

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2023) 47: 1595 – 1615 © TÜBİTAK doi:10.55730/1300-0098.3452

Research Article

Adjunction greatest element to ordered hypersemigroups

Niovi KEHAYOPULU*

TBAE, The Scientific and Technological Research Council of Türkiye, Turkiye

Received: 10.07.2023	•	Accepted/Published Online: 08.08.2023	•	Final Version: 25.09.2023

Abstract: As a continuation of the paper "Adjunction Identity to Hypersemigroup" in Turk J Math 2022; 46 (7): 2834–2853, it has been proved here that the adjunction of a greatest element to an ordered hypersemigroup is actually an embedding problem. The concept of pseudoideal has been introduced and has been proved that for each ordered hypersemigroup S an ordered hypersemigroup V having a greatest element (*poe*-hypersemigroup) can be constructed in such a way that there exists a pseudoideal T of S such that S is isomorphic to T. If S does not have a greatest element, then this can be regarded as the embedding of an ordered hypersemigroup in an ordered semigroup with greatest element.

Key words: poe-hypersemigroup, pseudoideal, embedding, semisimple, ideal, bi-ideal

1. Introduction

Fuchs and Halperin have shown that every regular ring can be embedded in a regular ring with identity [1]. The problem of adjunction identity to semigroups, greatest element to ordered sets has been considered in [2]. In both cases the adjunction has the same meaning: If S(P) is a semigroup (ordered set) without identity (greatest element), the adjunction of an identity to S(P) means that we construct a semigroup (ordered set) V with identity (greatest element) in such a way that there exists an ideal I of V such that $S \cong I(P \cong I)$. Later, it has been proved that each ordered semigroup S can be embedded in an ordered semigroup having a greatest element. If S does not have a greatest element, then this is a problem of adjunction greatest element to S [3]. The problem of adjunction identity to hypersemigroups has been considered [7]. As a continuation of the paper in [7], we discuss here the problem of adjunction of a greatest element to an ordered hypersemigroup.

2. Main result

A hypersemigroup is a nonempty set S with an "operation" \circ assigning to each couple (a, b) of S a nonempty subset $a \circ b$ (called hyperoperation as the $a \circ b$ is a subset and not element of S) and an operation *between the nonempty subsets A, B of S such that $A * B = \bigcup \{a \circ b \mid a \in A, b \in B\}$ satisfying the relation $\{a\} * (b \circ c) = (a \circ b) * \{c\}$ for all $a, b, c \in S$ [4]. A hypersemigroup (S, \circ) is called an ordered hypersemigroup if there exists an order relation \leq on S such that $a \leq b$ implies $a \circ c \leq b \circ c$ and $c \circ a \leq c \circ b$ for every $c \in S$; in the sense that for every $u \in a \circ c$ there exists $v \in b \circ c$ such that $u \leq v$ and for every $u \in c \circ a$ there exists $v \in c \circ b$ such that $u \leq v$ [5].

^{*}Correspondence: niovi.kehayopulu-tbae@tubitak.gov.tr

²⁰¹⁰ AMS Mathematics Subject Classification: 06F99, 08A99, 20M75.

Definition 2.1 Let (S, \circ, \leq) be an ordered hypersemigroup. A nonempty subset T of S is called pseudoideal of (S, \circ, \leq) if

- (1) $T * T \subseteq T$ and
- (2) if $a \in T$ and $S \ni b \leq a$ then $b \in T$.

Definition 2.2 Two ordered hypersemigroups (S, \circ, \leq) and $(T, \overline{\circ}, \preceq)$ are called isomorphic if there exists a (1-1) mapping f of S onto T such that, for every $a, b \in S$, we have

- (1) $f(a \circ b) \subseteq f(a) \overline{\circ} f(b)$; in the sense that if $u \in a \circ b$, then $f(u) \in f(a) \overline{\circ} f(b)$
- (2) if $a \leq b$, then $f(a) \leq f(b)$
- (3) if $a, b \in S$ such that $f(a) \leq f(b)$, the $a \leq b$.

Theorem 2.3 Let (S, \circ, \leq) be an ordered hypersemigroup. Then there exists an ordered hypersemigroup V having a greatest element (poe-hypersemigroup) and a pseudoideal T of V such that $S \cong T$.

Proof For an element e not containing in S((x, x) is, for example, such an element), we consider the set $S \cup \{e\}$. We define an hyperoperation " $\overline{\circ}$ " on $S \cup \{e\}$ and an operation " $\overline{*}$ " on the set $\mathcal{P}^*(S \cup \{e\})$ of all nonempty subsets of S as follows:

$$\overline{\circ}: \ \left(S \cup \{e\}\right) \times \left(S \cup \{e\}\right) \to \mathcal{P}^*\left(S \cup \{e\}\right) \mid (x, y) \to x \ \overline{\circ} \ y \text{ where}$$
$$x \ \overline{\circ} \ y = \begin{cases} x \circ y & \text{if } x, y \in S \\ \{e\} & \text{if } x \in S, \ y = e \\ \{e\} & \text{if } x = e, \ y \in S \\ \{e\} & \text{if } x = y = e \end{cases}$$

$$\overline{*}: \mathcal{P}^*(S \cup \{e\}) \times \mathcal{P}^*(S \cup \{e\}) \to \mathcal{P}^*(S \cup \{e\}) \mid (A, B) \to A \overline{*} B \text{ where}$$

$$A \overline{\ast} B = \bigcup_{a \in A, \ b \in B} \ a \overline{\circ} b$$

(For $A = \{x\}$, $B = \{y\}$, we clearly have $\{x\} \ \overline{*} \ \{y\} = \bigcup_{u \in \{x\}, v \in \{y\}} u \ \overline{\circ} \ v = \bigcup_{u=x, v=y} u \ \overline{\circ} \ v = x \ \overline{\circ} \ y$)

Then $(S \cup \{e\}, \overline{\circ}, \overline{*})$ is a hypersemigroup. In fact:

(A) The operation $\overline{\circ}$ is well defined. Indeed: If $x, y \in S$, then $x \overline{\circ} y = x \circ y \subseteq S \subseteq S \cup \{e\}$. Otherwise, $x \overline{\circ} y = \{e\} \subseteq S \cup \{e\}$. Let $(x, y), (z, t) \in (S \cup \{e\}) \times (S \cup \{e\})$ such that (x, y) = (z, t). Then $x \overline{\circ} y = z \overline{\circ} t$. Indeed: If $x, y \in S$, then $z, t \in S, x \overline{\circ} y = x \circ y = z \circ t = z \overline{\circ} t$. If $x \in S, y = e$, then $z \in S, t = e, x \overline{\circ} y = \{e\}$ and $z \overline{\circ} t = \{e\}$ and so $x \overline{\circ} y = z \overline{\circ} t$. If $x = e, y \in S$, then $z = e, t \in S, x \overline{\circ} y = \{e\}, z \overline{\circ} t = \{e\}$ and so $x \overline{\circ} y = z \overline{\circ} t$. If $x = e, y \in S$, then $z = e, t \in S, x \overline{\circ} y = \{e\}, z \overline{\circ} t = \{e\}$ and so $x \overline{\circ} y = z \overline{\circ} t$.

(B) The operation $\overline{*}$ is well defined. Indeed: Let $A, B \in \mathcal{P}^*(S \cup \{e\})$. Since $\emptyset \neq a \overline{\circ} b \subseteq S \cup \{e\}$ for every $a \in A$ and every $b \in B$, we have $\emptyset \neq A \overline{*} B \subseteq S \cup \{e\}$. Let $(A, B), (C, D) \in \mathcal{P}^*(S \cup \{e\}) \times \mathcal{P}^*(S \cup \{e\})$ such that (A, B) = (C, D). Then $A \overline{*} B = \bigcup_{a \in A, b \in B} a \overline{\circ} b = \bigcup_{a \in C, b \in D} a \overline{\circ} b = C \overline{*} D$.

(C) $\{x\} \\ \\\overline{*} (y \\ \overline{\circ} z) = (x \\ \overline{\circ} y) \\ \\\overline{*} \{z\}$ for every $x, y, z \\ \\\in S \\ \cup \{e\}$. Indeed: We have to check the following two cases:

(a) $x \in S$, $(y \in S \text{ or } y = e)$, $(z \in S \text{ or } z = e)$ and (b) x = e, $(y \in S \text{ or } y = e)$, $(z \in S \text{ or } z = e)$.

(1) If $x, y, z \in S$, then $\{x\} = (y \circ z) = (x \circ y) = \{z\}$; its proof is the same with the proof in [7, p. 2838].

(2) Let $x, y \in S$, z = e. Then $\{x\} \neq (y \circ z) = (x \circ y) \neq \{z\}$. Indeed: We have

 $\{x\} \overline{*} (y \overline{\circ} z) = \{x\} \overline{*} \{e\} = x \overline{\circ} e = \{e\} \text{ and } (x \overline{\circ} y) \overline{*} \{z\} = (x \overline{\circ} y) \overline{*} \{e\}.$

On the other hand, $(x \ \overline{\circ} \ y) \ \overline{\ast} \ \{e\} = \{e\}$. Indeed: If $t \in (x \ \overline{\circ} \ y) \ \overline{\ast} \ \{e\}$, then $t \in u \ \overline{\circ} \ e$ for some $u \in x \ \overline{\circ} \ y$. Since $x, y \in S$, we have $x \ \overline{\circ} \ y = x \circ y$, then $u \in x \circ y \subseteq S$. Since $u \in S$, we have $u \ \overline{\circ} \ e = \{e\}$, then t = e and so $(x \ \overline{\circ} \ y) \ \overline{\ast} \ \{e\} \subseteq \{e\}$. Let now t = e. Take an element $u \in x \ \overline{\circ} \ y \ (x \ \overline{\circ} \ y \neq \emptyset)$. Since $x, y \in S$, we have $x \ \overline{\circ} \ y = x \circ y \subseteq S$. Since $u \in S$, we have $u \ \overline{\circ} \ e = \{e\}$. Then $t = e \in u \ \overline{\circ} \ e = \{u\} \ \overline{\ast} \ \{e\} \subseteq (x \ \overline{\circ} \ y) \ \overline{\ast} \ \{e\}$ and so $\{e\} \subseteq (x \ \overline{\circ} \ y) \ \overline{\ast} \ \{e\}$.

