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Abstract: This article is concerned with the study of unique solvability of an inverse coefficient problem of determining
the coefficient at the lower term of a fractional diffusion equation. The direct problem is the initial-boundary problem
for this equation with usual initial and homogeneous Dirichlet conditions. To determine the unknown coefficient, an
overdetermination condition is given as the Neumann condition at the left end of the spatial interval. The theorems of
existence and uniqueness of inverse problem solution are obtained. Furthermore, we propose a numerical algorithm based
on a finite-difference scheme to accurately compute the inverse problem of simultaneously determining a time-dependent
coefficient in a fractional diffusion equation, together with its solution. A test example using the developed numerical
algorithm is presented herein.
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1. Introduction
Fractional differential equations (FDEs) have attracted the attention of many researchers. This is due to the
fact that various models using fractional partial differential equations are successfully applied to describe a range
of problems in mechanical engineering, viscoelasticity, electron transport, heat conduction, and high-frequency
financial data.

The time-fractional diffusion equation was derived by replacing the standard time derivative with a time-
fractional derivative. Direct problems, such as initial value problems and initial-boundary value problems for
the time-fractional diffusion equation, have been studied extensively in recent years (see [17, 20, 21, 26, 32]).
The author in [27] used the Green function method to obtain a general representation of solutions of the
two-dimensional diffusion equation and constructed Green functions of the first, second, and mixed boundary
value problems. Evolution equations with the regularized fractional derivative of order a with respect to
the time variable and elliptic operator with constant and variable coefficients acting on the spatial variables
were investigated. A fundamental solution to the Cauchy problem for these equations was constructed and
investigated (see [36]).
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Inverse problems for classical integro-differential equations of heat conduction have been extensively
studied. In the literature, the nonlinear inverse problems with different types of overdetermination conditions
are the most frequently found ones (see, for example, [4, 6–9, 11–13] and references therein). In these studies, the
authors discussed the unique solvability and stability estimates of the solution, as well as a numerical approach
for solving such problems.

Inverse problems for fractional differential heat equations have not yet been fully investigated. In the
literature, linear source determination problems and nonlinear coefficient inverse problems for the Cauchy
problem with various types of overdetermination conditions are encountered most often (e.g., [10, 14–16, 34, 37–
39] and references therein). The main results of these studies comprise the existence and uniqueness theorems,
as well as a stability estimate for the solution of the problem of determining the reaction coefficient in a time-
fractional diffusion equation.

Recent advances in numerical simulations for determining unknown coefficients in parabolic equations
have led to many interesting results. In heat conduction, attention has been paid to the unique solvability of
one-dimensional inverse problems for the heat equation when the unknown thermal coefficients are constant
[3], time-dependent [24, 25], space-dependent [1], or temperature-dependent [19, 23, 29, 35]. Most of these
simulations were performed using the finite difference method [18, 22, 28]. However, in our recent work [5],
we have already demonstrated the application of finite difference and Fourier spectral numerical methods to
solve the inverse problem of simultaneously determining a time-dependent unknown coefficient in a parabolic
equation.

In this study, we investigate the local existence and uniqueness of an inverse problem of determining
the time-dependent reaction coefficient in the time–fractional diffusion equation with initial boundary and
overdetermination conditions. Furthermore, we employ the finite difference method for the numerical evolution
of a time-dependent unknown coefficient in the one-dimensional fractional diffusion equation. The remainder
of this paper is organized as follows. In the next section, Section 2, we present the mathematical formulations
of the inverse problem. The numerical setup and finite-difference discretization for the inverse problem are
presented in Section 3. In Section 4, we provide numerical results and discussion. Finally, conclusions are
presented in Section 5.

