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Abstract: As a continuation of the paper “Adjunction Identity to Hypersemigroup” in Turk J Math 2022; 46 (7):
28342853, it has been proved here that the adjunction of a greatest element to an ordered hypersemigroup is actually
an embedding problem. The concept of pseudoideal has been introduced and has been proved that for each ordered
hypersemigroup S an ordered hypersemigroup V having a greatest element (poe-hypersemigroup) can be constructed
in such a way that there exists a pseudoideal T' of S such that S is isomorphic to T". If S does not have a greatest
element, then this can be regarded as the embedding of an ordered hypersemigroup in an ordered semigroup with greatest

element.
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1. Introduction

Fuchs and Halperin have shown that every regular ring can be embedded in a regular ring with identity [1].
The problem of adjunction identity to semigroups, greatest element to ordered sets has been considered in [2].
In both cases the adjunction has the same meaning: If S (P) is a semigroup (ordered set) without identity
(greatest element), the adjunction of an identity to S (P) means that we construct a semigroup (ordered set)
V' with identity (greatest element) in such a way that there exists an ideal I of V such that S =T (P = 1).
Later, it has been proved that each ordered semigroup S can be embedded in an ordered semigroup having a
greatest element. If S does not have a greatest element, then this is a problem of adjunction greatest element
to S [3]. The problem of adjunction identity to hypersemigroups has been considered [7]. As a continuation of

the paper in [7], we discuss here the problem of adjunction of a greatest element to an ordered hypersemigroup.

2. Main result

A hypersemigroup is a nonempty set S with an “operation” o assigning to each couple (a,b) of S a nonempty
subset a o b (called hyperoperation as the a o b is a subset and not element of S) and an operation x
between the nonempty subsets A, B of S such that Ax B =|J{aob | a € A, b € B} satisfying the relation
{a} x(boc) = (aob)x*{c} for all a,b,c € S [4]. A hypersemigroup (S,0) is called an ordered hypersemigroup
if there exists an order relation < on S such that ¢ < b implies aoc<boc and coa < cob for every c € S;
in the sense that for every u € a o ¢ there exists v € bo ¢ such that v < v and for every u € co a there exists
v € cob such that u <wv [5].
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Definition 2.1 Let (S,0,<) be an ordered hypersemigroup. A nonempty subset T of S is called pseudoideal
of (8,0,<) if

(1) T«T CT and

(2) ifaeT and S>b<athenbeT.

Definition 2.2 Two ordered hypersemigroups (S,0,<) and (T,3,=) are called isomorphic if there exists a
(1-1) mapping f of S onto T such that, for every a,b € S, we have

(1) f(aob) C f(a)3s f(b); in the sense that if w € aob, then f(u) € f(a) o f(b)

(2) if a < b, then f(a) = f(b)

(3) if a,b € S such that f(a) < f(b), the a <b.

Theorem 2.3 Let (S,0,<) be an ordered hypersemigroup. Then there exists an ordered hypersemigroup V
having a greatest element (poe-hypersemigroup) and a pseudoideal T of V' such that S = T.

Proof For an element e not containing in S ((z,z) is, for example, such an element), we consider the set
S U {e}. We define an hyperoperation “5” on S U {e} and an operation “*” on the set P*(S U {e}) of all

nonempty subsets of S as follows:
5: (Su{e}) x (Su{e}) = P (Su{e}) | (z,y) = x5y where

zoy ifx,ye S
_ {e} ifxesS y=e
{e} ifx=e yes
{e} fa=y=e

w: PH(Su{e}) x P*(Su{e}) = P*(SU{e}) | (A, B) = A% B where

a€A, beB
(For A= {z}, B = {y}, we clearly have {z}* {y} = U usv= |J udsv==x0y)
ue{z},ve{y} U=T,v=Y
Then (SU{e},B,?) is a hypersemigroup. In fact:
(A) The operation 5 is well defined. Indeed: If z,y € S, then x Sy = zoy C S C SU{e}. Otherwise,
zoy={e} CSU{e}. Let (z,y),(2,t) € (SU{e}) x (SU{e}) such that (z,y) = (2,t). Then zoy =270t.
Indeed: If z,y € S, then z,t € S, x5y =xoy=zot=z0t. lfx €S, y=e,then z€ S, t=e, x5y = {e}
and z5t={e} andso xsy=z20¢t. f x=e,ye S, then z=e, t€ S, x5y ={e}, 20t ={e} and so
xoy=zot={e}. fx=y=e,then z=t=e and zoy={e} =270t.
(B) The operation * is well defined. Indeed: Let A,B € P*(SU{e}). Since § # asb C SU{e} for every
a € A and every b€ B, we have ) # A% B C SU{e}. Let (4,B),(C,D) € P*(SU{e}) x P*(SU{e}) such
that (A,B)=(C,D). Then A*B= |J adb= |J asb=C%*D.

acA,beB acC,beD
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(C) {z}* (yo2) =(xoy)*{z} for every z,y,z € SU{e}. Indeed:
We have to check the following two cases:
(a) z€S, (yeSory=e), (z€Sorz=¢) and
(b) x =e, (yeSory:e), (zeSorz:e).
(1) If z,y,z € S, then {z} % (y© 2) = (£ 3 y) * {z}; its proof is the same with the proof in [7, p. 2838].
(2) Let x,y € S, z=e. Then {z} % (yo2) = (x5 y) * {z}. Indeed: We have
{z}*(yoz)={az}*{e} =xce={e} and (x5y)* {2z} = (x5 y) % {e}.
On the other hand, (z 5 y) * {e} = {e}. Indeed: If t € (x S y) * {e}, then ¢ € u 5 e for some u € z 7 y.
Since z,y € S, we have £ Sy =z oy, then u € zoy C S. Since u € S, we have u o e = {e}, then t = ¢
and so (zoy) % {e} C {e}. Let now t = e. Take an element v € x5y (z oy # (). Since x,y € S, we have
zoy=xzoy CS. Since u € S, wehave use={e}. Then t =ecude={u}*{e} C(z3y)* {e} and so
{e} € (woy) *{e}.
(3)Let z€S,y=e, 2€S. Then {2} ¥ (yo2) = (zoy) * {z}. Indeed: We have
{z} ¥ (yoz) ={z}*(eo2) ={a}*{e} =woe={e} and
(zoy)¥{z} = (xoe)* {z} ={e} ¥ {z} =ev 2= {e}.
(4) Let x € S, y=z=-e. Then {2} * (yo2) = (zoy) * {z}. Indeed: We have
{z}* (yoz)={z}*(ece)={z} ¥ {e} =xTe={e} and
(xoy)x{z} =(z5e)x{e} ={e} x{e} =eoe={e}.
(5)Let z=e,ye S, 2€S. Then {2} ¥ (yo2) = (zoy)* {z}. Indeed: We have
{2z} % (yo2) ={e} ¥ (yo2) and
(roy)*{z} = (evy) ¥ {z} ={e} ¥ {z} =e0z = {e}.
On the other hand, {e} ¥ (y S z) = {e}. Indeed: If ¢t € {e} * (y T z), then t € e 5 u for some v € y T z. Since
y,z €S, wehave yoz=yozCS. Since u € S, we have e 5 u = {e} and so t =e. Let now ¢t = e. Take an
element u € y5z (yoz#0). Since y,z € .S, we have yoz=yoz C S. Since u € S, we have e 5 u = {e}.
Then we have t =ecedu={e} *{u} C{e} * (ySz2) and so {e} C {e} * (y o 2).
(6)Let z=e¢,y€S, 2=e. Then {x}* (yo52)=(zoy)* {2}. Indeed: We have
{r}¥(yoz)={e}*(yoe) ={e} ¥ {e} =ede={e} and
(z5y) ¥ {z} = (evy) * {e} = {e} ¥ {e} = {e}.
(TYLet z=e¢,y=¢e, z€ S. Then {z} * (y52)=(zoy)*{z}. Indeed: We have
{z}*(yoz)={e}x(ecz)={e}*{e} =ede={e} and
(xoy)*x{z} =(ece)*x{z} ={e} ¥ {2z} =eoz={e}.