(3) Let
$$x \in S$$
, $y = e$, $z \in S$. Then $\{x\} \overline{*} (y \overline{\circ} z) = (x \overline{\circ} y) \overline{*} \{z\}$. Indeed: We have
 $\{x\} \overline{*} (y \overline{\circ} z) = \{x\} \overline{*} (e \overline{\circ} z) = \{x\} \overline{*} \{e\} = x \overline{\circ} e = \{e\}$ and
 $(x \overline{\circ} y) \overline{*} \{z\} = (x \overline{\circ} e) \overline{*} \{z\} = \{e\} \overline{*} \{z\} = e \overline{\circ} z = \{e\}.$

(4) Let $x \in S$, y = z = e. Then $\{x\} = (y \circ z) = (x \circ y) = \{z\}$. Indeed: We have

$$\{x\} \ \overline{*} \ (y \ \overline{\circ} \ z) = \{x\} \ \overline{*} \ (e \ \overline{\circ} \ e) = \{x\} \ \overline{*} \ \{e\} = x \ \overline{\circ} \ e = \{e\} \text{ and}$$
$$(x \ \overline{\circ} \ y) \ \overline{*} \ \{z\} = (x \ \overline{\circ} \ e) \ \overline{*} \ \{e\} = \{e\} \ \overline{*} \ \{e\} = e \ \overline{\circ} \ e = \{e\}.$$

(5) Let $x = e, y \in S, z \in S$. Then $\{x\} \neq (y \circ z) = (x \circ y) \neq \{z\}$. Indeed: We have

 $\{x\} = (y \ \overline{\circ} \ z) = \{e\} = \{e\} = (y \ \overline{\circ} \ z)$ and

 $(x \ \overline{\circ} \ y) \ \overline{*} \ \{z\} = (e \ \overline{\circ} \ y) \ \overline{*} \ \{z\} = \{e\} \ \overline{*} \ \{z\} = e \ \overline{\circ} \ z = \{e\}.$

On the other hand, $\{e\} \ \overline{*} \ (y \ \overline{\circ} \ z) = \{e\}$. Indeed: If $t \in \{e\} \ \overline{*} \ (y \ \overline{\circ} \ z)$, then $t \in e \ \overline{\circ} \ u$ for some $u \in y \ \overline{\circ} \ z$. Since $y, z \in S$, we have $y \ \overline{\circ} \ z = y \circ z \subseteq S$. Since $u \in S$, we have $e \ \overline{\circ} \ u = \{e\}$ and so t = e. Let now t = e. Take an element $u \in y \ \overline{\circ} \ z \ (y \ \overline{\circ} \ z \neq \emptyset)$. Since $y, z \in S$, we have $y \ \overline{\circ} \ z = y \circ z \subseteq S$. Since $u \in S$, we have $e \ \overline{\circ} \ u = \{e\}$. Then we have $t = e \in e \ \overline{\circ} \ u = \{e\} \ \overline{*} \ \{u\} \subseteq \{e\} \ \overline{*} \ (y \ \overline{\circ} \ z)$ and so $\{e\} \subseteq \{e\} \ \overline{*} \ (y \ \overline{\circ} \ z)$.

(6) Let
$$x = e, y \in S, z = e$$
. Then $\{x\} \overline{*} (y \overline{\circ} z) = (x \overline{\circ} y) \overline{*} \{z\}$. Indeed: We have
 $\{x\} \overline{*} (y \overline{\circ} z) = \{e\} \overline{*} (y \overline{\circ} e) = \{e\} \overline{*} \{e\} = e \overline{\circ} e = \{e\}$ and
 $(x \overline{\circ} y) \overline{*} \{z\} = (e \overline{\circ} y) \overline{*} \{e\} = \{e\} \overline{*} \{e\} = \{e\}.$

(7) Let $x = e, y = e, z \in S$. Then $\{x\} \overline{*} (y \overline{\circ} z) = (x \overline{\circ} y) \overline{*} \{z\}$. Indeed: We have $\{x\} \overline{*} (y \overline{\circ} z) = \{e\} \overline{*} (e \overline{\circ} z) = \{e\} \overline{*} \{e\} = e \overline{\circ} e = \{e\}$ and $(x \overline{\circ} y) \overline{*} \{z\} = (e \overline{\circ} e) \overline{*} \{z\} = \{e\} \overline{*} \{z\} = e \overline{\circ} z = \{e\}.$

(8) Let x = y = z = e. Then $\{x\} \neq (y \circ z) = (x \circ y) \neq \{z\}$. Indeed: We have

$$\{x\} \ \overline{*} \ (y \ \overline{\circ} \ z) = \{e\} \ \overline{*} \ (e \ \overline{\circ} \ e) = \{e\} \ \overline{*} \ \{e\} = e \ \overline{\circ} \ e = \{e\} \ \text{and} \ (x \ \overline{\circ} \ y) \ \overline{*} \ \{z\} = (e \ \overline{\circ} \ e) \ \overline{*} \ \{e\} = \{e\} \ \overline{*} \ \{e\} = \{e\}.$$

We endow $S \cup \{e\}$ with the relation \preceq defined by

$$\preceq := \leq \cup \{ (x, e) \mid x \in S \cup \{e\} \}$$

(D) The relation \leq is an order on $S \cup \{e\}$. Indeed:

It is reflexive: Let $a \in S \cup \{e\}$. If $a \in S$, then $(a, a) \in \leq \subseteq \preceq$; if a = e, then $(a, a) \in \{(x, e) \mid x \in S \cup \{e\}\} \subseteq \preceq$. Thus, we have $(a, a) \in \preceq$ for every $a \in S$ and the relation \preceq is reflexive.

The relation \preceq is symmetric. Indeed: Let $(a, b) \in \preceq$ and $(b, a) \in \preceq$. Then

 $(a,b) \in \leq$ or (a,b) = (x,e) for some $x \in S \cup \{e\}$ and

 $(b,a) \in \langle \text{ or } (b,a) = (y,e) \text{ for some } y \in S \cup \{e\}.$

We consider the cases:

(1) $(a,b) \in \leq$ and $(b,a) \in \leq$

(2) $(a,b) \in \leq$ and (b,a) = (y,e) for some $y \in S \cup \{e\}$

(3) (a,b) = (x,e) for some $x \in S \cup \{e\}$ and $(b,a) \in \leq$

(4) (a,b) = (x,e) for some $x \in S \cup \{e\}$ and (b,a) = (y,e) for some $y \in S \cup \{e\}$.

(1) If $a \leq b$ and $b \leq a$, then a = b.

(2) Let $(a,b) \in \leq$ and (b,a) = (y,e) for some $y \in S \cup \{e\}$. Since $(a,b) \in \leq$, we have $a, b \in S$. Since (y,a) = (y,e) for some $y \in S \cup \{e\}$, we have a = e. Thus, we have $S \ni a = e$. The case is impossible.

(3) Let (a,b) = (x,e) for some $x \in S \cup \{e\}$ and $(b,a) \in \leq$. Then we have $S \ni b = e$. The case is impossible. (4) Let (a,b) = (x,e) for some $x \in S \cup \{e\}$ and (b,a) = (y,e) for some $y \in S \cup \{e\}$. Then we have b = e = a

and so a = b.

The relation \preceq is transitive. Indeed: Let $(a, b) \in \preceq$ and $(b, c) \in \preceq$. Then

 $(a,b) \in \leq$ or (a,b) = (x,e) for some $x \in S \cup \{e\}$ and

 $(b,c) \in \leq$ or (b,c) = (y,e) for some $y \in S \cup \{e\}$. We consider the cases:

(1) $(a,b) \in \leq$ and $(b,c) \in \leq$. Then $(a,c) \in \leq \leq \leq$.

(2) $(a,b) \in \leq$ and (b,c) = (y,e) for some $y \in S \cup \{e\}$. Since (b,c) = (y,e); $y \in S \cup \{e\}$, we have c = e. Then we have $(a,c) = (a,e) \in \{(x,e) \mid x \in S \cup \{e\}\} \subseteq \preceq$.

(3) Let (a,b) = (x,e) for some $x \in S \cup \{e\}$ and $(b,c) \in \leq$. Then we have $S \ni b = e$. The case is impossible. (4) (a,b) = (x,e) for some $x \in S \cup \{e\}$ and (b,c) = (y,e) for some $y \in S \cup \{e\}$. Then we have $(a,c) = (a,e) \in \{(x,e) \mid x \in S \cup \{e\}\} \subseteq \preceq$.

(E) The element e is the greatest element of $S \cup \{e\}$. Indeed: Let $a \in S \cup \{e\}$. Then $(a, e) \in \{(x, e) \mid x \in S \cup \{e\}\} \subseteq \preceq$ and so $(a, e) \in \preceq$ i.e. $a \preceq e$.

(F) $(S \cup \{e\}, \overline{\circ}, \preceq)$ is a *poe*-hypersemigroup.

Let $a, b \in S \cup \{e\}$ such that $a \leq b$. Then $a \overline{\circ} c \leq b \overline{\circ} c$ and $c \overline{\circ} a \leq c \overline{\circ} b$ for every $c \in S \cup \{e\}$. Let us prove the first one. The proof of the second is similar.

We have $(a \in S \text{ or } a = e)$, $a \leq b$, $(c \in S \text{ or } c = e)$. Thus, we have

 $a \in S, a \leq b, c \in S$ $a \in S, a \leq b, c = e$ $a = e, a \leq b, c \in S$ $a = e, a \leq b, c = e.$

Thus, we have to check the following cases:

$$(1) \ a \in S, \ a \le b, \ c \in S$$

(2) $a \in S$, (a, b) = (x, e) for some $x \in S \cup \{e\}$, $c \in S$

- (3) $a \in S$, $a \leq b$, c = e
- (4) $a \in S$, (a, b) = (x, e) for some $x \in S \cup \{e\}$, c = e
- (5) $a = e, a \leq b, c \in S$
- (6) a = e, (a, b) = (x, e) for some $x \in S \cup \{e\}, c \in S$
- (7) $a = e, a \le b, c = e$
- (8) a = e, (a, b) = (x, e) for some $x \in S \cup \{e\}, c = e$.

(1) Let $a \in S$, $a \leq b$, $c \in S$ and $u \in a \ \overline{\circ} c$. Then there exists $v \in b \ \overline{\circ} c$ such that $u \leq v$. Indeed: Since $a, c \in S$, we have $a \ \overline{\circ} c = a \circ c$. Since $a \leq b$, we have $a \circ c \leq b \circ c$. Since $u \in a \circ c$, there exists $v \in b \circ c$ such that $u \leq v$. Since $b, c \in S$, we have $b \circ c = b \ \overline{\circ} c$. Since $u \leq v$, we have $(u, v) \in \leq \subseteq \preceq$. Thus, we have $v \in b \ \overline{\circ} c$ and $u \leq v$.

(2) Let $a \in S$, (a,b) = (x,e) for some $x \in S \cup \{e\}$, $c \in S$ and $u \in a \ \overline{\circ} c$. Then there exists $v \in b \ \overline{\circ} c$ such that $u \leq v$. Indeed: Since $a, c \in S$, we have $u \in a \ \overline{\circ} c = a \circ c \subseteq S$. Since $u \in S$, we have $(u,e) \in \{(x,e) \mid x \in S \cup \{e\}\} \subseteq \preceq$ and so $u \leq e$. Since b = e, we have $b \ \overline{\circ} c = e \ \overline{\circ} c = \{e\}$. For the element $v := e \in b \ \overline{\circ} c$, we have $u \leq v$.

(3) Let $a \in S$, $a \leq b$, c = e and $u \in a \overline{\circ} c$. Then there exists $v \in b \overline{\circ} c$ such that $u \leq v$. Indeed: We have $u \in a \overline{\circ} c = a \overline{\circ} e = \{e\}$ and so u = e. We also have $b \overline{\circ} c = b \overline{\circ} e = \{e\}$ and $e \leq e$ (since \leq is reflexive). So, for the element $v := e \in b \overline{\circ} c$, we have $u \leq v$.

(4) Let $a \in S$, (a, b) = (x, e) for some $x \in S \cup \{e\}$, c = e and $u \in a \overline{\circ} c$. Then there exists $v \in b \overline{\circ} c$ such that $u \leq v$. Indeed: We have $u \in a \overline{\circ} c = a \overline{\circ} e = \{e\}$ and so u = e. We also have $b \overline{\circ} c = e \overline{\circ} c = \{e\}$ and $e \leq e$ (as \leq is reflexive). For the element $v := e \in b \overline{\circ} c$, we have $u \leq v$.

(5) Let a = e, $a \le b$, $c \in S$ and $u \in a \ \overline{\circ} c$. Since $a \le b$, we have $a \in S$. Since a = e, we have $e \in S$. The case is impossible.

(6) Let a = e, (a, b) = (x, e) for some $x \in S \cup \{e\}$, $c \in S$ and $u \in a \ \overline{\circ} c$. Then there exists $v \in b \ \overline{\circ} c$ such that $u \leq v$. Indeed: We have $u \in a \ \overline{\circ} c = e \ \overline{\circ} c = \{e\}$ and so u = e. We also have $b \ \overline{\circ} c = e \ \overline{\circ} c = \{e\}$. For the element $v := e \in b \ \overline{\circ} c$, we have $u \leq v$.