2. Mathematical formulation of the problem and its investigation

Consider the linear one-dimensional fractional parabolic equation with a time-dependent coefficient

∂α
t u(x, t) =

∂2u(x, t)

∂x2
− q(t)u(x, t) + f(x, t), (x, t) ∈ (0, l)× (0, T ] =: ΩlT , (2.1)

where u(x, t) represents the temperature in a finite slab of length l > 0 over time interval (0, T ] with
T > 0 , q(t) describes the coefficient of heat capacity, f(x, t) is a source function; ∂α

∂tα is the Caputo fractional
derivative of order α ∈ (0, 1] :

∂α
t u(x, t) =

1

Γ(1− α)

∫ t

0

uτ (τ, x)

(t− τ)α
dτ, α ∈ (0, 1), and ∂α

t u(x, t) =
∂αu(x, t)

∂tα
, (2.2)

Γ(·) is the Euler’s gamma function.
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We study the inverse problem to find the coefficient q together with a solution u of Eq. (2.1) under the
following initial condition:

u(x, 0) = φ(x), x ∈ [0, l], (2.3)

boundary and overdetermination conditions:

u(0, t) = u(l, t) = 0, (2.4)

∂u(0, t)

∂x
= h(t), t ∈ [0, T ], (2.5)

where φ(x) and h(t) are given functions. The conditions (2.4) represent the specification of the boundary
temperature. (2.5) corresponds to a given heat flow at the left end of a rod of length l . Similar inverse problem
with this type overdetermination condition is studied in [32].

Definition 2.1 A function u(x, t) is called a classical solution to the initial-boundary problem (2.1)-(2.4) if:

1. u(x, t) is twice continuously differentiable in x for each t > 0 ;

2. for each x ∈ (0, l) function u(x, t) is continuous in t on [0, T ], and its fractional integral

(I1−α
0+ u)(x, t) =

1

Γ(1− α)

∫ t

0

u(x, τ)dτ

(t− τ)α
(2.6)

is continuously differentiable in t for t > 0;

3. u(x, t) satisfies (2.1)-(2.4).

The class of functions satisfying conditions 1), 2) of Definition 2.1 denote by C2,α(ΩlT ).

Let u(x, t) be a classical solution to the problem (2.1)-(2.4) and f, φ, h be enough smooth functions. We
carry out the next converting of the inverse problem (2.1)-(2.5). Denote for this purpose the second derivative
of u(x, t) with respect to x , by ϑ(x, t), i.e. ϑ(x, t) := uxx(x, t). Differentiating (2.1) and (2.3) twice in x , we
get

∂α
t ϑ− ϑxx + q(t)ϑ(x, t) = fxx(x, t), (x, t) ∈ ΩlT , (2.7)

ϑ(x, 0) = φ′′(x), x ∈ [0, l]. (2.8)

To obtain boundary conditions for the function ϑ(x, t) , we note that the second term of (2.1) is ϑ(x, t) .
Setting x = 0, x = l in (2.1), we use (2.4). Then, assuming f(0, t) = f(l, t) = 0, we obtain

ϑ(0, t) = ϑ(l, t) = 0, x ∈ [0, l]. (2.9)

In order to obtain an overdetermination condition for the function ϑ(x, t) , we differentiate equation (2.1)
once with respect to x and using equality uxx(x, t) = ϑ(x, t) and condition (2.5), we get

ϑx(0, t) = q(t)h(t) + ∂α
t h(t)− fx(0, t). (2.10)
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When the matching condition φ′(0) = h(0) is satisfied, it is easy to derive from (2.7)-(2.10) the equations
(2.1)-(2.5).

We assume that the data of the problem (2.1)-(2.5) satisfy the following conditions:

(A1) φ(x) ∈ C4[0, l] , φ(5)(x) ∈ L2[0, l] , φ(0) = φ(l) = φ′′(0) = φ′′(l) = φ(4)(0) = φ(4)(l) = 0 ,

(A2) f(x, t) ∈ C(DT )
⋂

C4,1
x,t (DT ), f

(5)
xxxxx(x, t) ∈ L2(DT ), f(0, t) = f(l, t) = f ′′(0, t) = f ′′(l, t) =

f (4)(0, t) = f (4)(l, t) = 0,

(A3) h(t) ∈ C1[0, T ] and |h(t)| ≥ h0 = const > 0, h0 is a given number, φ′(0) = h(0), φ′′′(0) =

q(0)h(0) + ∂α
t h(t)− fx(0, 0).

The next section is devoted to the study of the direct problem (2.7)-(2.9).