We endow S U {e} with the relation < defined by
=< U{(z,e) |z € SU{e}}.
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(D) The relation =< is an order on S U {e}. Indeed:
It is reflexive: Let a € SU{e}. If a € S, then (a,a) e<C=;if a =e, then (a,a) € {(z,e) |z € SU{e}} C=.
Thus, we have (a,a) €= for every a € S and the relation < is reflexive.
The relation < is symmetric. Indeed: Let (a,b) €< and (b,a) €<. Then

(a,b) €< or (a,b) = (z,e) for some x € SU{e} and

(b,a) €< or (b,a) = (y,e) for some y € SU{e}.
We consider the cases:

(1) (a,b) €< and (b,a) €<

(2) (a,b) €< and (b,a) = (y,e) for some y € SU{e}
(3) (a,b) = (x,e) for some z € SU{e} and (b,a) €<
(4) (a,b) = (x,e) for some = € SU{e} and (b,a) = (y,e) for some y € SU {e}.
(1) If a<band b <a, then a =>.
(2) Let (a,b) €< and (b,a) = (y, e) for some y € SU{e}. Since (a,b) €<, we have a,b € S. Since (y,a) = (y, e)
for some y € SU{e}, we have a = e. Thus, we have S 3> a = e. The case is impossible.
(3) Let (a,b) = (x,e) for some x € SU{e} and (b,a) €<. Then we have S 3 b =e. The case is impossible.
(4) Let (a,b) = (x,e) for some x € SU{e} and (b,a) = (y,e) for some y € SU{e}. Then we have b=e =a
and so a =b.
The relation < is transitive. Indeed: Let (a,b) €< and (b,¢) €<. Then

(a,b) €< or (a,b) = (z,¢e) for some x € SU{e} and

(b,c) €< or (b,c) = (y,e) for some y € SU{e}. We consider the cases:
(1) (a,b) €< and (b,c) €<. Then (a,c) €<C=.
(2) (a,b) €< and (b,c) = (y,e) for some y € SU{e}. Since (b,c) = (y,e); y € SU{e}, we have ¢ = e. Then
we have (a,c) = (a,e) € {(z,e) | x € SU{e}} C=.
(3) Let (a,b) = (z,e) for some z € SU{e} and (b,c) €<. Then we have S 3 b =e. The case is impossible.
(4) (a,b) = (x,e) for some x € SU{e} and (b,c) = (y,e) for some y € SU{e}. Then we have (a,c) = (a,e) €
{(z,e) |z € SU{e}} C=.

(E) The element e is the greatest element of S U {e}. Indeed: Let a € SU {e}. Then (a,e) € {(z,e) | x €
SU{e}} C=< and so (a,e) €< ie. a=<e.

(F) (Su{e},s, x) is a poe-hypersemigroup.
Let a,b € SU{e} such that a <b. Then a ¢ <bdc and ¢da <X c3b for every ¢c € SU {e}. Let us prove
the first one. The proof of the second is similar.
We have (aESora:e), a=b, (cESorc:e). Thus, we have
aeS,a=b,ces
a€eS,a=b,c=e
a=e,a=b,ces
a=e,a=b,c=e.
Thus, we have to check the following cases:
(1) aeS,a<b,ces
(2) a€ S, (a,b) = (z,e) for some z € SU{e}, ce S
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B)aeS,a<b,c=e
(4) a €S, (a,b) = (x,e) for some z € SU{e}, c=e
(5) a=e,a<b,ceS
(6) a=e, (a,b) = (z,e) for some z € SU{e}, c€ S
(7Va=e,a<b,c=e
(8) a=e, (a,b) = (x,e) for some z € SU{e}, c=e.

(1) Let a € S, a<b,ce S and u € a ©c. Then there exists v € b 5 ¢ such that u < v. Indeed: Since
a,c €S, wehave aoc=aoc. Since a < b, we have aoc < boc. Since u € a o c, there exists v € bo ¢ such
that u <wv. Since b,c € S, we have boc=b70 ¢. Since u < v, we have (u,v) €<C=. Thus, we have v €b5 ¢
and v < wv.

(2) Let a € S, (a,b) = (x,e) for some x € SU{e}, c € S and u € a 5 ¢. Then there exists v € b 3 ¢
such that ©v < v. Indeed: Since a,c € S, we have u € a © ¢ = aoc C S. Since u € S, we have
(u,e) € {(z,e) | z € SU{e}} C=< and so u < e. Since b = e, we have b 5 ¢ = ¢ o ¢ = {e}. For the
element v:=e € b5 ¢, we have u < v.

(3) Let a € S, a<b, c=e and u € a© c. Then there exists v € b 5 ¢ such that u < v. Indeed: We have
ucadcc=ade={e} and so u=e. We also have b5 c =00 e = {e} and e < e (since < is reflexive). So,
for the element v :=e € b5 ¢, we have u < v.

(4) Let a € S, (a,b) = (x,¢e) for some z € SU{e}, c=e and u € a © c. Then there exists v € b ¢ such that
u = v. Indeed: We have u € adc=ade={e} andso u=e. We also have b5c=edc={e} and e < e (as

= is reflexive). For the element v :=e € b3 ¢, we have u < v.

(5)Let a=e, a<b,ce S and u€adec. Since a <b, we have a € S. Since a = e, we have e € S. The case

is impossible.