(7) Let $a = e, a \leq b, c = e$ and $u \in a \overline{\circ} c$. Then there exists $v \in b \overline{\circ} c$ such that $u \leq v$. Indeed: We have $u \in a \overline{\circ} c = e \overline{\circ} e = \{e\}$ and so u = e. We also have $b \overline{\circ} c = b \overline{\circ} e = \{e\}$. So, for the element $v := e \in b \overline{\circ} c$, we have $u \leq v$.

(8) Let a = e, (a, b) = (x, e) for some $x \in S \cup \{e\}$, c = e and $u \in a \ \overline{\circ} c$. Then there exists $v \in b \ \overline{\circ} c$ such that $u \leq v$. Indeed: We have $u \in a \ \overline{\circ} c = e \ \overline{\circ} e = \{e\}$ and so u = e. We also have $b \ \overline{\circ} c = e \ \overline{\circ} e = \{e\}$. So, for the element $v := e \in b \ \overline{\circ} c$, we have $u \leq v$.

(G) The ordered hypersemigroups (S, \circ, \leq) and $(S, \overline{\circ}, \preceq)$ are isomorphic under the identity mapping. Indeed, for the one to one and onto mapping

$$i:(S,\circ,\leq)\to(S,\overline\circ,\preceq)\mid a\to i(a):=a$$

and, any $a, b \in S$, we have

(1) $i(a \circ b) \subseteq i(a) \overline{\circ} i(b)$; that is if $u \in a \circ b$, then $u \in a \overline{\circ} b$. This is clear, as $a, b \in S$ implies $a \circ b = a \overline{\circ} b$.

- (2) $a \leq b$ implies $a \leq b$. Indeed, if $a \leq b$, then $(a,b) \in \leq \subseteq \leq \cup \{(x,e) \mid x \in S \cup \{e\}\} = \leq i.e.$ $(a,b) \in \leq$ and so $a \leq b$.
- (3) if $a, b \in S$ such that $i(a) \leq i(b)$, then $a \leq b$. Indeed: if $i(a) \leq i(b)$, then $a \leq b$ i.e. $(a, b) \in \leq \cup \{(x, e) \mid c \in S \cup \{e\}\}$. If $(a, b) \in \leq$, then $a \leq b$ and the proof is complete. If $(a, b) \in \{(x, e) \mid x \in S \cup \{e\}\}$, then (a, b) = (x, e) for some $x \in S \cup \{e\}$. Then we have $S \ni b = e$ i.e. $e \in S$ and the case is impossible.

(G) S is a pseudoideal of $(S \cup \{e\}, \overline{\circ}, \preceq)$. Indeed, $\emptyset \neq S \subseteq S \cup \{e\}$, $S * S \subseteq S$ and if $a \in S$ and $S \cup \{e\} \ni b \preceq a$, then $b \in S$ (as b = e implies $e = a \in S$ that is impossible).

3. Some further results

A poe-semigroup (S, \cdot, \leq) is called regular if $a \leq aea$ for every $a \in S$; intra-regular if $a \leq ea^2e$ for every $a \in S$. It is called right (resp. left) regular if $a \leq a^2e$ (resp. $a \leq ea^2$) for every $a \in S$. A poe-semigroup (S, \cdot, \leq) is called right (resp. left) quasi-regular if $a \leq aeae$ (resp. $a \leq eaea$) for every $a \in S$. It is called semisimple if $a \leq aeaee$ for every $a \in S$.

These concepts can be extended for a *poe*-hypersemigroup (S, \circ, \leq) in the way indicated below.

Definition 3.1 A poe-hypersemigroup (S, \circ, \leq) is called regular if $\{a\} \leq (a \circ e) * \{a\}$ for any $a \in S$; in the sense that for any $a \in S$ there exists $t \in S$ such that $t \in (a \circ e) * \{a\}$ and $a \leq t$.

To see that Definition 3.1 is correct, we have to prove that it coincides with the definition of a regular poe-hypersemigroup. A poe-hypersemigroup (S, \circ, \leq) is called regular if for every $a \in S$ there exists $x \in S$ such that $\{a\} \leq (a \circ x) * \{a\}$ (in the sense that for every $a \in S$ there exist $x, t \in S$ such that $t \in (a \circ x) * \{a\}$ and $a \leq t$) [6].

In this respect, the following proposition holds.

Proposition 3.2 Let (S, \circ, \leq) is a poe-hypersemigroup. The following are equivalent:

- (1) S is regular.
- (2) $\{a\} \leq (a \circ e) * \{a\}$ for every $a \in S$.

Proof First of all, for any nonempty subsets A, B, C of $S, A \leq B$ implies $A * C \subseteq (B * C]$. Indeed: Let $x \in A * C$. Then $x \in a \circ c$ for some $a \in A, c \in C$. Since $a \in A$, there exists $b \in B$ such that $a \leq b$. Then $a \circ c \leq b \circ c$. Since $x \in a \circ c$, there exists $y \in b \circ c$ such that $x \leq y \in B * C$ and so $x \in (B * C]$.

(1) \implies (2). Let $a \in S$. Since S is regular, there exist $x, t \in S$ such that $t \in (a \circ x) * \{a\}$ and $a \leq t$. Since $x \leq e$, we have $a \circ x \leq a \circ e$, then $t \in (a \circ x) * \{a\} \subseteq ((a \circ e) * \{a\}]$. Then $t \leq y$ for some $y \in (a \circ e) * \{a\} (\subseteq (S * S) * S \subseteq S * S \subseteq S), y \in (a \circ e) * \{a\}$ and $a \leq y$ and property (2) is satisfied.

(2) \implies (1). Let $a \in S$. By (2), there exists $t \in S$ such that $t \in (a \circ e) * \{a\}$ and $a \leq t$. We put x := e. Then $x, t \in S, t \in (a \circ x) * \{a\}$ and $a \leq t$ and property (1) holds.

In a similar way, the following definitions are true.

Definition 3.3 A poe-hypersemigroup (S, \circ, \leq) is called intra-regular if $\{a\} \leq (e \circ a) * (a \circ e)$ for any $a \in S$; in the sense that for any $a \in S$ there exists $t \in S$ such that $t \in (e \circ a) * (a \circ e)$ and $a \leq t$.

Definition 3.4 A poe-hypersemigroup (S, \circ, \leq) is called right regular if $\{a\} \leq \{a\} * (a \circ e) \ (= (a \circ a) * \{e\})$ for any $a \in S$; in the sense that for any $a \in S$ there exists $t \in S$ such that $t \in \{a\} * (a \circ e)$ and $a \leq t$. It is called left regular if $\{a\} \leq (e \circ a) * \{a\} \ (= \{e\} * (a \circ a))$ for any $a \in S$; in the sense that for any $a \in S$ there exists $t \in S$ such that $t \in (e \circ a) * \{a\}$ and $a \leq t$.

Definition 3.5 A poe-hypersemigroup (S, \circ, \leq) is called right quasi-regular if $\{a\} \leq (a \circ e) * (a \circ e)$ for every $a \in S$; in the sense that for any $a \in S$ there exists $t \in S$ such that $t \in (a \circ e) * (a \circ e)$ and $a \leq t$. It is called left quasi-regular if $\{a\} \leq (e \circ a) * (e \circ a)$ for any $a \in S$; in the sense that for any $a \in S$ there exists $t \in S$ such that $t \in (e \circ a) * (e \circ a)$ and $a \leq t$.

Definition 3.6 A poe-hypersemigroup (S, \circ, \leq) is called semisimple if $\{a\} \leq (e \circ a) * (e \circ a) * \{e\}$ for any $a \in S$; in the sense that for any $a \in S$ there exists $t \in S$ such that $t \in (e \circ a) * (e \circ a) * \{e\}$ and $a \leq t$.

Proposition 3.7 The poe-hypersemigroup $(S \cup \{e\}, \overline{\circ}, \preceq)$ constructed in Theorem 2.3 is regular and intraregular.

Proof Let $a \in S \cup \{e\}$. Then there exists $t \in S \cup \{e\}$ such that $t \in (a \overline{\circ} e) \overline{*} \{a\}$ and $a \leq t$. Indeed: If $a \in S$, then $a \overline{\circ} e = \{e\}$, $(a \overline{\circ} e) \overline{*} \{a\} = \{e\} \overline{*} \{a\} = e \overline{\circ} a = \{e\}$. If a = e, then $a \overline{\circ} e = e \overline{\circ} e = \{e\}$, $(a \overline{\circ} e) \overline{*} \{a\} = \{e\} \overline{*} \{a\} = \{e\}$. In each case, we have $e \in (a \overline{\circ} e) \overline{*} \{a\}$ and $a \leq e$.

Let $a \in S \cup \{e\}$. Then there exists $t \in S \cup \{e\}$ such that $t \in (e \ \overline{\circ} \ a) \ \overline{*} \ (a \ \overline{\circ} \ e)$ and $a \ \preceq t$. Indeed, for the element $t := e \in S \cup \{e\}$, we have $e \in \{e\} = e \ \overline{\circ} \ e = \{e\} \ \overline{*} \ \{e\} = (e \ \overline{\circ} \ a) \ \overline{*} \ (a \ \overline{\circ} \ e)$; thus, we have $e \in (e \ \overline{\circ} \ a) \ \overline{*} \ (a \ \overline{\circ} \ e)$ and $a \ \preceq e$ and so $(S \cup \{e\}, \overline{\circ}, \preceq)$ is intra-regular.

Proposition 3.8 The poe-hypersemigroup $(S \cup \{e\}, \overline{\circ}, \preceq)$ is right regular and left regular.

Proof Let $a \in S \cup \{e\}$. Then there exists $t \in S \cup \{e\}$ such that $t \in \{a\} \ \overline{\ast} \ (a \ \overline{\circ} \ e)$ and $a \ \preceq t$. Indeed: for the element $t := e \in S \cup \{e\}$, we have $e \in \{e\} = a \ \overline{\circ} \ e = \{a\} \ \overline{\ast} \ \{e\} = \{a\} \ \overline{\ast} \ (a \ \overline{\circ} \ e)$; thus, we have $e \in \{a\} \ \overline{\ast} \ (a \ \overline{\circ} \ e)$ and $a \ \preceq e$ and so $(S \cup \{e\}, \overline{\circ}, \preceq)$ is right regular. We also have $e \in \{e\} = e \ \overline{\circ} \ a = \{e\} \ \overline{\ast} \ \{a\} = (e \ \overline{\circ} \ a) \ \overline{\ast} \ \{a\}$; thus, we have $e \in (e \ \overline{\circ} \ a) \ \overline{\ast} \ \{a\}$ and $a \ \preceq e$ and so $(S \cup \{e\}, \overline{\circ}, \preceq)$ is left regular. \Box

Proposition 3.9 The poe-semigroup $(S \cup \{e\}, \overline{\circ}, \preceq)$ is right quasi-regular and left quasi-regular.

Proof Let $a \in S \cup \{e\}$. Then there exists $t \in S \cup \{e\}$ such that $t \in (a \ \overline{\circ} \ e) \ \overline{\ast} \ (a \ \overline{\circ} \ e)$ and $a \ \preceq t$. In fact, for the element $t := e \in S \cup \{e\}$, we have $e \in \{e\} = e \ \overline{\circ} \ e = \{e\} \ \overline{\ast} \ \{e\} = (a \ \overline{\circ} \ e) \ \overline{\ast} \ (a \ \overline{\circ} \ e)$ and $a \ \preceq e$ and so $(S \cup \{e\}, \overline{\circ}, \preceq)$ is right quasi-regular. We also have $e \in \{e\} = e \ \overline{\circ} \ e = \{e\} \ \overline{\ast} \ \{e\} = (e \ \overline{\circ} \ a) \ \overline{\ast} \ (e \ \overline{\circ} \ a)$ and $a \ \preceq e$ and so $(S \cup \{e\}, \overline{\circ}, \preceq)$ is left quasi-regular.