2.1. Investigation of direct problem (2.7)-(2.9)

First, we show that the direct problem has a unique solution. We will seek the solution of problem (2.7)-(2.9)
in the form

ϑ(x, t) =

∞∑
n=1

ϑn(t) sin(λnx), λn =
πn

l
, ϑn(t) =

√
2

l

∫ l

0

ϑ(x, t) sin(λnx)dx. (2.11)

In view of equalities (2.11), from (2.7), we obtain the following equation:

(∂α
t ϑn) (t) + λ2

nϑn(t) = Fn(t;ϑ, q, f), (2.12)

where

Fn(t;ϑ, q, f) := fn(t)− q(t)ϑn(t), fn(t) =

√
2

l

∫ l

0

fxx(x, t) sin(λnx)dx.

The initial condition (2.8) gives:

ϑn(0) =

√
2

l

l∫
0

ϑ(x, 0) sin(λnx)dx =

√
2

l

l∫
0

φ′′(x) sin(λnx)dx =: φn. (2.13)

We note that the initial-value problem (2.12), (2.13) is equivalent in the space C[0, T ] to the following
Volterra integral equation of the second kind (see, for example, [30], p. 323):

ϑn(t) = φnEα(−λ2
nt

α)+

∫ t

0

(t− τ)α−1Eα,α

(
−λ2

n(t− τ)α
)
fn(τ)dτ +

∫ t

0

(t− τ)α−1Eα,α

(
−λ2

n(t− τ)α
)
q(τ)ϑn(τ)dτ, (2.14)

where Eα,β(z) is the Mittag-Leffler function defined by the following series (see, for example, [30] p. 42):

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)

for α, β, z ∈ C with R(α) > 0 , R(α) denotes the real part of the complex number α and Eα,1(z) =: Eα(z).
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Further, to evaluate expressions with the Mittag-Leffler function, we use the following three statements
from the book [30]. The proof of these assertions come from the definition of Caputo fractional derivative and
differentiation of the Mittag-Leffler function.

Proposition 2.2 Let 0 < α < 2 and β ∈ R be arbitrary. We suppose that κ is such that πα/2 < κ <

min{π, πα} . Then there exists a constant C = C(α, β, κ) > 0 such that

|Eα,β(z)| ≤
C

1 + |z|
, κ ≤ |arg(z)| ≤ π.

Proposition 2.3 For 0 < α < 1 , t > 0 , we have 0 < Eα,1(−t) < 1 . Moreover, Eα,1(−t) is completely
monotonic, that is

(−1)n dn

dtn
Eα,1(−t) ≥ 0, ∀n ∈ N.

Proposition 2.4 For 0 < α < 1 , η > 0 , we have 0 ≤ Eα,α(−η) ≤ 1
Γ(α) . Moreover, Eα,α(−η) is a monotonic

decreasing function with η > 0 .

Using Propositions 2.3 and 2.4, we estimate the expression (2.14). Then, for t ∈ [0;T ] , we get the
following integral inequality:

|ϑn(t)| ≤ |φn|+
tα∥fn∥
αΓ(α)

+
||q||
Γ(α)

∫ t

0

(t− τ)α−1|ϑn(τ)|dτ, (2.15)

where ∥fn∥ = maxt∈[0,T ] |fn(t)|, ∥q∥ = maxt∈[0,T ] |q(t)|. Applying a Gronwall-type inequality to (2.15) with a
weakly singular kernel, we have the following estimate for |ϑn(t)| (see [31, 33]):

|ϑn(t)| ≤
(
|φn|+

tα∥fn∥
αΓ(α)

)
Eα(||q||tα). (2.16)

Using equality (2.12), from (2.16), we obtain an estimate for |∂αϑn(t)| :

|∂αϑn(t)| ≤ (λ2
n + ||q||)

(
|φn|+

tα∥fn∥
αΓ(α)

)
Eα(||q||tα) + ∥fn∥.

From here, based on Proposition 2.2-2.4, we have the following lemma:

Lemma 2.5 For any t ∈ [0, T ] and for sufficiently large n , the following estimates are valid:

|ϑn(t)| ≤ C1

(
|φn|+ ∥fn∥

)
, |∂αϑn(t)| ≤ C2

(
n2|φn|+ n2∥fn∥

)
,

where Ci, i = 1, 2, are positive constants, depending only on α, T , and ∥q∥.