(6) Let a =e, (a,b) = (x,e) for some x € SU{e}, c€ S and u € a © c. Then there exists v € b ¢ such that
u 3 v. Indeed: We have u € a5 ¢ =€ ¢ = {e} and so u = e. We also have b5 ¢ =€ ¢ = {e}. For the

element v:=e € b0 ¢, we have u < v.

(7) Let a =€, a <b, c=ec and u € a 5 ¢. Then there exists v € b © ¢ such that u < v. Indeed: We have
u€adsc=ede={e} and so u=e. We also have bsc=>b3% e = {e}. So, for the element v :=e € b3S ¢, we

have v < v.

(8) Let a =e, (a,b) = (z,e) for some x € SU{e}, c=e¢ and u € a © ¢. Then there exists v € b5 ¢ such that
u = v. Indeed: We have u € acc=ede={e} and so u =e. We also have bS5 c=e5e = {e}. So, for the

element v:=e € b0 c, we have u < v.

(G) The ordered hypersemigroups (5,0,<) and (5,3, =) are isomorphic under the identity mapping. Indeed,

for the one to one and onto mapping
i:(S,0,<) = (5,3,%X)|a—ila):=a
and, any a,b € S, we have

(1) i(aob) Ci(a)oi(b); that isif u € aob, then u € a3 b. This is clear, as a,b € S implies aob=a3b.
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(2) a <b implies a < b. Indeed, if a < b, then (a,b) e<C< U{(z,e) | z € SU{e}} == ie. (a,b) €xX and
soa=b.

(3) if a,b € S such that i(a) < i(b), then a < b. Indeed: if i(a) < i(b), then a < b i.e. (a,b) €< U{(z,e) |
ce SU{e}}. If (a,b) €<, then a < b and the proof is complete. If (a,b) € {(z,e) | x € SU{e}}, then
(a,b) = (z,e) for some z € SU{e}. Then we have S>3 b=¢c ie. e €S and the case is impossible.

(G) S is a pseudoideal of (SU{e},5,<). Indeed, § # S C SU{e}, S*S C S andif a € S and SU{e} 3b < a,
then b € S (as b= e implies e = a € S that is impossible). O

3. Some further results

A poe-semigroup (9, -, <) is called regular if a < aea for every a € S; intra-regular if a < ea?e for every a € S.
It is called right (resp. left) regular if a < ae (resp. a < ea?) for every a € S. A poe-semigroup (S,-, <) is
called right (resp. left) quasi-regular if a < aeae (resp. a < eaea) for every a € S. It is called semisimple if

a < eaeae for every a € S.

These concepts can be extended for a poe-hypersemigroup (S, 0, <) in the way indicated below.

Definition 3.1 A poe-hypersemigroup (S,0,<) is called reqular if {a} < (aoce)x*{a} for any a € S; in the
sense that for any a € S there exists t € S such that t € (aoe)*{a} and a <t.

To see that Definition 3.1 is correct, we have to prove that it coincides with the definition of a regular
poe-hypersemigroup. A poe-hypersemigroup (5,0, <) is called regular if for every a € S there exists x € S
such that {a} < (aoz)*{a} (in the sense that for every a € S there exist x,t € S such that t € (aox) * {a}
and a <t) [6].

In this respect, the following proposition holds.

Proposition 3.2 Let (S,0,<) is a poe-hypersemigroup. The following are equivalent:

(1) S is regular.

(2) {a} < (aoe)x*{a} for every a € S.
Proof First of all, for any nonempty subsets A, B,C of S, A < B implies A C C (B * (). Indeed: Let
x € AxC. Then x € aoc for some a € A, ¢c € C'. Since a € A, there exists b € B such that a < b. Then
aoc=boc. Since z € aoc, there exists y € bo ¢ such that x <y € BxC and so z € (Bx*(].
(1) = (2). Let a € S. Since S is regular, there exist x,t € S such that ¢t € (aox) x {a} and a < t.
Since * < e, we have aoxz <X aoe, then t € (aox) x {a} C ((aoe)*{a}}. Then ¢t < y for some
ye(aoe)x{a} (C(S*x9)*xSCS«xSCS),yec(aoe)*{a} and a <y and property (2) is satisfied.
(2) = (1). Let a € S. By (2), there exists t € .S such that t € (aoe)*{a} and a <t. We put x :=e. Then
z,t €S, t€ (aox)*{a} and a <t and property (1) holds. O

In a similar way, the following definitions are true.

Definition 3.3 A poe-hypersemigroup (S,o,<) is called intra-regular if {a} < (eca)*(aoce) for any a € S;
in the sense that for any a € S there exists t € S such that t € (eca) *x(aoe) and a <t.
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Definition 3.4 A poe-hypersemigroup (S,0,<) is called right regular if {a} < {a} * (ace) (= (aoa)*{e})
for any a € S; in the sense that for any a € S there exists t € S such that t € {a} * (ace) and a < t. It is
called left regular if {a} < (eoa)*{a} (={e}*(aoa)) for any a € S; in the sense that for any a € S there
exists t € S such that t € (eoa) * {a} and a <t.

Definition 3.5 A poe -hypersemigroup (S,o,<) is called right quasi-reqular if {a} < (ace)* (aoe) for every
a € S; in the sense that for any a € S there exists t € S such that t € (aoe)x(aoe) and a <t. It is called
left quasi-regular if {a} < (eoa)x(eoa) for any a € S; in the sense that for any a € S there exists t € S such
that t € (eoa) x(eoa) and a <t.

Definition 3.6 A poe-hypersemigroup (S,0,<) is called semisimple if {a} < (eoca)* (eoa)x{e} for any
a € S; in the sense that for any a € S there exists t € S such that t € (eoa)* (eoa)*{e} and a <t.

Proposition 3.7 The poe-hypersemigroup (S U {e},o, < ) constructed in Theorem 2.3 is regular and intra-

reqular.

Proof Let a € SU {e}. Then there exists ¢t € SU {e} such that ¢t € (a 5 e) * {a} and a < ¢. Indeed: If
a€ S, then adse={e}, (ade)*{a} ={e} ¥{a} =eda={e}. f a=e,then ade=ede= e},
(ace)* {a} = {e} ¥ {a} = {e}. In each case, we have e € (a5 e) * {a} and a < e.

Let a € SU{e}. Then there exists t € S U {e} such that t € (¢ 5 a) ¥ (a5 e) and a < ¢. Indeed,
for the element ¢ := e € SU{e}, we have e € {¢} = ede = {e} * {e} = (¢ a) * (a T ¢e); thus, we have
ec€(eca)*(ace) and a < e and so (SU{e},s,=<) is intra-regular. O

Proposition 3.8 The poe-hypersemigroup (S U {e},3, =) is right reqular and left regular.