Proposition 3.10 The poe-semigroup $(S \cup \{e\}, \overline{\circ}, \preceq)$ is semisimple.

Proof Let $a \in S \cup \{e\}$. Then there exists $t \in S \cup \{e\}$ such that $t \in (e \overline{\circ} a) \overline{*} (e \overline{\circ} a) \overline{*} \{e\}$ and $a \leq t$. Indeed, for the element $t := e \in S \cup \{e\}$, we have $e \in (e \overline{\circ} a) \overline{*} (e \overline{\circ} a) \overline{*} \{e\}$ and $a \leq e$. \Box

According to Proposition 3.7, $(S \cup \{e\}, \overline{\circ}, \preceq)$ is intra-regular. This can be also obtained as corollary to the next proposition. To prove it, we need the following lemma.

If $(S, \circ, *, \leq)$ is an ordered hypersemigroup and A, B nonempty subsets of S we write $A \leq B$ if for any $a \in A$ there exists $b \in B$ such that $a \leq b$.

Lemma 3.11 Let (S, \circ, \leq) be an ordered hypersemigroup. Then we have the following:

- (a) For any nonempty subsets A, B, C of S such that $A \leq B$, we have $A * C \leq B * C$ and $C * A \leq C * B$
- (b) The operation * is associative (see, for example [4]).
- (c) If $A \leq B \leq C$, then $A \leq C$.

Proof (a) Let $A \leq B$ and $x \in A * C$. Then there exists $y \in B * C$ such that $x \leq y$. Indeed: Since $x \in A * C$, we have $x \in a \circ c$ for some $a \in A$, $c \in C$. Since $a \in A$, there exists $b \in B$ such that $a \leq b$. Then $a \circ c \leq b \circ c$. Since $x \in a \circ c$, there exists $y \in b \circ c = B * C$ such that $x \leq y$.

(c) If $a \in A$, then there exists $b \in B$ such that $a \leq b$. Since $b \in B$, there exists $c \in C$ such that $b \leq c$. Hence, for any $a \in A$ there exists $c \in C$ such that $a \leq c$ and so $A \leq C$.

Proposition 3.12 A poe-hypersemigroup (S, \circ, \leq) that is right regular or left regular is intra-regular.

Proof Let (S, \circ, \leq) be right regular and $a \in S$. Then we have

$$\{a\} \leq (a \circ a) * \{e\} = \{a\} * \{a\} * \{e\} \leq \{e\} * \{a\} * \{e\} \text{ (since } a \leq e \text{ implies } \{a\} \leq \{e\}) \\ \leq \{e\} * (\{a\} * \{a\} * \{e\}) * \{e\} = \{e\} * \{a\} * \{a\} * (\{e\} * \{e\}) \\ \leq \{e\} * \{a\} * \{a\} * \{e\} \text{ (as } \{e\} * \{e\} = e \circ e \leq \{e\}) \\ = (e \circ a) * (a \circ e))$$

and so S is intra-regular.

By Propositions 3.7, 3.8, 3.9, and 3.10, we have the following corollary.

Corollary 3.13 Each ordered hypersemigroup can be embedded

- (1) in a regular poe-hypersemigroup.
- (2) in an intra-regular poe-hypersemigroup.
- (3) in a right regular (or left regular) poe-hypersemigroup.
- (4) in right quasi-regular (or left quasi-regular) poe-hypersemigroup.
- (5) in a semisimple poe-hypersemigroup.

4. Examples

We apply the above results to the following examples.

Remark 4.1 Theorem 2.3 can be also applied to a *poe*-hypersemigroup and we have the following: If (S, \circ, \leq) is a *poe*-hypersemigroup, t an element not included in $S, \overline{\circ}$ the hyperoperation and \leq the order $S \cup \{t\}$ defined in Theorem 2.3, then the set $V := (S \cup \{t\}, \overline{\circ}, \leq)$ is still a *poe*-hypersemigroup and S is a pseudoideal of V.

Let us give an example based on the remark.

Example 4.2 We consider the ordered semigroup $S = \{a, b, c\}$ given by Table 1 and Figure 1. From this, the ordered hypersemigroup given by Table 2 and the same figure (Figure 1) can be obtained. Take an element t not included in S and consider the ordered hypersemigroup $S \cup \{t\}$. Then $(S \cup \{t\}, \overline{\circ}, \preceq)$ is a *poe*-hypersemigroup having the S as a pseudoideal. According to Section 2, the ordered hypersemigroup $(S \cup \{e\}, \overline{\circ}, \preceq)$ given by Table 3 and Figure 2 is regular, intra-regular, right regular, left regular, right quasi-regular, left quasi-regular, and semisimple. Independently,

 $(S \cup \{e\}, \overline{\circ}, \preceq)$ is regular, that is, $\{a\} \preceq (a \overline{\circ} e) \overline{\circ} \{a\}$ for every $a \in S \cup \{e\}$; in other words, for every $a \in S \cup \{e\}$ there exists $t \in (a \overline{\circ} e) \overline{\ast} \{a\}$ such that $a \preceq t$. In fact,

$$e \in (a \overline{\circ} e) \overline{\ast} \{a\} = \{e\} \overline{\ast} \{a\} = e \overline{\circ} a = \{e\} \text{ and } a \preceq e;$$

$$e \in (b \overline{\circ} e) \overline{\ast} \{b\} = \{e\} \overline{\ast} \{b\} = e \overline{\circ} b = \{e\} \text{ and } b \preceq e;$$

$$e \in (c \overline{\circ} e) \overline{\ast} \{c\} = \{e\} \overline{\ast} \{c\} = e \overline{\circ} c = \{e\} \text{ and } c \preceq e;$$

$$e \in (e \overline{\circ} e) \overline{\ast} \{e\} = \{e\} \overline{\ast} \{e\} = e \overline{\circ} e = \{e\} \text{ and } e \preceq e.$$

 $(S \cup \{e\}, \overline{\circ}, \preceq)$ is intra-regular as

 $e \in (e \ \overline{\circ} \ a) \ \overline{\ast} \ (a \ \overline{\circ} \ e) = \{e\} \ \overline{\ast} \ \{e\} = e \ \overline{\circ} \ e = \{e\} \ \text{and} \ a \ \preceq e;$ $e \in (e \ \overline{\circ} \ b) \ \overline{\ast} \ (b \ \overline{\circ} \ e) = \{e\} \ \overline{\ast} \ \{e\} = \{e\} \ \text{and} \ b \ \preceq e;$ $e \in (e \ \overline{\circ} \ c) \ \overline{\ast} \ (c \ \overline{\circ} \ e) = \{e\} \ \overline{\ast} \ \{e\} = \{e\} \ \text{and} \ c \ \preceq e;$ $e \in (e \ \overline{\circ} \ e) \ \overline{\ast} \ (e \ \overline{\circ} \ e) = \{e\} \ \overline{\ast} \ \{e\} = \{e\} \ \text{and} \ c \ \preceq e;$

 $(S\cup \{e\}, \overline{\circ}, \preceq)$ is right regular as

$$e \in (a \\overline{\circ} a) \\overline{*} \{e\} = \{a\} \\overline{*} \{e\} = a \\overline{\circ} e = \{e\} \text{ and } a \preceq e;$$

$$e \in (b \\overline{\circ} b) \\overline{*} \{e\} = \{b\} \\overline{*} \{e\} = b \\overline{\circ} e = \{e\} \text{ and } b \preceq e;$$

$$e \in (c \\overline{\circ} c) \\overline{*} \{e\} = \{a, b, c\} \\overline{*} \{e\} = b \\overline{\circ} e = \{e\} \text{ and } c \preceq e;$$

$$e \in (e \\overline{\circ} e) \\overline{*} \{e\} = \{e\} \\overline{*} \{e\} = e \\overline{\circ} e = \{e\} \text{ and } e \preceq e.$$

 $(S \cup \{e\}, \overline{\circ}, \preceq)$ is left regular as

 $e \in (e \ \overline{\circ} \ a) \ \overline{\ast} \ \{a\} = \{e\} \ \overline{\ast} \ \{a\} = e \ \overline{\circ} \ a = \{e\} \ \text{and} \ a \ \underline{\prec} \ e;$ $e \in (e \ \overline{\circ} \ b) \ \overline{\ast} \ \{b\} = \{a, b, c\} \ \overline{\ast} \ \{b\} = \{a, b, c\} \ \text{and} \ b \ \underline{\prec} \ e;$ $e \in (e \ \overline{\circ} \ c) \ \overline{\ast} \ \{c\} = \{a, b, c\} \ \overline{\ast} \ \{c\} = \{a, b, c\} \ \text{and} \ c \ \underline{\prec} \ e;$ $e \in (e \ \overline{\circ} \ e) \ \overline{\ast} \ \{e\} = \{e\} \ \overline{\ast} \ \{e\} = e \ \overline{\circ} \ e = \{e\} \ \text{and} \ e \ \underline{\prec} \ e.$

 $(S \cup \{e\}, \overline{\circ}, \preceq)$ is right quasi-regular as

 $e \in (a \ \overline{\circ} \ e) \ \overline{\ast} \ (a \ \overline{\circ} \ e) = \{e\} \ \overline{\ast} \ \{e\} = e \ \overline{\circ} \ e = \{e\} \ \text{and} \ a \ \preceq e;$ $e \in (b \ \overline{\circ} \ e) \ \overline{\ast} \ (b \ \overline{\circ} \ e) = \{e\} \ \overline{\ast} \ \{e\} = \{e\} \ \text{and} \ b \ \preceq e;$ $e \in (c \ \overline{\circ} \ e) \ \overline{\ast} \ (c \ \overline{\circ} \ e) = \{e\} \ \overline{\ast} \ \{e\} = \{e\} \ \text{and} \ c \ \preceq e;$ $e \in (e \ \overline{\circ} \ e) \ \overline{\ast} \ (e \ \overline{\circ} \ e) = \{e\} \ \text{and} \ e \ \preceq e.$

 $(S\cup\{e\},\overline{\circ},\preceq)$ is left quasi-regular as

- $e \in (e \ \overline{\circ} \ a) \ \overline{*} \ (e \ \overline{\circ} \ a) = \{e\} \ \overline{*} \ \{e\} = \{e\} \text{ and } a \preceq e.$
- $e\in (e\ \overline{\circ}\ b)\ \overline{*}\ (e\ \overline{\circ}\ b)=\{e\}\ \overline{*}\ \{e\}=\{e\}\ \text{and}\ b\preceq e\,.$
- $e \in (e \ \overline{\circ} \ c) \ \overline{*} \ (e \ \overline{\circ} \ c) = \{e\} \ \overline{*} \ \{e\} = \{e\} \ \text{and} \ c \preceq e \,.$

$$e \in (e \ \overline{\circ} \ e) \ \overline{*} \ (e \ \overline{\circ} \ e) = \{e\} \ \overline{*} \ \{e\} = \{e\} \text{ and } e \preceq e.$$

 $(S\cup \{e\}, \overline{\circ}, \preceq)$ is semisimple as

 $e \in (e \ \overline{\circ} \ a) \ \overline{\ast} \ (e \ \overline{\circ} \ a) \ \overline{\ast} \ \{e\} = \{e\} \ \overline{\ast} \ \{e\} = \{e\} \ \text{and} \ a \ \underline{\prec} \ e.$ $e \in (e \ \overline{\circ} \ b) \ \overline{\ast} \ (e \ \overline{\circ} \ b) \ \overline{\ast} \ \{e\} = \{e\} \ \overline{\ast} \ \{e\} = \{e\} \ \text{and} \ b \ \underline{\prec} \ e.$ $e \in (e \ \overline{\circ} \ c) \ \overline{\ast} \ (e \ \overline{\circ} \ c) \ \overline{\ast} \ \{e\} = \{e\} \ \overline{\ast} \ \{e\} = \{e\} \ \text{and} \ c \ \underline{\prec} \ e.$ $e \in (e \ \overline{\circ} \ c) \ \overline{\ast} \ (e \ \overline{\circ} \ c) \ \overline{\ast} \ \{e\} = \{e\} \ \overline{\ast} \ \{e\} = \{e\} \ \text{and} \ c \ \underline{\prec} \ e.$

S is a pseudoideal of $S \cup \{e\}$. Indeed:

and if $a \in S$ and $S \cup \{e\} \ni b \preceq a$, then $b \in S$ (as b = e implies $e \preceq a$ and so $e = a \in S$ that is impossible).