Formally, from (2.11) by term-by-term differentiation, we compose the series

∂α
t ϑ(x, t) =

∞∑
n=1

∂αϑn(t) sin(λnx), ϑxx(x, t) =

∞∑
n=1

λ2
nϑn(t) sin(λnx), (2.17)
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Based on Lemma 2.5, we note the series (2.11), (2.17) for any (x, t) ∈ DT are estimated by

C3

∞∑
n=1

(
n2|φn|+ n2∥fn∥

)
, (2.18)

where the constant C3 > 0 depends only on α, T , and ∥q∥.
The following assertion is true:

Lemma 2.6 If the conditions (A1), (A2) take place, then there are equalities

φn =
1

λ3
n

φ(3)
n , fn(t) =

1

λ3
n

f (3)
n (t), (2.19)

where

φ(3)
n =

√
2

l

∫ l

0

φ(5)(x) cos(λnx)dx, f
(3)
n (t) =

√
2

l

∫ l

0

f (5)
xxxxx(x, t) cos(λnx)dx,

with the following estimates:

∞∑
n=1

|φ(3)
n |2 ≤ ∥φ(3)

n ∥L2[0,l],

∞∑
n=1

|f (3)
n (t)|2 ≤ ∥f (3)

n (t)∥L2[0,l]×C[0,T ]. (2.20)

If the functions φ(x) and f(x, t) satisfy the conditions of Lemma 3.2, then due to representations (2.19)
and (2.20) series (2.11), (2.17) converge uniformly in the rectangle ΩlT ; therefore, function u(x, t) satisfies
relations (2.7)–(2.9).

Using the above results, we obtain the following assertion:

Lemma 2.7 Let q(t) ∈ C[0, T ],(A1), (A2) be satisfied, then there exists a unique solution of the direct problem
(2.7)-(2.9) such that ϑ(x, t) ∈ C2,α (ΩlT ) .

Now we derive an estimate for the norm of the difference between the solution of the original integral
equation (2.14) and the solution of this equation with perturbed functions q̃, φ̃n, f̃n. Let ϑ̃n(t) be solution of

the integral equation (2.14) corresponding to the functions q̃, φ̃n, f̃n; i.e.

ϑ̃n(t) = φ̃nEα(−λ2
nt

α)+

+

∫ t

0

(t− τ)α−1Eα,α

(
−λ2

n(t− τ)α
)
f̃n(τ)dτ +

∫ t

0

(t− τ)α−1Eα,α

(
−λ2

n(t− τ)α
)
q̃(τ)ϑ̃n(τ)dτ. (2.21)

Composing the difference ϑ−ϑ̃ with the help of the equations (2.14), (2.21) and introducing the notations

ϑ− ϑ̃ = ϑn, q − q̃ = q, fn − f̃n = fn, we obtain the integral equation

ϑn(t) = φnEα(−λ2
nt

α) +

∫ t

0

(t− τ)α−1Eα,α

(
−λ2

n(t− τ)α
)
fn(τ)dτ+
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+

∫ t

0

(t− τ)α−1Eα,α

(
−λ2

n(t− τ)α
)
q(τ)ϑn(τ)dτ ++

∫ t

0

(t− τ)α−1Eα,α

(
−λ2

n(t− τ)α
)
q̃(τ)ϑn(τ)dτ, (2.22)

from which the following linear integral inequality for |ϑn(t)| is derived:

|ϑn(t)| ≤ |φn|+
tα∥fn∥
αΓ(α)

+
∥q∥tα

αΓ(α)

(
|φn|+

tα∥fn∥
αΓ(α)

)
Eα(∥q∥tα) +

∥q̃∥
Γ(α)

∫ t

0

(t− τ)α−1|ϑn(τ)|dτ.

Using Lemma 2.5, from the last inequality, we arrive at the estimate:

|ϑn(t)| ≤
{
|φn|+

tα∥fn∥
αΓ(α)

+
∥q∥tα

αΓ(α)

(
|φn|+

tα∥fn∥
αΓ(α)

)
Eα(∥q∥tα)

}
Eα(∥q̃∥tα), t ∈ [0, T ]. (2.23)

Indeed, the expression (2.23) is stability estimate for Fourier coefficients of the solution to the problem
(2.7)-(2.9). The uniqueness of the solution to the problem (2.7)-(2.9) follows from (2.11) and (2.23).

2.2. Investigation of the inverse problem

In this section, we study the inverse problem as the problem of determining of functions q(t) from relations
(2.7)-(2.10), using the contraction mapping principle.

