order of every element of G is
invertible in (R/J(R)), therefore, (R/J(R))G is semisimple. Thus, J(R)G = J(RG'). Therefore, we
get (R/J(R))G = RG /J(RG'). Thus, every idempotent of RG /J(RG') is a projection. Being the ring
RG'/J(RG') = RG of finite order, it is a clean ring. Thus, it is a *-clean ring.

Let z € RG. Since G is a locally finite abelian group, there exists a finite abelian subgroup H such that

z € RH. For |y = z € RH, there exists a Z € RH such that {1 = Z. Because Z € RH, and because, as
explained above, the group ring RH is a *-clean, there exists p € P(RH) and u € U(RH), such that
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Z=p+u. Because J(RH) is the *-invariant nil ideal of a *-ring RH, there exists a ny = p € P(RH)
such that iy = p for p € P(RH). There is also ny = u € U(RH) such that iz = u for u € U(RH).
Thus, there exists an element n3 = p+u € RH such that nz =p+7u for p+u € RH. Thus, n3 = Z, i.e.
z—ng € J(RH). Also, the ideal J(RH) is nilpotent. Since z —n3 € J(RH), z—nz3=z—(p+u) =k
for some k € J(RH). Simplifying it, we get z = p+ u + k, where p € P(RH), v € U(RH), and
k € J(RH). Thus, z = p+ v, where p € P(RH), and v = (u+ k) € U(RH). As a result, element z
meets the condition of being *-clean. Hence, RH is x-clean. Thus, RH is x-semiclean, which implies

RG is *-semiclean.

O
The examples given below are the direct consequences of Theorem 5.7 and Theorem 5.8. These are x-semiclean

but not *-clean group rings.

Example 5.9 1. The ring F5Cs is x-semiclean, but by [16, Example 3.12], it is not *-clean.
2. The ring F7(Cy x Cg) is x-semiclean, but by [16, Example 8.10(1)], it is not x-clean.

3. The ring F3Cs5 is x-semiclean, but by [8, Example 3.5/, it is not x-clean.

5.2. Non-abelian group rings

In this section, we investigate when a non-abelian group ring RG is *-semi-clean, where R is a commutative
local ring and G is QS, an, Dgn, and D6 .

5.2.1. Quaternion group Qg

The group ring Z,Qs was studied by Gao in [6], and it was shown that it is not *-clean; however, by Theorem

5.10, we obtain that it is *-semiclean.

Theorem 5.10 Let R be a commutative local ring and G = Qg = (z,y|lz* = 1,22 = y?,yz = 27 'y) be a

quaternion group of order 8.

1. If 2¢ U(R), then RQs is *-semiclean.

2. If 2€ U(R), RQs is clean and U(RQs) is a torsion group, then RQs is *-semiclean.
Proof

1. As R is local, Qs is a finite 2-group, and 2 € J(R), therefore, by Proposition 5.2, RQs is local. Thus,

RQg is a *-semiclean ring.

2. The proof is similar to the proof of Theorem 5.3(3).

The example given below is the direct consequence of Theorem 5.10.

Example 5.11 The ring Z,Qs (where p > 2 is prime) is clean. Furthermore, because 2 € U(Z,Qs), we can
conclude from Theorem 5.10(2) that Z,Qs is *-semi-clean. However, according to [6, Example 3.9], Z,Qs is

not x-clean.
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5.2.2. Generalized quaternion group (s, and Dihedral group D,
The group ring F,Q2, was studied by Hongdi Huang in [7] and it was shown that if 4|n and gcd(q,2n) =1,

then it is not *-clean; however, by Theorem 5.12, we obtain that it is x-semiclean.

Theorem 5.12 Let R be a finite commutative local ring and G = Qa, = (z,ylz* = 1,y% = 22,4 =y~ 1) be
the generalised quaternion group of order 2n or G = Da, =< z,yly" = 2? = 1,xyx~! = y~! > be the dihedral

group of order 2n.
1. If 2€ U(R), then RQay, and RDs, are *-semiclean.
2. If 2 € J(R), then RQ2, and RDs, (where n is a power of 2) are x-semiclean.

Proof

1. The proof is similar to the proof of Theorem 5.7(1).

2. As R is local, Q2 and Da, are finite 2-groups, and 2 € J(R), therefore, by Proposition 5.2, RQa, and

RDs, are local. Thus, RQ2, and RD,, are x-semiclean rings.

The example given below is the direct consequence of Theorem 5.12.

Example 5.13 The ring FyQa, (where ged(q,2) =1) is clean. Furthermore, because 2 € U(FyQay), we can
conclude from Theorem 5.12(1) that FyQay is *-semi-clean. However, according to [7, Theorem 4.7], FqQan
is not x-clean if 4n and ged(q,2n) =1.