Table 1: The multiplication of the ordered semigroup of Example 4.2.

Figure 1: The order of Example 4.2.

Table 2: The hyperoperation of (S, \circ, \leq) of Example 4.2.

0	a	b	c
a	$\{a\}$	$\{a\}$	$\{a, b, c\}$
b	$\{a\}$	$\{b\}$	$\{a, b, c\}$
\overline{c}	$\{a\}$	$\{a, b, c\}$	$\{a, b, c\}$

Example 4.3 (see also [3]) We consider the ordered semigroup $S = \{a, b, c, d, e, f, g\}$ given by Table 4 and Figure 3. From this, in the way indicated in [5], the ordered hypersemigroup defined by Table 5 and the same figure (Figure 3) can be obtained. If h is an element not containing in S, then the Table 6 and Figure 4 define a *poe*-hypersemigroup that is regular, intra-regular, right (left) regular, right (left) quasi-regular, and semisimple. In Theorem 2.3, we assume that S is an ordered hypersemigroup. In case of *poe*-hypersemigroups, one can continue the process given in Theorem 2.3 for countable many steps as it is shown in Figure 5.

Table 3: The hyperoperation of $(S \cup \{e\}, \overline{\circ}, \preceq)$ of Example 4.2.

Figure 2: The order $S \cup \{e\}$ of Example 4.2.

Independently,

 $(S \cup \{h\}, \overline{\circ}, \preceq)$ is regular, that is $\{a\} \preceq (a \overline{\circ} h) \overline{*} \{a\}$ for every $a \in S \cup \{h\}$; in other words, for every $a \in S \cup \{h\}$ there exists $t \in (a \overline{\circ} h) \overline{*} \{a\}$ such that $a \preceq t$. Indeed, we have

$$h \in (a \ \overline{\circ} \ h) \ \overline{\ast} \ \{a\} = \{h\} \ \overline{\ast} \ \{a\} = h \ \overline{\circ} \ a = \{h\} \ \text{and} \ a \ \preceq h$$
$$h \in (b \ \overline{\circ} \ h) \ \overline{\ast} \ \{b\} = \{h\} \ \overline{\ast} \ \{b\} = h \ \overline{\circ} \ b = \{h\} \ \text{and} \ b \ \preceq h$$
$$h \in (c \ \overline{\circ} \ h) \ \overline{\ast} \ \{c\} = \{h\} \ \overline{\ast} \ \{c\} = h \ \overline{\circ} \ c = \{h\} \ \text{and} \ c \ \preceq h$$
$$h \in (d \ \overline{\circ} \ h) \ \overline{\ast} \ \{d\} = \{h\} \ \overline{\ast} \ \{c\} = h \ \overline{\circ} \ c = \{h\} \ \text{and} \ d \ \preceq h$$
$$h \in (d \ \overline{\circ} \ h) \ \overline{\ast} \ \{d\} = \{h\} \ \overline{\ast} \ \{d\} = h \ \overline{\circ} \ d = \{h\} \ \text{and} \ d \ \preceq h$$
$$h \in (h \ \overline{\circ} \ h) \ \overline{\ast} \ \{c\} = \{h\} \ \overline{\ast} \ \{c\} = h \ \overline{\circ} \ c = \{h\} \ \text{and} \ d \ \preceq h$$
$$h \in (f \ \overline{\circ} \ h) \ \overline{\ast} \ \{c\} = \{h\} \ \overline{\ast} \ \{c\} = h \ \overline{\circ} \ f = \{h\} \ \text{and} \ f \ \preceq h$$
$$h \in (g \ \overline{\circ} \ h) \ \overline{\ast} \ \{g\} = \{h\} \ \overline{\ast} \ \{g\} = h \ \overline{\circ} \ g = \{h\} \ \text{and} \ g \ \preceq h$$
$$h \in (h \ \overline{\circ} \ h) \ \overline{\ast} \ \{g\} = \{h\} \ \overline{\ast} \ \{g\} = h \ \overline{\circ} \ g = \{h\} \ \text{and} \ g \ \preceq h$$
$$h \in (h \ \overline{\circ} \ h) \ \overline{\ast} \ \{h\} = \{h\} \ \overline{\ast} \ \{h\} = h \ \overline{\circ} \ h = \{h\} \ \text{and} \ g \ \preceq h$$

 $(S \cup \{h\}, \overline{\circ}, \preceq)$ is intraregular, that is $\{a\} \preceq (h \overline{\circ} a) \overline{*} (a \overline{\circ} h)$ for every $a \in S \cup \{h\}$; in other words, for every $a \in S \cup \{h\}$ there exists $t \in (h \overline{\circ} a) \overline{*} (a \overline{\circ} h)$ such that $a \preceq t$. Indeed, we have

 $(S \cup \{h\}, \overline{\circ}, \preceq)$ is right regular, that is $\{a\} \preceq (a \overline{\circ} a) \overline{*} \{h\}$ for every $a \in S \cup \{h\}$; in other words, for every

 $a \in S \cup \{h\}$ there exists $t \in (a \overline{\circ} a) \overline{*} \{h\}$ such that $a \leq t$. Indeed, we have

 $h \in (a \ \overline{\circ} \ a) \ \overline{\ast} \ \{h\} = \{a\} \ \overline{\ast} \ \{h\} = a \ \overline{\circ} \ h = \{h\} \ \text{and} \ a \ \preceq h$ $h \in (b \ \overline{\circ} \ b) \ \overline{\ast} \ \{h\} = \{a\} \ \overline{\ast} \ \{h\} = a \ \overline{\circ} \ h = \{h\} \ \text{and} \ b \ \preceq h$ $h \in (c \ \overline{\circ} \ c) \ \overline{\ast} \ \{h\} = \{a\} \ \overline{\ast} \ \{h\} = \{h\} \ \text{and} \ c \ \preceq h$ $h \in (d \ \overline{\circ} \ d) \ \overline{\ast} \ \{h\} = \{a\} \ \overline{\ast} \ \{h\} = \{h\} \ \text{and} \ d \ \preceq d$ $h \in (c \ \overline{\circ} \ c) \ \overline{\ast} \ \{h\} = \{a\} \ \overline{\ast} \ \{h\} = \{h\} \ \text{and} \ d \ \preceq d$ $h \in (c \ \overline{\circ} \ c) \ \overline{\ast} \ \{h\} = \{a\} \ \overline{\ast} \ \{h\} = \{h\} \ \text{and} \ d \ \preceq d$ $h \in (c \ \overline{\circ} \ c) \ \overline{\ast} \ \{h\} = \{a\} \ \overline{\ast} \ \{h\} = \{h\} \ \text{and} \ d \ \preceq d$ $h \in (f \ \overline{\circ} \ f) \ \overline{\ast} \ \{h\} = \{f\} \ \overline{\ast} \ \{h\} = f \ \overline{\circ} \ h = \{h\} \ \text{and} \ f \ \preceq h$ $h \in (g \ \overline{\circ} \ g) \ \overline{\ast} \ \{h\} = \{a\} \ \overline{\ast} \ \{h\} = a \ \overline{\circ} \ h = \{h\} \ \text{and} \ g \ \preceq h$ $h \in (h \ \overline{\circ} \ h) \ \overline{\ast} \ \{h\} = \{h\} \ \overline{\ast} \ \{h\} = h \ \overline{\circ} \ h = \{h\} \ \text{and} \ h \ \preceq h$

 $(S \cup \{h\}, \overline{\circ}, \preceq)$ is left regular, that is $\{a\} \preceq \{h\} \overline{*} (a \overline{\circ} a)$ for every $a \in S \cup \{h\}$; that is for every $a \in S \cup \{h\}$ there exists $t \in \{h\} \overline{*} (a \overline{\circ} a)$ such that $a \preceq t$. Indeed, we have

 $h \in \{h\} \ \overline{*} \ (a \ \overline{\circ} \ a) = \{h\} \ \overline{*} \ \{a\} = h \ \overline{\circ} \ a = \{h\} \ \text{and} \ a \ \preceq h$ $h \in \{h\} \ \overline{*} \ (b \ \overline{\circ} \ b) = \{h\} \ \overline{*} \ \{a\} = \{h\} \ \text{and} \ b \ \preceq h$ $c \in \{h\} \ \overline{*} \ (c \ \overline{\circ} \ c) = \{h\} \ \overline{*} \ \{a\} = \{h\} \ \text{and} \ c \ \le h$ $h \in \{h\} \ \overline{*} \ (c \ \overline{\circ} \ c) = \{h\} \ \overline{*} \ \{a\} = \{h\} \ \text{and} \ c \ \le h$ $h \in \{h\} \ \overline{*} \ (d \ \overline{\circ} \ d) = \{h\} \ \overline{*} \ \{a\} = \{h\} \ \text{and} \ d \ \preceq h$ $h \in \{h\} \ \overline{*} \ (d \ \overline{\circ} \ d) = \{h\} \ \overline{*} \ \{a\} = \{h\} \ \text{and} \ d \ \preceq h$ $h \in \{h\} \ \overline{*} \ (c \ \overline{\circ} \ e) = \{h\} \ \overline{*} \ \{a\} = \{h\} \ \text{and} \ d \ \preceq h$ $h \in \{h\} \ \overline{*} \ (f \ \overline{\circ} \ f) = \{h\} \ \overline{*} \ \{f\} = h \ \overline{\circ} \ f = h \ \text{and} \ f \ \preceq h$ $h \in \{h\} \ \overline{*} \ (g \ \overline{\circ} \ g) = \{h\} \ \overline{*} \ \{a\} = \{h\} \ \text{and} \ g \ \preceq h$ $h \in \{h\} \ \overline{*} \ (h \ \overline{\circ} \ h) = \{h\} \ \overline{*} \ \{h\} = h \ \overline{\circ} \ h = \{h\} \ \text{and} \ h \ \preceq h$

 $(S \cup \{h\}, \overline{\circ}, \preceq) \text{ is right quasi-regular, that is } \{a\} \preceq (a \overline{\circ} h) \overline{*} (a \overline{*} h) \text{ for every } a \in S \cup \{h\}. \text{ Indeed, we have} \\ \{a\} \preceq (a \overline{\circ} h) \overline{\circ} (a \overline{\circ} h) = \{h\} \overline{*} \{h\} = h \overline{\circ} h = \{h\}, \ \{b\} \preceq (b \overline{\circ} h) \overline{\circ} (b \overline{\circ} h) = \{h\} \overline{*} \{h\} = \{h\} \\ \{c\} \preceq (c \overline{\circ} h) \overline{\circ} (c \overline{\circ} h) = \{h\} \overline{*} \{h\} = \{h\}, \ \{d\} \preceq (d \overline{\circ} h) \overline{\circ} (h \overline{\circ} d) = \{h\} \overline{*} \{h\} = \{h\} \\ \{e\} \preceq (e \overline{\circ} h) \overline{\circ} (e \overline{\circ} h) = \{h\} \overline{*} \{h\} = \{h\}, \ \{f\} \preceq (f \overline{\circ} h) \overline{\circ} (f \overline{\circ} h) = \{h\} \overline{*} \{h\} = \{h\} \\ \{g\} \preceq (g \overline{\circ} h) \overline{\circ} (g \overline{\circ} h) = \{h\} \overline{*} \{h\} = \{h\}, \ \{h\} \preceq (h \overline{\circ} h) \overline{\circ} (h \overline{\circ} h) = \{h\} \overline{*} \{h\} = \{h\} \end{cases}$