Firstly, by differentiating (2.11) with respect to x , we get the following equality:

ϑx(x, t) =

∞∑
n=1

λnϑn(t) cos(λnx). (2.24)

Setting in (2.24) x = 0 and using additional condition (2.10), after simple converting, we obtain the
integral equation for determining q(t) :

q(t) = q0(t)−
1

h(t)

∞∑
n=1

λnϑn(t; q), (2.25)

where

q0(t) =
1

h(t)

[
fx(0, t)− ∂αh(t)

]
,

and ϑn(t; q) means that the solution of integral equation (2.14) depends on q(t).

We introduce an operator B, defining it by the right hand side of (2.25)

B[q](t) = q0(t)−
1

h(t)

∞∑
n=1

λnϑn(t; q). (2.26)

Then, the equation (2.25) is written in more convenient form

q(t) = B[q](t). (2.27)

Let q00 := maxt∈[0,T ] |q0(t)|. Fix a number ρ > 0 and consider the ball

ΦT (q0, ρ) := {q(t) : q(t) ∈ C[0, T ], ∥q − q0∥C[0,T ] ≤ ρ}.
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Theorem 2.8 Let (A1)-(A3) be satisfied. Then there exists a number T ∗ ∈ (0, T ), such that there exists a
unique solution q(t) ∈ C[0, T ∗] of the inverse problem (2.7)-(2.10).

Proof Let us first prove that for an enough small T > 0 the operator B maps the ball ΦT (q0, ρ) into itself.
Indeed, for any function q(t) ∈ C[0, T ] , the function B[q](t) calculated using formula (2.27) will be continuous.
Moreover, estimating the norm of the differences, we find that

∥B[q](t)− q0(t)∥ ≤
1

h0
Eα,1(∥q∥Tα)

∞∑
n=1

λn

(
|φn|+

Tα∥fn∥
αΓ(α)

)
.

Here we have used the estimate (2.16). In view of Lemmas 2.5 and 2.6, last series is convergent. Note that the
function occurring on the right-hand side in this inequality is monotone increasing with T , and the fact that
the function q(t) belongs to the ball ΦT (q0, ρ) implies the inequality

∥q∥ ≤ ρ+ ∥q0∥. (2.28)

Therefore, we only strengthen the inequality if we replace ∥q∥ in this inequality with the expression ρ+ ∥q0∥.
Performing these replacements, we obtain the estimate

∥B[q](t)− q0(t)∥ ≤
1

h0
Eα,1((ρ+ ∥q0∥)Tα)

∞∑
n=1

λn

(
|φn|+

Tα∥fn∥
αΓ(α)

)
.

Let T1 be a smallest positive root of the equation

m1(T ) =
1

h0
Eα,1((ρ+ ∥q0∥)Tα)

∞∑
n=1

λn

(
|φn|+

Tα∥fn∥
αΓ(α)

)
= ρ.

Then for T ∈ [0, T1] we have B[q](t) ∈ ΦT (q0, ρ).

Now consider two functions q(t) and q̃(t) belonging to the ball ΦT (q0, ρ) and estimate the distance

between B[q](t) and B[q̃](t) in the space C[0, T ]. The function ϑ̃n(t) corresponding to q̃(t) satisfies the integral

equation (2.21) with the functions φn = φ̃n and fn = f̃n. Composing the difference B[q](t)−B[q̃](t) with the
help of equations (2.14), (2.21) and then estimating its norm, we obtain

∥B[q](t)−B[q̃](t)∥ ≤ 1

h0

∞∑
n=1

λn∥ϑn∥.

Using inequality (2.16) and the estimate (2.23) with φn = φ̃n and fn = f̃n, we continue the previous inequality
in the following form:

∥B[q](t)−B[q̃](t)∥ ≤ 1

h0
Eα,1(∥q̃∥Tα)Eα,1(∥q∥Tα)

∞∑
n=1

λn∥q∥Tα

αΓ(α)

(
|φn|+

Tα∥fn∥
αΓ(α)

)
. (2.29)

The functions q(t) and q̃(t) belong to the ball ΦT (q0, ρ) , and hence for each of these functions one has inequality
(2.28). Note that the function on the right-hand side in inequality (2.29) at the factor ∥q∥ is monotone increasing
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with ∥q∥, ∥q̃∥, and T. Consequently, replacing ∥q∥ and ∥q̃∥ in inequality (2.29) with ρ+∥q0∥ will only strengthen
the inequality. This, we have

∥B[q](t)−B[q̃](t)∥ ≤ 1

h0

(
Eα,1((ρ+ ∥q0∥)Tα)

)2 ∞∑
n=1

λnT
α

αΓ(α)

(
|φn|+

Tα∥fn∥
αΓ(α)

)
∥q∥ ≤ m2(T )∥q∥.