Proof Let a € SU{e}. Then there exists t € SU{e} such that ¢t € {a} * (a5 e) and a < t. Indeed: for the
element ¢t :=e € SU{e}, we have e € {e} =ade={a} * {e} = {a} * (a T e); thus, we have e € {a} ¥ (aTe)
and a < e and so (SU{e},5,=) is right regular. We also have e € {¢} = et a={e} ¥ {a} = (¢ a) * {a};

thus, we have e € (eoa) ¥ {a} and a < e and so (SU{e},5,=) is left regular. O

Proposition 3.9 The poe-semigroup (S U {e}, 3, <) is right quasi-reqular and left quasi-regular.

Proof Let a € SU{e}. Then there exists ¢t € SU {e} such that t € (aSe) ¥ (a5 e) and a < t. In fact,
for the element ¢ := e € SU{e}, we have e € {e} =ede={e} ¥ {e} =(aTe)* (aTe) and a < e and so
(S U{e},s,X) is right quasi-regular. We also have e € {e} =ece={e} ¥ {e} =(eTa)*(¢da) and a S e

and so (S'U{e},5, X) is left quasi-regular. O

Proposition 3.10 The poe-semigroup (S U {e},3, <) is semisimple.

Proof Let a € SU{e}. Then there exists ¢t € SU{e} such that t € (¢35 a) * (e5a) * {e} and a < ¢. Indeed,
for the element ¢ :=e € SU{e}, we have e € (e a) * (e5a) * {e} and a < e. O

According to Proposition 3.7, (S U{e},o, = ) is intra-regular. This can be also obtained as corollary to

the next proposition. To prove it, we need the following lemma.
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If (S,0,%,<) is an ordered hypersemigroup and A, B nonempty subsets of S we write A < B if for any
a € A there exists b € B such that a <b.

Lemma 3.11 Let (S,0,<) be an ordered hypersemigroup. Then we have the following:
(a) For any nonempty subsets A, B,C of S such that A < B, we have AxC < B+ C and C+* A< CxB
(b) The operation * is associative (see, for example [4]) .
(¢) If A< B<C, then ALC.

Proof (a)Let A< B and 2 € AxC. Then there exists y € B*C such that < y. Indeed: Since x € AxC,
we have x € aoc for some a € A, c € C. Since a € A, there exists b € B such that a < b. Then aoc<boc.
Since x € a o c, there exists y € boc= B *C such that z <y.

(¢) If a € A, then there exists b € B such that a <b. Since b € B, there exists ¢ € C' such that b < ¢. Hence,
for any a € A there exists ¢ € C' such that ¢ < ¢ and so A < C.

O
Proposition 3.12 A poe-hypersemigroup (S,o0,<) that is right reqular or left reqular is intra-regular.
Proof Let (S,0,< ) be right regular and a € S. Then we have
{a} < (aoca)x{e} ={a}*{a}*{e} <{e}*{a} x{e} (since a < e implies {a} < {e})

< e}« ({ad + {a}  {e}) = {e} = {e} + {a}  {a} + ({e} + {c})

< Ae}«{a} x{a} «{e} (as {e} x {e} =eoe < {e})

= (coa)x(aoc)
and so S is intra-regular. O

By Propositions 3.7, 3.8, 3.9, and 3.10, we have the following corollary.

Corollary 3.13 FEach ordered hypersemigroup can be embedded
(1) in a regular poe -hypersemigroup.

2

3

4

)

in an intra-reqular poe-hypersemigroup.
in a right reqular (or left reqular) poe-hypersemigroup.

(2)
(3)
(4) in right quasi-regular (or left quasi-reqular) poe -hypersemigroup.
(5)

in a semisimple poe-hypersemigroup.

4. Examples
We apply the above results to the following examples.

Remark 4.1 Theorem 2.3 can be also applied to a poe-hypersemigroup and we have the following: If (5,0, <)
is a poe-hypersemigroup, t an element not included in S, & the hyperoperation and =< the order SU{t} defined
in Theorem 2.3, then the set V := (S U {t},s, < ) is still a poe-hypersemigroup and S is a pseudoideal of V.
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Let us give an example based on the remark.

Example 4.2 We consider the ordered semigroup S = {a,b,c} given by Table 1 and Figure 1. From this, the
ordered hypersemigroup given by Table 2 and the same figure (Figure 1) can be obtained. Take an element ¢ not
included in S and consider the ordered hypersemigroup SU{t}. Then (SU{t},3, =) is a poe-hypersemigroup
having the S as a pseudoideal. According to Section 2, the ordered hypersemigroup (S U {e},o, =) given by
Table 3 and Figure 2 is regular, intra-regular, right regular, left regular, right quasi-regular, left quasi-regular,
and semisimple. Independently,
(Su{e}, s, <) is regular, that is, {a} < (a©e) S {a} for every a € SU{e}; in other words, for every a € SU{e}
there exists t € (a S e) ¥ {a} such that a <¢. In fact,

€(ace)x{a}={e}*{a} =eca={e} and a < ¢;
€(boe)x{b} ={e}*x{b} =ecb={e} and b <e;
€(coe)x{c}={e}*¥{c}=edc={e} and c < e;
c(ece)x{ef={e}*{e} =ede={e} and e <e.

oe

(SuU{e}, o, <) is intra-regular as

e€(eca)*(ade)={e}*x{e} =ede={e} and a < ¢;
ec(esb)*x(boe)={e} *{e} ={e} and b=<e;
ec(esc)*(coe)={e} *{e} ={e} and c < e;
e€(ece)x(ece)={e} *{e} ={e} and e <e.

(S U{e}, o, =x) is right regular as
e€(adsa)x{et={a} *{e} =ase={e} and a < ¢;
(bsb)x{e} ={b} ¥ {e} =bse={e} and b<e¢;
e€(coc)x{e} ={a,b,c}*{e} =bce={e} and ¢ <Xe;
(ece)x{e} ={e} *{e} =eoe={e} and e <e.
(SU{e},5, =) is left regular as
ec(esa)*{a} ={e}*{a}=eda={e} and a <¢;
(ead)* {b} ={a,b,c} * {b} = {a,b,c} and b < e;
e€ (ecc)*®{c} ={a,b,c} *{c} ={a,b,c} and c < e;
(ece)*x{e} ={e}*{e} =ede={e} and e < e.

(S U{e},d, =) is right quasi-regular as
ec(ace)*¥(ace)={e}*x{e}=ecce={e} and a S ¢;
ec (boe)®x(boe)={e} *{e} ={e} and b <e;
e€(coe)*(coe)={e}*{e} ={e} and c < ¢;
ec(ece)*(ede)={e} and e<e

(SU{e}, 3, =) is left quasi-regular as
e€(eca)*(edca)={e} *{e} ={e} and a <e.
ec(ecb)*(eob)={e}*{e} ={e} and b=<e.
e€(ecc)*(eoc)={e}*{e} ={e} and c < e.
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e€(ece)x(ece)={e} x{e} ={e} and e < e.