 $(S \cup \{h\}, \overline{\circ}, \preceq) \text{ is left quasi-regular, that is } \{a\} \preceq (h \overline{\circ} a) \overline{*} (h \overline{\circ} a) \text{ for every } a \in S \cup \{h\}. \text{ Indeed, we have} \\ \{a\} \preceq (h \overline{\circ} a) \overline{\circ} (h \overline{\circ} a) = \{h\} \overline{*} \{h\} = \{h\}, \ \{b\} \preceq (h \overline{\circ} b) \overline{\circ} (h \overline{\circ} b) = \{h\} \overline{*} \{h\} = \{h\} \\ \{c\} \preceq (h \overline{\circ} c) \overline{\circ} (h \overline{\circ} c) = \{h\} \overline{*} \{h\} = \{h\}, \ \{d\} \preceq (h \overline{\circ} d) \overline{\circ} (h \overline{\circ} d) = \{h\} \overline{*} \{h\} = \{h\} \\ \{e\} \preceq (h \overline{\circ} e) \overline{\circ} (h \overline{\circ} e) = \{h\} \overline{*} \{h\} = \{h\}, \ \{f\} \preceq (h \overline{\circ} f) \overline{\circ} (h \overline{\circ} f) = \{h\} \overline{*} \{h\} = \{h\} \\ \{g\} \preceq (h \overline{\circ} g) \overline{\circ} (h \overline{\circ} g) = \{h\} \overline{*} \{h\} = \{h\}, \ \{h\} \preceq (h \overline{\circ} h) \overline{\circ} (h \overline{\circ} h) = \{h\} \overline{*} \{h\} = \{h\} \end{cases}$

 $(S \cup \{h\}, \overline{\circ}, \preceq)$ is semisimple, that is $\{a\} \preceq (h \overline{\circ} a) \overline{*} (h \overline{\circ} a)$ for every $a \in S \cup \{h\}$. Indeed, for every $x \in S$, we have

$$(x \overline{\circ} h) \overline{*} (x \overline{\circ} h) = \{h\}; \text{ and } a \leq h, b \leq h, c \leq h, d \leq h, e \leq h, f \leq h, g \leq h, h \leq h.$$

For the definitions of intra-regular, right (left) regular, right (left) quasi-regular, and semisimple ordered hypersemigroups, we refer to [6]

Recall that the ordered hypersemigroup (S, \cdot, \leq) given by Table 4 and Figure 3 is

- (a) not regular as, for example, $\nexists x \in S$ such that $\{b\} \le (b \circ x) * \{b\}$
- (b) not intra-regular as, for example, $\nexists x, y \in S$ such that $\{c\} \leq (x \circ x) * (c \circ y)$

- (c) not right regular, as $\nexists x \in S$ such that $\{f\} \leq (f \circ f) * \{x\}$
- (d) not left regular, as $\nexists x \in S$ such that $\{f\} \leq \{x\} * (a \circ a)$
- (e) not right quasi-regular, as $\nexists x, y \in S$ such that $\{e\} \le (e \circ x) * (e \circ y)$
- (f) not left quasi-regular, as $\nexists \ x,y \in S$ such that $\{e\} \leq (x \circ e) \ast (y \circ y)$
- (g) not semisimple, as $\nexists x, y, z \in S$ such that $\{f\} \le (x \circ f) * (y \circ f) * \{z\}$.

Table 4: The multiplication of the ordered semigroup S of Example 4.3.

•	a	b	c	d	e	f	g
a	a	a	a	a	a	a	a
b	a	a	a	a	a	a	a
c	a	a	a	a	a	a	a
d	a	a	a	a	a	a	a
e	a	a	a	a	a	a	b
f	a	b	c	d	e	f	a
\overline{g}	a	a	a	a	a	a	a

Figure 3: The order of S of Example 4.3.

0	a	b	c	d	e	f	g
a	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$
b	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$
c	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$
d	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$
e	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a,b\}$
f	$\{a\}$	$\{a,b\}$	$\{a, c\}$	$\{a,d\}$	$\{e\}$	$\{f\}$	$\{a\}$
\overline{g}	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$

Table 5: The hyperoperation of S of Example 4.3.

According to Remark 4.1, we can continue this process for countable many steps, the resulting figure is the following:

Figure 4: The order of $S \cup \{h\}$ of Example 4.3.

Table 6: The hyperoperation of $S \cup \{h\}$ of Example 4.3.

ō	a	b	c	d	e	f	g	h
\overline{a}	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{h\}$
b	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{h\}$
c	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{h\}$
d	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{h\}$
e	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a, b\}$	$\{h\}$
f	$\{a\}$	$\{a,b\}$	$\{a,c\}$	$\{a,d\}$	$\{e\}$	$\{f\}$	$\{a\}$	$\{h\}$
\overline{g}	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{h\}$
\overline{h}	$\{h\}$	$\{h\}$	$ \{h\}$	$\{h\}$	$\{h\}$	$\{h\}$	$\{h\}$	$\{\overline{h}\}$

5. Pseudoideal and ideals of $S \cup \{e\}$

Proposition 5.1 If (S, \circ, \leq) is an ordered hypersemigroup and T is a pseudoideal of S, then T is a pseudoideal of $(S \cup \{e\}, \overline{\circ}, \leq)$.

Proof Since $T * T \subseteq T$, we have $T \overline{*} T \subseteq T$. Indeed: Let $x \in T \overline{*} T$. Then $x \in a \overline{\circ} b$ for some $a, b \in T$. Since $a, b \in T \subseteq S$, we have $a \overline{\circ} b = a \circ b$. Then $x \in a \circ b = \{a\} * \{b\} \subseteq T * T \subseteq T$ and so $x \in T$. Let now $a \in T$ and $S \cup \{e\} \ni b \preceq a$. Then $b \in T$. Indeed: We have

 $a \in T$, $(b \in S \text{ or } b = e)$, $b \preceq a$; that is we have the following two cases:

(a) $a \in T, b \in S, (b \le a \text{ or } (b, a) = (x, e) \text{ for some } x \in S \cup \{e\})$

(b)
$$a \in T$$
, $b = e$, $(b \le a \text{ or } (b, a) = (x, e) \text{ for some } x \in S \cup \{e\})$

So we have to check the following:

- $(1) \ a \in T \, , \ b \in S \, , \ b \leq a$
- (2) $a \in T$, $b \in S$, (b, a) = (x, e) for some $x \in S$
- (3) $a \in T, b \in S, (b,a) = (e,e)$

Figure 5: Theorem 2.3 holds for a *poe*-hypersemigroup as well and the process given in that theorem can be continued for countable many sets leading to the order of Figure 5.

 $(4) \ a \in T , \ b = e , \ b \le a$

(5)
$$a \in T$$
, $b = e$, $(b, a) = (x, e)$ for some $x \in S$

(6)
$$a \in T$$
, $b = e$, $(b, a) = (e, e)$.

(1) If $a \in T$, $b \in S$, $b \le a$ then, since T is a pseudoideal of (S, \circ, \le) , we have $b \in T$.

(2) Let $a \in T$, $b \in S$, (b, a) = (x, e) for some $x \in S$. Since $T \subseteq S$, we have $a \in S$. Since (b, a) = (x, e) for some $x \in S$, we have a = e. Thus, we have $e \in S$. The case is impossible.

- (3) Let $a \in T$, $b \in S$, (b, a) = (e, e). Then we have $S \ni b = e$. The case is impossible.
- (4) Let $a \in T$, b = e, $b \le a$. Then we have $S \ni b = e$. The case is impossible.
- (5) Let $a \in T$, b = e, (b, a) = (x, e) for some $x \in S$. Then $e = b = x \in S$. The case is impossible.
- (6) Let $a \in T$, b = e, (b, a) = (e, e). Then we have $T \ni a = e = b$ and so $b \in T$.

Proposition 5.2 Let (S, \circ, \leq) be an ordered hypersemigroup. If A is an ideal of (S, \circ, \leq) , then $A \cup \{e\}$ is an ideal of $(S \cup \{e\}, \overline{\circ})$ but it is not an ideal of $(S \cup \{e\}, \overline{\circ} \leq)$.

Proof We have $(A \cup \{e\}) = (S \cup \{e\}) \subseteq A \cup \{e\}$. Indeed: Let $t \in (A \cup \{e\}) = (S \cup \{e\})$. Then $t \in x = y$ for some $x \in A \cup \{e\}$ and $y \in S \cup \{e\}$. We consider the cases:

(1) $x \in A, y \in S$ (2) $x \in A, y = e$ (3) $x = e, y \in S$ (4) x = y = e.

(1) Let $x \in A$, $y \in S$. Since $x, y \in S$, we have $x \overline{\circ} y = x \circ y$. We have $t \in x \circ y = \{x\} \overline{*} \{y\} \subseteq A * S \subseteq A$ and so $t \in A \subseteq A \cup \{e\}$.

(2) Let $x \in A$, y = e. Then $t \in x \overline{\circ} y = x \overline{\circ} e = \{e\}$ and so $t = e \in A \cup \{e\}$.

(3) Let $x = e, y \in S$. Then $t \in x \overline{\circ} y = e \overline{\circ} y = \{e\}$ and so $t \in A \cup \{e\}$.

(4) Let x = y = e. Then $t \in x \ \overline{\circ} \ y = e \ \overline{\circ} \ e = \{e\}$ and so $t \in A \cup \{e\}$.

Similarly, $(S \cup \{e\}) = (A \cup \{e\}) \subseteq A \cup \{e\}$.

We consider the ordered hypersemigroup $S = \{a, b, c, d, e, f, g\}$ given by Table 5 and Figure 3. The set $\{a, b, e\}$ is an ideal of $S = \{a, b, c, d, e, f, g\}$. Indeed: We have

$$\begin{split} \{a,b,e\}*\{a,b,c,d,e,f,g\} &= (a\circ a)\cup(a\circ b)\cup(a\circ c)\cup(a\circ d)\cup(a\circ e)\cup(a\circ f)\cup(a\circ g)\\ &\cup(b\circ a)\cup(b\circ b)\cup(b\circ c)\cup(b\circ d)\cup(b\circ e)\cup(b\circ f)\cup(b\circ g)\\ &\cup(e\circ a)\cup(e\circ b)\cup e\circ c)\cup(e\circ d)\cup(e\circ e)\cup(e\circ f)\cup(e\circ g)\\ &= \{a\}\cup\{b\}=\{a,b\}\subseteq\{a,b,e\}, \end{split}$$

similarly, $\{a, b, c, d, e, f, g\} * \{a, b, e\} = \{a\} \cup \{a, b\} \cup \{e\} \subseteq \{a, b, e\}$ and if $x \in \{a, b, e\}$ and $\{a, b, c, d, e, f, g\} \ni y \le x$, then $y \in \{a, b, e\}$, but $\{a, b, e, h\}$ is not an ideal of $S \cup \{h\}$ as $f \in S \cup \{h\}$, $f \le h$ and $f \notin \{a, b, e, h\}$.