Let T2 be a smallest positive root of the equation

m2(T ) =
1

h0

(
Eα,1((ρ+ ∥q0∥)Tα)

)2 ∞∑
n=1

λnT
α

αΓ(α)

(
|φn|+

Tα∥fn∥
αΓ(α)

)
= 1.

Then, for T ∈ [0, T2) , we have that the distance between the functions B[q](t) and B[q̃](t) in C[0, T ] is not
greater than the distance between the functions ∥q∥ and ∥q̃∥. Consequently, if we choose T ∗ < min(T1, T2),

then the operator B is a contraction in the ball ΦT (q0, ρ) . However, in accordance with the Banach theorem,
the operator B has unique fixed point in the ball ΦT (q0, ρ) ; i.e. there exists a unique solution of equation
(2.27). Theorem 2.8 is proven. 2

Let T, l be positive fixed numbers. Consider the set K(χ0)(χ0 > 0 is some fixed number) of the given
functions (φ, f, h), for which all conditions (A1)-(A3) are fulfilled and

max
{
∥φ∥C4[0,T ], ∥h∥C1[0,T ], ∥h−1∥C[0,T ], ∥f∥C4,1(DTl)

}
≤ χ0.

We denote by Q(χ1) the set of functions q(t), satisfying the following condition ∥q∥C[0,T ] ≤ χ1, χ1 > 0.

Theorem 2.9 Let (φ, f, h) ∈ K(χ0), (φ̃, f̃ , h̃) ∈ K(χ0) and q ∈ Q(χ1), q̃ ∈ Q(χ1) . Then, for solution of
the inverse problem (2.7)-(2.10), the following stability estimate holds:

∥q − q̃∥C[0,T ] ≤ d
(
∥φ− φ̃∥C4[0,l] + ∥f − f̃∥C4,1(ΩlT ) + ∥h− h̃∥C1[0,T ]

)
, (2.30)

where the constant d depends only on T, l, χ0, χ1.

Proof To prove this theorem, using (2.25), we write down the equations for q̃(t) and compose the difference
q(t) = q(t)− q̃(t). Then, after estimating the resulting relation and using (2.16),(2.23), we obtain the following
estimates:

|q(t)− q̃(t)| ≤ d0

(
∥f∥+ ∥φ∥+ ∥h∥

)
+ d1

∫ t

0

(t− τ)α−1|q(τ)− q̃(τ)|dτ, t ∈ [0, T ], (2.31)

where d0 d1 depends only on χ0, χ1, T, α. Applying a Gronwall-type inequality to (2.31) with a weakly singular
kernel, we have the following estimate (see [31, 33]):

|q(t)− q̃(t)| ≤ d0

(
∥f∥+ ∥φ∥+ ∥h∥

)
Eα,1

(
d1Γ(α)t

α
)
, t ∈ [0, T ], (2.32)

This inequality implies the estimate (2.30), if we set d = d0Eα,1

(
d1Γ(α)T

α
)
. 2

From Theorem 2.9 follows also the next assertion on uniqueness in whole for solution to the inverse problem.
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Theorem 2.10 Let the functions φ, f, h and φ̃, f̃ , h̃ have the same meaning as in Theorem 2.9 and conditions
(A1)-(A3). Moreover, if φ = φ̃, f = f̃ , h = h̃ for t ∈ [0, T ], then q(t) = q̃(t), t ∈ [0, T ].