(SU{e},s, <) is semisimple as

)*¥(eob)* {e} ={e} ¥ {e} = {e} and b =<e.
edc)x(ecc)®{e} ={e} *{e} ={e} and c < e.
Y% (eoe)*{e} ={e} ¥ {e} ={e} and e < e.

S is a pseudoideal of S'U {e}. Indeed:

SxS = {a,b,c}*{a,b,c} =aocaUaobUaocUboaUbobUbocUcoaUcobUcoc
{a,b,c} C S

and if a € S and SU{e}>b<a,then b€ S (as b =e implies e < a and so e = a € S that is impossible).

Table 1: The multiplication of the ordered semigroup of Example 4.2.

ISHESHESH RS
QIS | T
[ RN NN Ne

b
Figure 1: The order of Example 4.2.

Table 2: The hyperoperation of (5,0, <) of Example 4.2.

a b c

{a} | {a} {a,b,c}
{a} | {b} {a,b,c}
{a} | {a,b.c} | {a,b,c}

o|SQ)| o

Example 4.3 (see also [3]) We consider the ordered semigroup S = {a,b,c,d, e, f,g} given by Table 4 and
Figure 3. From this, in the way indicated in [5], the ordered hypersemigroup defined by Table 5 and the same
figure (Figure 3) can be obtained. If h is an element not containing in .S, then the Table 6 and Figure 4 define a
poe-hypersemigroup that is regular, intra-regular, right (left) regular, right (left) quasi-regular, and semisimple.
In Theorem 2.3, we assume that S is an ordered hypersemigroup. In case of poe-hypersemigroups, one can

continue the process given in Theorem 2.3 for countable many steps as it is shown in Figure 5.
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Table 3: The hyperoperation of (SU {e},3, <) of Example 4.2.

a b c e

{a} | {a} {a,b,c} | {e}
{a} | {b} {a,b,c} | {e}
{a} | {a,b,c} | {a,b,c} | {e}
{e} | {e} {e} {e}

e

o|lo|jsalol

b
Figure 2: The order S U {e} of Example 4.2.

Independently,
(SU{h},s, x) isregular, that is {a} < (a © h) * {a} for every a € SU{h}; in other words, for every a € SU{h}
there exists t € (e h) % {a} such that a < ¢. Indeed, we have

he(aoh)x{a} ={h}*{a} =hda={h} and a < h

he®oh)s{b) = (B} F{b}=hob={h} and b=<h
he(cah)x{c}={h}*{c} =hoc={h} and c <X h
he(doh)x{d} ={h}*{d} =hod={h} and d < h
he(hoh)x{e}={h}*{e}=hoe={h} and e < h
he(foh)*{f} ={n}*{f} =hof={h}and f=2h
he(goh)x{gt={h}t*{g9} =hog={h} and g 2 h
he(hoh)s{h) = {h}F{h} =hoh={h} and h < h.

(SU{h},3, =) is intraregular, that is {a} < (h 5 a) % (a© h) for every a € SU{h}; in other words, for every
a € SU{h} there exists ¢t € (h3 a) * (a S h) such that a < ¢. Indeed, we have
he(hoa)¥(ash)={h}o{h}=hoh={h} and a < h

he(hob)*(boh)={h}to{h}=hoh={h} and b=<h
he(hosc)x(coh)={h}o{h}=hoh={h} and c<h
he(hod)=(doh)={h}o{h}={h} and d < h
he (hse)x(eah)={h}s{h}={h} and e X h
he(hof)%(foh)={h}5{h}={h} and f<h
he (hag)*(goh)={h}a{h}={h} and g=<h
he(hoh)%(hoh)={h}s{h}={h} and h < h.

(SU{h},5,=x) is right regular, that is {a} < (a 3 a) ¥ {h} for every a € S U{h}; in other words, for every
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a € SU{h} there exists t € (a5 a) * {h} such that a < ¢. Indeed, we have

hE(a6a)7{h}:{a}¥{h}:a6h:{h} and a < h

e(ob)x{h}t={a}*{h} =ash={h} and b=<h
€(coc)x{h}={a}*{h}={h} and c =< h
€ (dod)*{h}={a}*{h} ={h} and d < d
€(ecse)x{h}={a} *{h}={h} and e 2 h
e (fof)x{n} ={f}*{h} = foh={h} and f <h
€(gog)*¥{h}t={a}*{h} =ash={h} and g 2 h
e(hsh)x{h}={h}*{h} =hoh={h} and h 2 h.

(SU{h},5,=) is left regular, that is {a} < {h} % (e © a) for every a € S U {h}; that is for every a € S U {h}
there exists t € {h} % (a5 a) such that a < ¢. Indeed, we have

he{h}*(aca)={h}*{a} =hda={h} and a X h
he{h}x(bob)={h}*{a} ={h} and b=<h
ce{h}*(coc)={h}*{a} ={h} and ¢ < h

he{h}*¥(dosd)={h}*{a}={h} and d=<h
he{h}*(ece)={h}*{a}={h} and e X h
he{h}5(fof)={h}%{f}=hof=hand f<h
he{htx(gog)={h}*{a} ={h} and g < h
he{h}*(hoh)={h}*{h} =hoh={h} and h < h.

(SU{h},o, X) is right quasi-regular, that is {a} < (a© h) * (a * h) for every a € SU {h}. Indeed, we have

(S U{h},3, =) is left quasi-regular, that is {a} < (h % a)

<(ash)o(ach)={h}*x{h} =hsh={h}, {b} X (boh)s(boh)={h}x*x{h}={h}

coh)o(coh)={h}*{h} ={h}, {d} 2(doh)o (hod)={h}*{h}={h}
oh)o(eoh)={h}t*{h}=A{h}, {f} 2 (foh)o(foh)={hr}*{hr}={n}

oh)o(goh)={n}*{h}={h}, {h} 2 (hoh)o(hoh)=/{h}%{h}={h}

a) for every a € SU{h}. Indeed, we have
5 (hob)={h}*{h}={h}
5(hod)={h}*{h}={h}

[
[

{a} 2 (hoa)o(hoa)={h}*{h}={h}, {b} 2 (hoD
{c¢} 2(hoe)o(hoc)={n}*{h}={h}, {d} < (hod
{e} 2 (hoe)o(hoe)={n}x{h}={h}, {f} 2(hof
{9} = (hog)o(hog)={n}*{h}={h}, {h} = (hOh

(ho f) = {h} % {h} = {n}
(o h) = {n} % {n} = {n}

(SU{h},5,=x) is semisimple, that is {a} < (h S a)* (h S a) for every a € SU{h}. Indeed, for every = € S,
we have

(xoh)x(xoh)={h};and a<h,b<h,c<h,d<h,e<h, f<h,g<h,h<h.