In 2015 [6], Gao, Chen, and Li investigated the group ring ZsDg, and proved that it is not *-clean; however,
Example 5.14 demonstrates that it is *-semiclean. To prove ZsDg is *-semiclean, we have shown that every
element is written as sum of a x-periodic element and a unit. To check this, we first represented every element
of ZsDg in a matrix, and by using the SAGE [17] software obtain units, #-periodic elements. We then checked
whether every element of Z;Dg can be written as the sum of a *-periodic element and unit of it. By [9],
the matrix representation o(w) of an element w = ag + a1y + azy? + azx + asyxr + asy*s € RDg, where

A B

L = y~1) is a dihedral group of order 6, as given by o(w) = [BT AT] , where

D¢ = (x,yly® = 22 = 1,xyx~

A = circ [040 a1 ag] and B = circ [ag gy 045] . The codes for this are given below.

Example 5.14 Consider the ring ZoDg. The group of all units of ZoDg is U(ZaDg) = {z,yz, y?z,

Ly+y?+ot+yr+yie, l+y+y? +o+yz, 1+y+y  +o+y2e, L+ y+y? +yr+ye, v, v2, 1y +o+yr+yz, 1+y%+
x +yx +y?x}. The set of all x-peridic elements of ZoDg is Pri*(ZeDg) = {0, z, yx, x + yx,y*x, x + y?x, yx +
Ve, e +yr+yie, 1,14+, 1 +yz, 1+ +yx, 1 + 2z, 1+ + 2z, 1 +yz + 22, 1 + o+ yz + 22,y y + o +yr +
o, 14y, 1+y+z+ye+yie,y® v + oty +y°z, 1492 1+ o +ye+y2e, y+0° y+v° + o,y +y2 Hye, y +
v ety y+yi vty eyt y+ vt tye eyt e tyr Hyte Lyt Lyt e Ty +
vV 4yr, 1+y+y+otyr, 1+y+y?2 +y%e, Ly +y? +o+y?a, Ly +y? Hyr+yPe, 1y +y? o+ yx +yPa)
Every element of ZoDg can be written as the sum of a *-periodic element and a unit. Thus, we can say that

the group ring ZeDg is x-semiclean, but by [6, Theorem 3.4], it is not x-clean.
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Code for the construction of a matrix representation of Z;Dyg.

Type = Integer (3)
Field = GF(Integer (2))
Vector = Fieldx*Type

CM = [matrix.circulant (a) for a in Vector]
Length = len (CM)

Matrices_ 64 = []

for x in range(Length):

for y in range(Length):

CB = block matrix(Integer (2),Integer (2),[CM[x] ,CM[y] ,CM[y].T,CM[x].T])
Matrices_ 64 .append (CB)

Code to find the units of Z,Dg.

Elements = Field*Integer (1)
Zero = Elements|[Integer (0)][Integer (0)]
One = Elements|[Integer (1)][Integer (0)]

Identity_row = [One, Zero , Zero ,Zero , Zero , Zero |
Identity  Matrix = matrix.circulant (Identity row)
Matrices_ Unit = []

List Matrices_ 64 = list (range(len(Matrices 64)))

for x in List Matrices 64:

y = X

while y <=List_ Matrices 64 [len(List Matrices 64)—Integer (1)]:
if y not in List_Matrices_64:

y = y+Integer (1)

else:

mul_r = Matrices_ 64 [x]* Matrices_ 64 [y]

if mul r = Identity_Matrix:

mul_r_rev = Matrices_ 64 [y]*Matrices_ 64 [x]
if mul r_ rev = Identity_Matrix:
Matrices_ Unit.append(x)

Matrices_ Unit.append(y)

break

y = yt+Integer (1)
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Code to find the x-periodic element of Z;Dg.

Zero_row = [Zero for x in range(Integer (6))]
Zero_Matrix = matrix. circulant (Zero_row)

Zero_row_3 = [Zero for x in range(Integer (3))]
One_row_ 3 = [One for x in range(Integer (3))]
Combination_row_3 = [Zero,One,One]

Zero_matrix_3 = matrix.circulant (Zero_row_3)
One_matrix_3 = matrix.circulant (One_row_3)
Comb_matrix_3 = matrix.circulant (Combination row_3)

Projectionl block_ matrix (
Projection2 = block matrix (

2,2 ,[One_matrix_3,Zero_matrix_3,Zero_matrix_3,One_matrix_3])
2,2 ,[Comb_matrix_3,Zero_matrix_3,Zero_matrix_3,Comb_matrix_3])
Matrices_StrPeriodic = []

N = Integer (1000000)

for x in range(len(Matrices_64)):
res = Matrices 64 [x]

i = Integer (1)

while i <=N:

res = resxMatrices_ 64 [x]

if res = Identity__Matrix or res = Zero_Matrix or res = Projectionl
or res = Projection?2

Matrices__StrPeriodic.append ([x,i+Integer (1)])

break

i = i+Integer (1)

Code to check whether every element of Z;Dg can be written as the sum of x-periodic ele-

ment and unit of it.

Matrices_ Star_ Semiclean = []
Star_ Semiclean_map = []

StarPeriodic_ Set = set(x[Integer (0)] for x in Matrices_StrPeriodic)
Unit_set = set(Matrices_ Unit)

x in StarPeriodic Set:
for y in Unit_set:
= Matrices_ 64 [x|+Matrices 64 [y]
if res in Matrices 64:
index = Matrices_64.index (res)
if index not in Matrices Star Semiclean:
Matrices_ Star_ Semiclean.append (index)
Star__Semiclean__map .append ([x,y,index])

for

res
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