3. Numerical procedure

The objective of this section is to present a numerical solution of the inverse problem for a fractional diffusion
equation (2.1) with initial boundary (2.3) and overdetermination (2.4) conditions using the finite difference
method. Consider a one-dimensional domain Ω ∈ (0, l) . Let Nx be the total number of discretization points.
Hence, we define ∆x = l/Nx as the spatial step size and denote the discretized points as, xi = i∆x where
0 ≤ i ≤ Nx is a positive integer. Let un

i be an approximation of u(xi, tn) , where tn = n∆t and ∆t = T/Nt is
the temporal step size, and Nt is the total number of time steps.

The fractional derivative of the function u(x, t) in Eq. (2.1) defined by (2.2) can be approximated as,

∂αu(x, t)

∂tα
≈ 1

Γ(2− α)∆tα

n−1∑
j=0

aj(u
n−j+1
i − un−j

i ), n ∈ (0, Nt) (3.1)

with order α > 0 , where Γ(·) is the Euler’s gamma function and aj = (1 + j)1−α − j1−α , for details see
[2]. By utilizing the approximation (3.1) for the time derivative and centered second-order finite difference for
spatial derivative, Eq. (2.1) can be rewritten in the following form:

1

Γ(2− α)∆tα

n−1∑
j=0

aj(u
n−j+1
i − un−j

i ) =
un
i+1 − 2un

i + un
i−1

∆x2
− qnun

i + fn
i . (3.2)

Then, un+1
i at grid point i for the time step n+ 1 results in

un+1
i = un

i +
1

a0

(
∆tαΓ(2− α)(An

i − qnun
i )−

n∑
j=1

aj(u
n+1−j
i − un−j

i )
)
, (3.3)

where An
i =

un
i+1−2un

i +un
i−1

∆x2 + fn
i has been used. Furthermore, we denote Bn

i =
∑n

j=1 aj(u
n+1−j
i − un−j

i )

to simplify the expression (3.3). Note that at time n = 0 the last term
∑n

j=1 aj(u
n+1−j
i − un−j

i ) of (3.3) leads

to u−1
j , which is undefined; hence, this summation has been neglected for n = 0 . The unknown coefficient qn

can be determined by applying the forward finite difference to the overdetermination condition (2.4) at the grid
point i = 0 , [5],

un+1
1 − un+1

0

∆x
= hn+1. (3.4)

Components un+1
0 and un+1

1 can be obtained at the discretized points i = 0 and i = 1 from Eq. (3.3).
Then, by substituting un+1

0 and un+1
1 the unknown coefficient qn can be evaluated as,

qn =
un
1 − un

0 +
1

a0
∆tαΓ(2− α)(An

1 −An
0 )−

1

a0
(Bn

1 −Bn
0 )−∆xhn+1

1

a0
∆tαΓ(2− α)(un

1 − un
0 )

. (3.5)
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Eq. (3.5) can be reduced to a compact form using the boundary condition (2.4), note that a0 = 1 ,

qn =
un
1 +∆tαΓ(2− α)An

1 −Bn
1 −∆xhn+1

∆tαΓ(2− α)un
1

. (3.6)

Based on these equations, Algorithm 1 has been constructed for the simultaneous determination of u(x, t)
and the unknown coefficient q(t) , and implemented in open-source Python.

Algorithm 1 Finite difference scheme for the evolution of u(x, t) and the unknown coefficient q(t)

Require: α , Ω = [0, l] , Nx , T , Nt

Ensure: u0
i = φ(xi) , fn

i , hn , Γ(2− α) ▷ For clarity un
i = u(xi, tn) , fn

i = f(xi, tn) ,hn = h(tn)
1: ∆x = l/Nx , xi = i∆x , Nx ← i
2: ∆t = T/Nt , tn = n∆t , Nt ← n
3: while n ≤ Nt do
4: while i ≤ Nx − 1 do
5: An

i = (un
i+1 − 2un

i + un
i−1)/∆x2 + fn

i ▷ in Eq. (3.3)
6: while j < n do
7: aj = (2 + j)1−α − (j + 1)1−α ▷ Note that a0 = 1

8: Bn
i =

∑n
j=1 aj(u

n+1−j
i − un−j

i ) ▷ in Eq. (3.5)
9: end while

10: end while
11: evaluate qn using Eq. (3.5)
12: while i ≤ Nx − 1 do
13: un+1

i = un
i + 1/a0

(
∆tαΓ(2− α)(An

i − qnun
i )−Bn

i

)
▷ Opdate ui

14: end while
15: un+1

0 = un+1
Nx−1 = 0 ▷ Enforce the boundary conditions

16: end while

4. Numerical example

In this section, the numerical results obtained using Algorithm 1 are presented for the test example (4.1). The
results are presented for three different values of α : 0.5, 0.75, and 1. In this example, we consider l = 2π and
T = 1 . The computational details are provided in Section 3. The results have been analyzed by calculating the
relative error between the exact and estimated solutions, defined as,