For the definitions of intra-regular, right (left) regular, right (left) quasi-regular, and semisimple ordered

hypersemigroups, we refer to [6]
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(a) not regular as, for example, # = € S such that {b} < (box) * {b}
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¢) not right regular, as 3 = € S such that {f} < (fo f)* {z}
d) not left regular, as § = € S such that {f} < {z}* (aoa)

f) not left quasi-regular, as # =,y € S such that {e} < (zoe)* (yoy)

(
(
(e) not right quasi-regular, as # z,y € S such that {e} < (eox)* (eoy)
(
(

g) not semisimple, as # x,y,2 € S such that {f} < (xo f)* (yo f)*{z}.

Table 4: The multiplication of the ordered semigroup S of Example 4.3.

Table 5: The hyperoperation of S of Example 4.3.

. a b c d e f g
a a a a a a a a
b a a a a a a a
c a a a a a a a
d a a a a a a a
e a a a a a a b
f a b c d e f a
g a a a a a a a
c
e
d
a g
[ ]

Figure 3: The order of S of Example 4.3.

o a b c d e f g

a | {a} | {a} {a} {a} {a} | {a} | {a}

b | {a} | {a} {a} {a} {a} | {a} | {a}

¢ | {a} | {a} {a} {a} {a} | {a} | {a}

d | fa} | {a} {a} {a} {a} | {a} | {a}

e | {a} | {a} {a} {a} {a} | {a} | {a.b}
[l fa} | {ab} | {a,c} | {a,d} | {e} | {f} | {a}
g | {a} | {a} {a} {a} {a} | {a} | {a}

According to Remark 4.1, we can continue this process for countable many steps, the resulting figure is

the following:
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Figure 4: The order of S U{h} of Example 4.3.

Table 6: The hyperoperation of S U {h} of Example 4.3.

a b c d e f g

{a} | {a} {a} {a} fa} | {a} | {a} {n}
{a} | {a} {a} {a} {a} | {a} | {a} {h}
{a} | {a} {a} {a} fa} | {a} | {a} {n}
fa} | {a} {a} {a} {a} | {a} | {a} {h}
{a} | {a} {a} {a} fa} | {a} | {a0} | {n}
fat | {a,0} | {a,c} | {ad} | {e} | {f} | {a} {h}
{a} | {a} {a} {a} fa} | {a} | {a} {n}
{rt | {nh} {h} {h} {ht | {h} | {n} {h}

Q|| |0 a |l

5. Pseudoideal and ideals of S U {e}
Proposition 5.1 If (S,0,<) is an ordered hypersemigroup and T is a pseudoideal of S, then T is a pseudoideal
of (SU{e},o,x).

Proof Since T+«T CT,wehave T*T CT. Indeed: Let x € T*T. Then = € a5 b for some a,b € T. Since
a,beT CS,wehave acb=aob. Then z €caob={a}x{b} CT+«T CT andso z€T.
Let now a € T and SU{e} b <a. Then b € T. Indeed: We have

acT, (b eSorb= e), b < a; that is we have the following two cases:
(a) aeT,be S, (b§ a or (b,a) = (x,e) for some z € SU{@})
(b)yaeT, b=e, (bﬁ a or (b,a) = (x,e) for some z € SU{e})

So we have to check the following:
1)aeT,beS, b<a

(2) aeT,be S, (bya) = (x,e) for some z € S
3)aeT,be S, (ba) = (ee)
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Figure 5: Theorem 2.3 holds for a poe-hypersemigroup as well and the process given in that theorem can be
continued for countable many sets leading to the order of Figure 5.

4)aeT, b=e¢,b<a
(5) aeT, b=e, (b,a) = (z,e) for some z € S
(6) aeT,b=c¢e, (bya) = (e,e).

(DIfaeT,be S, b<a then, since T is a pseudoideal of (S,0,<), we have be T

(2) Let a €T, be S, (bya) = (z,e) for some x € S. Since T C S, we have a € S. Since (b,a) = (z,€e) for
some = € S, we have a = e. Thus, we have e € S. The case is impossible.

(3) Let aeT, be S, (bya) = (e,e). Then we have S 3 b = e. The case is impossible.

(4) Let ae T, b=¢, b <a. Then we have S 3 b= e. The case is impossible.

(5) Let a €T, b=e, (b,a) = (x,e) for some x € S. Then e = b=z € S. The case is impossible.

(6) Let a €T, b=ce, (b,a) = (e,e). Then we have T da=e=0bandso be T. O

Proposition 5.2 Let (S,0,<) be an ordered hypersemigroup. If A is an ideal of (S,0,<), then AU{e} is an
ideal of (SU{e},3) but it is not an ideal of (SU{e}, 5 X).

Proof We have (A u {e}) * (S u {e}) C AU{e}. Indeed: Let t € (A U {e}) * (S u {e}). Then t €z 5y
for some z € AU {e} and y € SU{e}. We consider the cases:
H)zeA yes

(2)xzeA, y=e
3)z=e,yes
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4) z=y=e.
(1) Let x € A, y€ S. Since z,y € S, we have x oy =20y. Wehave t e zoy={z} *{y} CAxS C A and
sote AC AU{e}.
(2)Let r€ A, y=e. Thent€xcy=axoe={e} andso t=e€ AU {e}.
(B)Let t=e,y€eS. Thentcxdoy=eoy={e} andso t € AU {e}.
(4) Let r=y=c. Thentcexzoy=coe={e} andso t € AU {e}.
Similarly, (SU{@})?(AU{@}) C Au{e}.
We consider the ordered hypersemigroup S = {a,b,¢,d,e, f,g} given by Table 5 and Figure 3. The set
{a,b,e} is an ideal of S = {a,b,c,d,e, f,g}. Indeed: We have
{a,b,e} x{a,b,c,d,e, f,g} = (aca)U(aob)U(acc)U(aod)U(ace)U(aof)U(acyg)
U(boa)U (bob)U(boc)U(bod)U (boe)U(bo f)U(bog)
U(eoa)U(eob)Ueoc)U(eod)U(eoce)U(eo f)U(eog)
={a}u{b} ={a,b} C {a,b,e},

similarly, {a,b,¢,d,e, f,g} *{a,b,e} = {a} U{a,b} U{e} C {a,b,e} and if z € {a,b,e} and {a,b,c,d,e, f,g} >
y <z, then y € {a,b,e}, but {a,b,e,h} is not an ideal of SU{h} as f e SU{h}, f <h and f & {a,b,e,h}.
O

Proposition 5.3 Let (S,0,<) be an ordered hypersemigroup. If B is a bi-ideal of (S,0,<), then BU{e} is
a bi-ideal of (SU{e},d), but it is not an ideal of (SU{e},?,=x).