Proposition 5.3 Let (S, \circ, \leq) be an ordered hypersemigroup. If B is a bi-ideal of (S, \circ, \leq) , then $B \cup \{e\}$ is a bi-ideal of $(S \cup \{e\}, \overline{\circ})$, but it is not an ideal of $(S \cup \{e\}, \overline{\circ}, \preceq)$.

Proof We have $(B \cup \{e\}) \overline{*} (S \cup \{e\}) \overline{*} (B \cup \{e\}) \subseteq B \cup \{e\}$. In fact: Let $t \in (B \cup \{e\}) \overline{*} (S \cup \{e\}) \overline{*} (B \cup \{e\})$. We have $t \in u \overline{\circ} v$ for some $u \in (B \cup \{e\}) \overline{*} (S \cup \{e\})$, $v \in B \cup \{e\}$ and $u \in x \overline{\circ} y$ for sone $x \in B \cup \{e\}$, $y \in S \cup \{e\}$. We have the cases:

(a) $x \in B$, $(y \in S \text{ or } y = e)$, $(v \in B \text{ or } v = e)$

(b) x = e, $(y \in S \text{ or } y = e)$, $(v \in B \text{ or } v = e)$.

So we have to check the following:

(1) $x \in B, y \in S, v \in B$ (2) $x \in B, y \in S, v = e$ (3) $x \in B, y = e, v \in B$ (4) $x \in B, y = e, v = e$ (5) $x = e, y \in S, v \in B$ (6) $x = e, y \in S, v = e$ (7) $x = e, y = e, v \in B$ (8) x = y = v = e.

(1) Let $x \in B$, $y \in S$, $v \in B$. We have $t \in u \ \overline{\circ} v = \{u\} \ \overline{\ast} \ \{v\} \subseteq (x \ \overline{\circ} \ y) \ \overline{\ast} \ \{v\}$. We also have $(x \ \overline{\circ} \ y) \ \overline{\ast} \ \{v\} \subseteq (x \circ y) \ast \{v\}$. Indeed: Let $t \in (x \ \overline{\circ} \ y) \ \overline{\ast} \ \{v\}$. Then $t \in a \ \overline{\circ} \ v$ for some $a \in x \ \overline{\circ} \ y$. Since $x, y \in S$, we have $a \in x \ \overline{\circ} \ y = x \circ y \subseteq S$. Since $a, v \in S$, we have $a \ \overline{\circ} \ v = a \circ v$. Thus, we have $t \in a \circ v = \{a\} \ast \{v\} \subseteq (x \circ y) \ast \{v\}$

and so $(x \ \overline{\circ} \ y) \ \overline{*} \ \{v\} \subseteq (x \circ y) * \{v\}$. Hence, we have $t \in (x \circ y) * \{v\} = \{x\} * \{y\} * \{v\} \subseteq B * S * B \subseteq B$ and so $t \in B \subseteq B \cup \{e\}$. (2) Let $x \in B$, $y \in S$, v = e. Since $t \in u \ \overline{\circ} v = t \in u \ \overline{\circ} e = \{e\}$, we have $t = e \in B \cup \{e\}$. (3) Let $x \in B$, y = e, $v \in B$. We have

$$t \in u \ \overline{\circ} \ v = \{u\} \ \overline{\ast} \ \{v\} \subseteq (x \ \overline{\circ} \ y) \ \overline{\ast} \ \{v\} = (x \ \overline{\circ} \ e) \ \overline{\ast} \ \{v\} = \{e\} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ c = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ c = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ \overline{\ast} \ c = e \ \overline{\circ} \ c = \{e\} \ \overline{\ast} \ c = e \ \overline{\circ} \ c = e \$$

and so $t = e \in B \cup \{e\}$. (4) Let $x \in B, y = e, v = e$. We have

$$t \in u \ \overline{\circ} \ v = \{u\} \ \overline{\ast} \ \{v\} \subseteq (x \ \overline{\circ} \ y) \ \overline{\ast} \ \{e\} = (x \ \overline{\circ} \ e) \ \overline{\ast} \ \{e\} = \{e\} \ \overline{\ast} \ \{e\} = e \ \overline{\circ} \ e = \{e\}$$

and so $t = e \in B \cup \{e\}$. (5) Let $x = e, y \in S, v \in B$. We have

$$t \in u \ \overline{\circ} \ v = \{u\} \ \overline{\ast} \ \{v\} \subseteq (x \ \overline{\circ} \ y) \ \overline{\ast} \ \{v\} = (e \ \overline{\circ} \ y) \ \overline{\ast} \ \{v\} = \{e\} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \ v = e \ \overline{\circ} \ v = \{e\} \ \overline{\ast} \ \overline{\ast} \ v = e \ \overline{\circ} \$$

and so $t \in B \cup \{e\}$. (6) Let $x = e, y \in S, v = e$. We have

$$t \in u \ \overline{\circ} \ v = \{u\} \ \overline{\ast} \ \{v\} \subseteq (x \ \overline{\circ} \ y) \ \overline{\ast} \ \{v\} = (e \ \overline{\circ} \ y) \ \overline{\ast} \ \{e\} = \{e\} \ \overline{\circ} \ \{e\} = e \ \overline{\circ} \ e = \{e\}$$

and so $t \in B \cup \{e\}$. (7) Let $x = e, y = e, v \in B$. We have

$$t \in u \ \overline{\circ} \ v = \{u\} \ \overline{\ast} \ \{v\} \subseteq (x \ \overline{\circ} \ y) \ \overline{\ast} \ \{v\} = (e \ \overline{\circ} \ e) \ \overline{\ast} \ \{v\} = \{e\} \ \overline{\ast} \ \{v\} = e \ \overline{\circ} \ v = \{e\}$$

and so $t \in B \cup \{e\}$. (8) Let t = y = v = e. We have

$$t \in u \ \overline{\circ} \ v = \{u\} \ \overline{\ast} \ \{v\} \subseteq (x \ \overline{\circ} \ y) \ \overline{\ast} \ \{v\} = (e \ \overline{\circ} \ e) \ \overline{\ast} \ \{e\} = \{e\} \ \overline{\ast} \ \{e\} = e \ \overline{\circ} \ e = \{e\}$$

and so $t \in B \cup \{e\}$.

We consider the ordered hypersemigroup $S = \{a, b, c, d, e, f, g\}$ given by Table 5 and Figure 3. The set $\{a, b, e\}$ (as an ideal) is a bi-ideal of $S = \{a, b, c, d, e, f, g\}$, but, as we have already seen, $f \in S \cup \{h\}$, $f \leq h$ and $f \notin \{a, b, e, h\}$ and so $\{a, b, e, h\}$ is not a bi-ideal of $S \cup \{h\}$.

The set $\{a, d, e, g\}$ is a bi-ideal of $\{a, b, c, d, e, f, g\}$ as

 $\{a, d, e, g\} * \{a, b, c, d, e, f, g\} * \{a, d, e, g\} = \{a, b\} * \{a, b, c, d, e, f, g\} = \{a\} \subseteq \{a, d, e, g\},$

 $x \in \{a, d, e, g\} \text{ and } \{a, b, c, d, e, f, g\} \ni y \leq x \text{ implies } x \in \{a, d, e, g\}, \text{ but } \{a, d, e, g, h\} \text{ is not a bi-ideal of } \{a, b, c, d, e, f, g, h\} \Rightarrow f \leq h, \text{ but } f \notin \{a, d, e, g, h\}.$

Proposition 5.4 Let (S, \circ, \leq) be an ordered hypersemigroup. If Q is a quasi-ideal of (S, \circ, \leq) , then $Q \cup \{e\}$ is a quasi-ideal of $(S \cup \{e\}, \overline{\circ})$, but it is not a quasi-ideal of $(S \cup \{e\}, \overline{\circ}, \preceq)$.

Proof We have $((Q \cup \{e\}) \neq (S \cup \{e\})) \cap ((S \cup \{e\}) \neq (Q \cup \{e\})) \subseteq Q \cup \{e\}$. Indeed: Let $t \in ((Q \cup \{e\}) \overline{*} (S \cup \{e\})) \cap ((S \cup \{e\}) \overline{*} (Q \cup \{e\}))$. Then $t \in x \overline{\circ} y$ for some $x \in Q \cup \{e\}, y \in S \cup \{e\}$ and $t \in z \overline{\circ} h$ for some $z \in S \cup \{e\}$, $h \in S \cup \{e\}$. We have the cases: (a) $x \in Q$, $(y \in S \text{ or } y = e)$, $(z \in S \text{ or } z = e)$, $(h \in Q \text{ or } h = e)$ (b) x = e, $(y \in S \text{ or } y = e)$, $(z \in S \text{ or } z = e)$, $(h \in Q \text{ or } h = e)$ So, we have to check the following: (1) $x \in Q, y \in S, z \in S, h \in Q$ (2) $x \in Q, y \in S, z \in S, h = e$ (3) $x \in Q, y \in S, z = e, h \in Q$ (4) $x \in Q, y \in S, z = e, h = e$ (5) $x \in Q, y = e, z \in S, h \in Q$ (6) $x \in Q, y = e, z \in S, h = e$ (7) $x \in Q, y = e, z = e, h \in Q$ (8) $x \in Q, y = e, z = e, h = e$ (9) $x = e, y \in S, z \in S, h \in Q$ (10) $x = e, y \in S, z \in S, h = e$ (11) $x = e, y \in S, z = e, h \in Q$ (12) $x = e, y \in S, z = e, h = e$ (13) $x = e, y = e, z \in S, h \in Q$ (14) $x = e, y = e, z \in S, h = e$ (15) $x = e, y = e, z = e, h \in Q$ (16) x = e, y = e, z = e, h = e. (1) Let $x \in Q$, $y \in S$, $z \in S$, $h \in Q$. Since $x, y \in S$, we have $t \in x \circ y = x \circ y = \{x\} * \{y\} \subset Q * S$. Since $z, h \in S$, we have $t \in z \ \overline{\circ} \ h = z \circ h = \{z\} * \{h\} \subseteq S * Q$. Then we have $t \in (Q * S) \cap (S * Q) \subseteq (Q * S] \cap (S * Q) \subseteq Q$ and so $t \in Q \subseteq Q \cup \{e\}$. (2) Let $x \in Q$, $y \in S$, $z \in S$, h = e. Since $x, y \in S$, we have $t \in x \circ y = x \circ y = \{x\} * \{y\} \subseteq Q * S \subseteq S$. Since $z \in S$, h = e, we have $t \in z \overline{\circ} h = z \overline{\circ} e = \{e\}$. Then $S \ni t = e$. The case is impossible. (3) Let $x \in Q$, $y \in S$, z = e, $h \in Q$. Then $t \in x \overline{\circ} y = x \circ y = \{x\} * \{y\} \subseteq Q * S \subseteq S$ and $t \in z \overline{\circ} h = z \overline{\circ} e = \{e\}$. Then we have $S \ni t = e$. The case is impossible. (4) Let $x \in Q$, $y \in S$, z = e, h = e. Then $t \in x \ \overline{\circ} \ y = x \circ y = \{x\} * \{y\} \subseteq Q * S \subseteq S$ and $t \in z \ \overline{\circ} \ h = e \ \overline{\circ} \ e = \{e\}$. Then $S \ni t = e$, the case is impossible. (5) Let $x \in Q$, y = e, $z \in S$, $h \in Q$. Then $t \in x \overline{\circ} y = x \overline{\circ} e = \{e\}$, $t \in z \overline{\circ} h = z \circ h = \{z\} * \{h\} \subseteq S * Q \subseteq S$. Then $S \ni t = e$, the case is impossible. (6) Let $x \in Q$, y = e, $z \in S$, h = e. Then $t \in x \overline{\circ} y = x \overline{\circ} e = \{e\}$, $t \in z \overline{\circ} h = z \overline{\circ} e = \{e\}$. Then $t = e \in Q \cup \{e\}.$ (7) Let $x \in Q$, y = e, z = e, $h \in Q$. Then $t \in x \ \overline{\circ} \ y = x \ \overline{\circ} \ e = \{e\}$, $t \in z \ \overline{\circ} \ h = e \ \overline{\circ} \ h = \{e\}$. Then $t = e \in Q \cup \{e\}.$ (8) Let $x \in Q$, y = e, z = e, h = e. Then $t \in x \ \overline{\circ} \ y = x \ \overline{\circ} \ e = \{e\}$, $t \in z \ \overline{\circ} \ h = e \ \overline{\circ} \ e = \{e\}$. Then $t = e \in Q \cup \{e\}.$ (9) Let $x = e, y \in S, z \in S, h \in Q$. Then $t \in x \overline{\circ} y = e \overline{\circ} y = \{e\}, t \in z \overline{\circ} h = z \circ h = \{z\} * \{h\} \subseteq S * Q \subseteq S$. Then $S \ni t = e$, the case is impossible. (10) Let $x = e, y \in S, z \in S, h = e$. Then $t \in x \overline{\circ} y = e \overline{\circ} y = \{e\}, t \in z \overline{\circ} h = z \overline{\circ} e = \{e\}$ and so $t = e \in Q \cup \{e\}.$ (11) Let $x = e, y \in S, z = e, h \in Q$. Then $t \in x \overline{\circ} y = e \overline{\circ} y = \{e\}, t \in z \overline{\circ} h = e \overline{\circ} h = \{e\}$ and so