η(u) = max1≤i≤Nx
|unumerical

i − uexact
i |

η(qn) = |qnumerical
n − qexactn |

We solve the fractional inverse problem (2.1)-(2.4) with the following input data:

φ(x) = Γ(2− α) sin(x), h(t) = Γ(2− α)(1 + t) f(x, t) =
(
t1−α + Γ(2− α)(1 + t) + 1

)
sin(x) (4.1)

for x ∈ (0, l = 2π) and t ∈ (0, T = 1) . The exact solution is given by

u(x, t) = Γ(2− α)(1 + t) sin(x), q(t) =
1

Γ(2− α)(1 + t)
.
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The one-dimensional domain was discretized with Nx=16 grid points and a with grid spacing of ∆x =

l/Nx in the program, where l = 2π . The time increment between the time steps ∆t was taken as 10−4 .
We choose a smaller Nx due to the computation time; however, we could use a finer time increment ∆t and
larger discretization points Nx for better accuracy in q(t) and u(x, t) , respectively. Figure 1 presents numerical
results for u(x, t) .

α=0.5 α=0.75

α=1
Figure 1. Numerical evolution of u(x, t) over time for α=0.5, 0.75, 1.

For clarity, the comparison of numerical and analytical solutions are presented in Figure 2. As can be
seen, as α increases, the maximum value of u increases slightly.

The values of the relative errors η(u) and η(q) between the exact and numerical solutions of u(x, t) and
q(t) , respectively, are shown in Tables 1 and 2.

Figure 3 compares the analytical and numerical solutions of q(t) . As can be seen, near time t = 0 ,
the numerically evaluated values of qn are relatively high compared to the analytical values for α = 0.5 and
α = 0.75 .
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α=0.5 α=0.75

α=1 u(x, t = 1)

Figure 2. (a), (b), (c) - comparison between the numerical and analytical solutions of u(x, t) . (d) - numerical results
of u(x, t = 1) for the final time step.

Table 1. The relative error η(u) between the exact and numerical solutions of u(x, t) .

η(u)

t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α = 1 0.0288 0.0315 0.0341 0.0367 0.0393 0.0419 0.0445 0.0418 0.0441 0.0464
α = 0.75 0.0261 0.0285 0.0309 0.0333 0.0356 0.0380 0.0404 0.0427 0.0451 0.0475
α = 0.5 0.0256 0.0279 0.0302 0.0325 0.0348 0.0371 0.0395 0.0418 0.0441 0.0464

Table 2. The relative error η(q) between the exact and numerical solutions of q(t) .

η(q)

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α = 1 0.0639 0.0590 0.0552 0.0519 0.0491 0.0467 0.0446 0.0427 0.0410 0.0395 0.0382
α = 0.75 3.6275 0.0888 0.0715 0.0637 0.0588 0.0551 0.0522 0.0498 0.0477 0.0459 0.0443
α = 0.5 0.96 0.0886 0.0743 0.0672 0.0625 0.0591 0.0562 0.0539 0.0519 0.0502 0.0487

5. Conclusion
The inverse problem of determining the unknown coefficient in the fractional diffusion equation is considered.
First, the inverse problem is analyzed for the existence and uniqueness of the solution. Second, a numerical
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α=0.5 α=0.75

α=1
Figure 3. Comparison between the numerical and analytical solutions of q(t) .

procedure for the inverse problem was presented using the finite difference approach to simultaneously identify
the time-dependent coefficient in the one-dimensional fractional diffusion equation. The resulting inverse
problem was reformulated as a constrained regularized minimization problem, which was solved using the
open-source programming language, Python. The numerical results for u(x, t) are in good agreement with the
analytical solution. However, the numerical results of q0 at time t = 0 are relatively high compared to the
analytical solution for α = 0.5 and α = 0.75 . Nevertheless, the numerically obtained values of qn stabilized
further over time.
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