Proof We have (BU{e}) * (SU{e}) * (BU{@}) C BU{e}. In fact:
Let t € (BU{e}) * (SU{e}) * (BU{@}). We have t € 4 5 v for some u € (BU{e}) * (Su{e}), v € Bu{e}
and u € x5y for sone x € BU{e}, y € SU{e}. We have the cases:

(a) z € B, (yGSory:e), (vEBorv:e)

(b)y z=e, (yeSory=e), (veBorv=e).
So we have to check the following:

() zeB,yeS,veB

(1) Let z € B, y € S, v € B. Wehave t € u s v = {u} ¥ {v} C (z © y) ¥ {v}. We also have
(x5 y)* {v} C (xoy)*{v}. Indeed: Let t € (xS y) * {v}. Then t € a5 v forsome a € x5 y. Since z,y € S, we
have a € x 5y = zoy C S. Since a,v € S, we have a © v = aov. Thus, we have t € aov = {a}x{v} C (xoy)x{v}
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and so (x o y) ¥ {v} C (xoy)*{v}. Hence, we have t € (xoy)*x{v} = {z}*x{y} *x{v} C B*xS+*B C B and so
te BC BU{e}.

(2)Let te B,ye S, v=e. Since tcusv=teudse={e}, wehave t =e € BU{e}.

(3) Let x € B, y=-e, v € B. We have

teusv={u}x{v} C(xoy)*{v} = (z0e)*{v} = {e} ¥ {v} =evc={e}

and so t =e € BU{e}.
(4) Let x € B, y =e, v =e. We have

teusv={u}¥{o} C(25y)F{e} = (x5e) F{e} = {e} {e} =T e = {c}

and so t =e € BU{e}.
(5) Let x =e¢, y €S, ve B. We have

teuov={u}¥{v} C(zoy)*{v} = (ecy) *{v} = {e} ¥ {v} =edv={e}

and so t € BU{e}.
(6) Let x =€, y €S, v=e. We have

teuov={u}¥{v} C(xoy)*{v} = (ecy) ¥ {e} ={e} o {e} =eve={e}

and so t € BU {e}.
(7) Let x =¢, y=¢€, v € B. We have

tcusv={u} ¥ {v} C(roy)*{v} = (eve)* {v} ={e} ¥ {v} =eov={e}

and so t € BU {e}.
(8) Let t =y = v =e. We have

teusv={u}F{o} C(25y)F v} = (ce) ¥ {e} = {e} F{e} = coe={e}

and so t € BU {e}.

We consider the ordered hypersemigroup S = {a,b,¢,d,e, f,g} given by Table 5 and Figure 3. The set
{a,b,e} (as an ideal) is a bi-ideal of S = {a,b,c,d, e, f, g}, but, as we have already seen, f € SU{h}, f<h
and f & {a,b,e,h} and so {a,b,e, h} is not a bi-ideal of S U {h}.

The set {a,d,e, g} is a bi-ideal of {a,b,c,d, e, f,g} as

{a,d,e,g} x{a,b,c,d,e, f,g9} x{a,d,e,g} = {a,b} x {a,b,c,d,e, f,g} = {a} C {a,d,e, g},

x € {a,d,e,g} and {a,b,c,d,e, f,g} 2y < x implies z € {a,d,e, g}, but {a,d, e, g,h} is not a bi-ideal
of {a,b,¢c,d,e, f,g,h} as h € {a,d,e,g,h} and {a,b,c,d,e, f,g,h} > f < h,but f ¢ {a,d,e, g, h}. O

Proposition 5.4 Let (S,0,<) be an ordered hypersemigroup. If Q is a quasi-ideal of (S,0,<), then QU {e}
is a quasi-ideal of (S'U{e},3), but it is not a quasi-ideal of (S U {e},3, ).
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Proof We have ((Q U{e}) * (SU {e})) N ((S U{e}) = (QU {e})) C QU {e}. Indeed:

Let t € ((QU{e})?(SU{e}))ﬂ((SU{e})?(QU{e})). Then t € x5y for some x € QU {e}, y € SU{e}
and t € 23S h for some z € SU{e}, h € SU{e}. We have the cases:
(a) z € Q, (yESory:e), (zESor z:e), (hGQor h:e)

(b) z=e, (yeSory=e), (:€Sorz=¢), (h€Q or h=k)

So, we have to check the following:

Haxe,yel, zeS, he@ (2
3rzeQ,yeS,z=c,heQ 4
5)xeQ,y=e, z€S, he@ (6
)
)

~

reEQR,yesS, zeS, h=e

~—

1€Q,yeS, z=¢, h=¢e
rEQR,y=e€e,z€8, h=e

~

Nre®,y=e,z=¢, he@ (8
9 z=e,yeS,zeS, he@ (10)z=e,yeS,z€ S, h=c¢
1) z=e,yeS, z=e,he@Q (12) z=e,ye S, z=e, h=c¢
B)yz=e,y=e,z€S,he@ (14) x=e,y=e¢, 2z€S5, h=¢e
B)yz=e,y=e,z=€,he@ (16) x=¢e,y=¢, z=¢€, h=c.

~—

reEQR,y=e€,z=e€, h=ce

(HLetzeQ,yes, z€S, heQ. Since z,y € S, wehave t c x5y =xo0y = {a}*x{y} CQ=*S5. Since
z,h €S, wehavet € 25 h = zoh = {z}x{h} C S*Q. Then we have t € (Q*S)N(S*Q) C (Q*S|N(S*xQ] C Q
andso t € Q C QU {e}.

(2)Let x€Q,y€S,2€S,h=ec. Since z,y€ S, wehave tcxsy=zoy={z}*+{y} CQ*S CS. Since
z€S8,h=e,wehave t € 20 h=205e={e}. Then S 3t =e. The case is impossible.
B)Letz € Q,ye S, z=e,heQ. Thentczxoy=zxoy={a}+x{y} CQ«xSCSandt€z5h=25e={e}.
Then we have S 5t = e. The case is impossible.

A LetzeQ,yeS,z=e,h=c. Thentcxsy=xoy={z}x{y} CQ+xSCSandteczoh=ede={e}.
Then S 5t = e, the case is impossible.

B)Let x€@,y=¢€,2€8S,heQ. Thentexsy=axce={e},t€z0h=z0h={z}*x{h} CS+«xQ CS.
Then S 5t = e, the case is impossible.