 $t = e \in Q \cup \{e\}.$

(12) Let $x = e, y \in S, z = e, h = e$. Then $t \in x \overline{\circ} y = e \overline{\circ} y = \{e\}, t \in z \overline{\circ} h = e \overline{\circ} e = \{e\}$ and so

 $t = e \in Q \cup \{e\}.$ (13) Let $x = e, y = e, z \in S, h \in Q$. Then $t \in x \overline{\circ} y = e \overline{\circ} e = \{e\}, t \in z \overline{\circ} h = z \circ h = \{z\} * \{h\} \subseteq S * Q \subseteq S$ and so $S \ni t = e$, the case is impossible. (14) Let $x = e, y = e, z \in S, h = e$. Then $t \in x \overline{\circ} y = e \overline{\circ} e = \{e\}, t \in z \overline{\circ} h = z \overline{\circ} e = \{e\}$ and so $t = e \in Q \cup \{e\}.$ (15) Let $x = e, y = e, z = e, h \in Q$. Then $t \in x \overline{\circ} y = e \overline{\circ} e = \{e\}, t \in z \overline{\circ} h = e \overline{\circ} h = \{e\}$ and so $t = e \in Q \cup \{e\}.$ (16) Let x = e, y = e, z = e, h = e. Then $t \in x \overline{\circ} y = e \overline{\circ} e = \{e\}, t \in z \overline{\circ} h = e \overline{\circ} e = \{e\}$ and so $t = e \in Q \cup \{e\}.$

We consider the ordered hypersemigroup $S = \{a, b, c, d, e, f, g\}$ given by Table 5 and Figure 3. The set $\{a, b, f, g\}$ is a quasi-ideal of $\{a, b, c, d, e, f, g\}$ as

$$\begin{split} \left(\{a, b, f, g\} * \{a, b, c, d, e, f, g\} \right] & \cap & \left(\{a, b, c, d, e, f, g\} * \{a, b, f, g\} \right] \\ & = & \left(\{a, b, c, d, e, f\} \right] \cap \left(\{a, b, f\} \right] \\ & = & \{a, b, c, d, f, e\} \cap \{a, b, f\} \\ & = & \{a, b, f\} \subseteq \{a, b, f, g\}; \end{split}$$

 $x \in \{a, b, f, g\} \text{ and } \{a, b, c, d, e, f, g\} \ni y \le x \text{ implies } y \in \{a, b, f, g\}, \text{ but } \{a, b, f, g, h\} \text{ is not a quasi-ideal of } \{a, b, c, d, e, f, g, h\} \text{ as } h \in \{a, b, f, g, h\} \text{ and } \{a, b, c, d, e, f, g\} \ni h \preceq h, \text{ but } c \notin \{a, b, f, g, h\}.$

Proposition 5.5 Let (S, \circ, \leq) be an ordered hypersemigroup. If A is an interior ideal of (S, \circ, \leq) , then $A \cup \{e\}$ is an interior ideal of $(S \cup \{e\}, \overline{\circ})$, but it is not an interior ideal of $(S \cup \{e\}, \overline{\circ}, \preceq)$.

Proof We have $(S \cup \{e\}) \overline{*} (A \cup \{e\}) \overline{*} (S \cup \{e\}) \subseteq A \cup \{e\}$. Indeed: Let $t \in (S \cup \{e\}) \overline{*} (A \cup \{e\}) \overline{*} (S \cup \{e\})$. Then $t \in x \overline{\circ} y$ for some $x \in (S \cup \{e\}) \overline{*} (A \cup \{e\})$, $y \in S \cup \{e\}$ and $x \in u \overline{\circ} v$ for some $u \in S \cup \{e\}$, $v \in A \cup \{e\}$. We have the cases:

(a) $y \in S$, $(u \in S \text{ or } u = e)$, $(v \in A \text{ or } v = e)$

(b) y = e, $(u \in S \text{ or } u = e)$, $(v \in A \text{ or } v = e)$.

So we have to check the following:

(1) $y \in S$, $u \in S$, $v \in A$ (2) $y \in S$, $u \in S$, v = e(3) $y \in S$, u = e, $v \in A$ (4) $y \in S$, u = e, v = e(5) y = e, $u \in S$, $v \in A$ (6) y = e, $u \in S$, v = e(7) y = e, u = e, $v \in A$ (8) y = e, u = e, v = e.

(1) Let $y \in S$, $u \in S$, $v \in A$. Then we have

 $t \in x \ \overline{\circ} \ y = \{x\} \ \overline{\ast} \ \{y\} \subseteq (u \ \overline{\circ} \ v) \ \overline{\ast} \ \{y\} = \{u\} \ \overline{\ast} \ \{v\} \ \overline{\ast} \ \{y\} \subseteq S \ast A \ast S \subseteq A \subseteq A \cup \{e\}.$

(2) Let $y \in S$, $u \in S$, v = e. Then $t \in u \ \overline{\circ} v = u \ \overline{\circ} e = \{e\} \subseteq A \cup \{e\}$.

- (3) Let $y \in S$, u = e, $v \in A$. Then $t \in u \ \overline{\circ} v = e \ \overline{\circ} v = \{e\} \subseteq A \cup \{e\}$.
- (4) Let $y \in S$, u = e, v = e. Then $t \in u \ \overline{\circ} v = e \ \overline{\circ} e = \{e\} \subseteq A \cup \{e\}$.
- (5) Let $y = e, u \in S, v \in A$. Then $t \in x \overline{\circ} y = x \overline{\circ} e = \{e\} \subseteq A \cup \{e\}$.
- (6) let $y = e, u \in S, v = e$. Then $t \in x \ \overline{\circ} \ y = x \ \overline{\circ} \ e = \{e\} \subseteq A \cup \{e\}$.
- (7) Let $y = e, u = e, v \in A$. Then $t \in x \ \overline{\circ} \ y = x \ \overline{\circ} \ e = \{e\} \subseteq A \cup \{e\}$
- (8) Let y = e, u = e, v = e. Then $t \in x \overline{\circ} y = e \overline{\circ} e = \{e\} \subseteq A \cup \{e\}$.

We consider the ordered hypersemigroup $S = \{a, b, c, d, e, f, g\}$ given by Table 5 and Figure 3. The set $\{a\}$ is an interior ideal element of $S = \{a, b, c, d, e, f, g\}$ as

 $\{a, b, c, d, e, f, g\} * \{a\} = (a \circ a) \cup (b \circ a) \cdots (f \circ a) \cup (g \circ a) = \{a\},\$ $\{a, b, c, d, e, f, g\} * \{a\} * \{a, b, c, d, e, f, g\} = \{a\},\$

- [u, v, c, u, c, j, g] * [u] * [u, v, c, u, c, j, g] = [u],
- $\text{if } x \in \{a\} \text{ and } \{a,b,c,d,e,f,g\} \ni y \leq a\,,\,\text{then }\,y=a\,.$

However, $\{a\} \cup \{h\}$ is not an interior ideal of $\{a, b, c, d, e, f, g, h\}$. Indeed, $\{a, b, c, d, e, f, g, h\} \ni c \leq h$, but $c \notin \{a, h\}$.

Note Concerning the ordered hypersemigroup (S, \circ, \leq) given by Table 5 and Figure 3, it might be mentioned that

The ideals of (S, \circ, \leq) are the sets: $\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, d\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, c, e\}, \{a, b, d, e\}, \{a, b, c, d, e\}, \{a, b, c, d, e, f\}, \{a, b, d, g\}, \{a, b, d, g\}, \{a, b, c, d, g\}, \{a, b, c, d, e, g\}, \{a, b, c, e, g\}, \{a, b, d, e, g\}, \{a, b, c, d, e, g\}$ and S (total 22).

 $\begin{array}{l} \text{The quasi-ideals of } (S,\circ,\leq) \text{ are the ideals of } S \text{ plus the sets } \{a,e\}, \ \{a,c,e\}, \ \{a,d,e\}, \ \{a,c,d,e\}, \ \{a,f\}, \ \{a,b,f\}, \ \{a,b,c,f\}, \ \{a,d,f\}, \ \{a,b,d,f\}, \ \{a,c,d,f\}, \ \{a,b,c,d,f\}, \ \{a,b,e,f\}, \ \{a,c,e,f\}, \ \{a,b,d,e,f\}, \ \{a,c,d,e,f\}, \ \{a,c,d,e\}, \ \{a,b,c,d,f\}, \ \{a,b,c,d,f\}, \ \{a,b,c,d,f\}, \ \{a,b,c,f\}, \ \{a,b,c,d\}, \ \{a,b,c\}, \ \{a,$

The bi-ideals of (S, \circ, \leq) are the quasi-ideals of S plus the sets $\{a, e, g\}$, $\{a, c, e, g\}$, $\{a, d, e, g\}$, $\{a, d, e, g\}$, $\{a, c, d, e, g\}$ (total 56).

References

- Fuchs L, Halperin I. On the imbedding of a regular ring in a regular ring with identity. Fundamenta Mathematicae 1964; 54: 285-290.
- [2] Kehayopulu N. On adjoining identity to semigroups, greatest element of ordered sets. Mathematica Japonica 1991; 36 (4): 695-702.
- [3] Kehayopulu N. On adjoining greatest element to ordered semigroups. Mathematica Japonica 1993; 38 (1): 61-66.
- [4] Kehayopulu N. On hypersemigroups. Pure Mathematics and Applications. PU.M.A. 2015; 25 (2): 151-156. https://doi.org/10.1515/puma-2015-0015
- [5] Kehayopulu N. On ordered hypersemigroups given by a table of multiplication and a figure. Turkish Journal of Mathematics 2018; 42 (4): 2045-060. https://doi.org/10.3906/mat-1711-53
- [6] Kehayopulu N. From ordered semigroups to ordered hypersemigroups. Turkish Journal of Mathematics 2019; 43 (1): 21-35. https://doi.org/10.3906/mat-1806-104

 [7] Kehayopulu N. Adjunction identity to hypersemigroups. Turkish Journal of Mathematics 2022; 46 (7): 2834-2853. https://doi.org/10.55730/1300-0098.3333