(6) Let x € Q,y=¢e,2€ S, h=e. Thent€zoy=zx

ol
ol

e={e},t€25h=2%e={e}. Then

t=eecQU{e}.
(M Let z€Q,y=¢,z=¢€¢,he@Q. Thentcaxoy=x5e={e},t€z25h=e35h={e}. Then
t=ecQU/{e}.
B)Let x € Q,y=e, z=e, h=ec. Thenteaxsy=axce={e},t€25h=ede={e}. Then
t=eecQUe}.

(9) Let x=e,yeS,z€S5, he@Q. Thentcaxoy=edsy={e},t€zch=zo0h={z}x{h} CS*xQCS.
Then S >t = e, the case is impossible.

(10) Let x =e,ye S, 2€ S, h=e. Thentexsy=ecy={e},t€25h=25%e={e} and so
t=eecQU{e}.
(1) Let z =e,ye S, z=e, he Q. Thenteczxoy=eocy={e},t€25h=edh={e} and so
=eeQU{e}.
(12) Let z = e, y€e S, z=e, h=e. Thent €axcy=ecy=1{e},t € 2z5h=ecoe = {e} and so
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t=ecQU{e}.
(13) Let x =€, y=e€,2z€ S5, heQ. Thentczoy=edce={e},t€zoh=zoh={z}*x{h} CS+xQCS
and so S 5t = e, the case is impossible.

(14) Let z = e, y=e, z€ S, h=e. Then t€ex sy =c¢e

ol

e={e},t€z25h=20%e={e} and so

t=eecQU{e}.
(I5) Let z = e, y=e, z=¢, he€ Q. Thentecxoy=edce=1{e},t€25h=coh={e} and so
t=ecQU/{e}.
(16) Let x = e, y=e¢, z=e, h=e. Thentcaxcy=ece={e},t€25h=ede={e} and so
t=ecQU{e}.

We consider the ordered hypersemigroup S = {a,b,¢,d,e, f,g} given by Table 5 and Figure 3. The set
{a,b, f, g} is a quasi-ideal of {a,b,c,d, e, f, g} as

({a,b, fog}x{a,b,c, d,e,f,g}] N ({a,b, e, dye, g} *{a,b, f, g}}

({a,b, ¢,d,e, f}] N ({a,b, f}}

= {a,b,c,d, f,e}N{a,b, f}
= {a’b’f}g{a7b7f7g};

x € {a,b, f,g} and {a,b,c,d,e, f,g} > y < x implies y € {a,b, f,g}, but {a,b, f,g,h} is not a quasi-ideal of
{a,b,c,d,e, f,g,h} as h € {a,b, f,g,h} and {a,b,c,d,e, f,g} 2 h < h, but ¢ ¢ {a,b, f,g,h}. O

Proposition 5.5 Let (5,0, <) be an ordered hypersemigroup. If A is an interior ideal of (S, 0, <), then AU{e}
is an interior ideal of (S U {e}, o), but it is not an interior ideal of (SU {e},d,=X).

Proof We have (S U {e}) * (A U {e}) * (S U {e}) C AU{e}. Indeed:

Let t € (SU{e})?(AU{e})i(SU{e}). Then t € £ y for some z € (SU{e})i(AU{e}), ye Su{e}
and x € uo v for some u € SU{e}, ve AU{e}. We have the cases:
(a)yeS, (ueSoru=e), (Ve Aorv=ce)

(b) y=e, (ueSoru=e), (vEAorv=e).
So we have to check the following:

(1)yeS,ueS,ved

2Q)yeS,ueS,v=e
JyyeS,u=e,veA

HyeS u=e,v=e

6)y=e,ucS,v=e
MNy=e,u=e,veA

(2)
(3)
(4)
5) y=e,ueS,ved
(6)
(7)
(8)

8)y=e,u=e,v=e.

(1) Let ye S, ue S, ve A. Then we have
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texoy={z}*{y} C(uov)*x{y}={u}x{v}x{y} CS+«AxSCAC AU{e}.

(2)Let ye S, ue S, v=e. Thentcusv=udse={e} C AU {e}.
B)Let ye S, u=e,veA. Thentcudsv=ecv={e} C AU {e}.
(4) Let ye S, u=e,v=e. Thentcusv=ede={e} C AU{e}.
(B)Let y=e,ueS,veA. Thentczsy=ase={e} C AU{e}.
(6)let y=e,ue S, v=e. Thent€cxsy=xoe={e} C AU{e}.

(7)Let y=e,u=e,vEA. Thentcaxsy=axce={e} C AU{e}
8)Let y=e,u=e,v=e. Thente€xzsy=ede={e} C AU{e}.

We consider the ordered hypersemigroup S = {a,b,¢,d,e, f,g} given by Table 5 and Figure 3. The set
{a} is an interior ideal element of S = {a,b,c,d, e, f,g} as

{a,b,e,de, f,g} x{a} = (aoca)U(boa)---(foa)U(goa)={a},

{a,b,c,de, f,g} *x{a} x{a,b,c,d,e, f,g} = {a},

if x € {a} and {a,b,c,d,e, f,g} 2y < a, then y =a.

However, {a} U {h} is not an interior ideal of {a,b,c,d,e, f,g,h}. Indeed, {a,b,c,d,e, f,g,h} o ¢ < h, but
c ¢ {a,h}. O
Note Concerning the ordered hypersemigroup (5,0, <) given by Table 5 and Figure 3, it might be mentioned
that

The ideals of (S,0,<) are the sets: {a}, {a,b}, {a,c}, {a,b,c}, {a,d}, {a,b,d}, {a,c,d}, {a,b,c,d},
{a,b,e}, {a,b,c,e}, {a,b,d,e}, {a,b,c,d e}, {a,b,c,de, f}, {a,b,g} {a,b,c,g}, {a,b,d, g}, {a,b,c,d g},
{a,b,e,g9}, {a,b,c,e,g}, {a,b,d,e,g}, {a,b,c,d,e,g} and S (total 22).

The quasi-ideals of (S, 0, <) are the ideals of S plus the sets {a,e}, {a,c, e}, {a,d, e}, {a,c,d, e}, {a, f},
{a,b,f}, {a,c, f}, {a,b,¢c, f}, {a,d, f}, {a,b,d, [}, {a,c.d, [}, {a,b,c.d, [}, {a,e, [}, {a,b,e, [}, {a,c,e, [},
{a,b,c.e, [}, {a,d,e, [}, {a,b.d,e, [}, {a,c.d e, [}, {a, g}, {a,c. g}, {a,d, g}, {a,c,d, g}, {a.], f, g}, {a,b,c, [, g},
{a,b,d, f,9}, {a,b,e,d, f,g}, {a,b,e, f,g}, {a,b,c,e, f, g}, {a,b,d,e, f,g} (total 52).

The bi-ideals of (S,0,<) are the quasi-ideals of S plus the sets {a,e,g}, {a,c,e,g}, {a,d e, g},
{a,c,d,e, g} (total 56).
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