http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2023) 47: 1595 - 1615
© TÜBİTAK

Adjunction greatest element to ordered hypersemigroups

Niovi KEHAYOPULU* ${ }^{\text {(D) }}$
TBAE, The Scientific and Technological Research Council of Türkiye, Turkiye

Abstract

As a continuation of the paper "Adjunction Identity to Hypersemigroup" in Turk J Math 2022; 46 (7): 2834-2853, it has been proved here that the adjunction of a greatest element to an ordered hypersemigroup is actually an embedding problem. The concept of pseudoideal has been introduced and has been proved that for each ordered hypersemigroup S an ordered hypersemigroup V having a greatest element (poe-hypersemigroup) can be constructed in such a way that there exists a pseudoideal T of S such that S is isomorphic to T. If S does not have a greatest element, then this can be regarded as the embedding of an ordered hypersemigroup in an ordered semigroup with greatest element.

Key words: poe-hypersemigroup, pseudoideal, embedding, semisimple, ideal, bi-ideal

1. Introduction

Fuchs and Halperin have shown that every regular ring can be embedded in a regular ring with identity [1]. The problem of adjunction identity to semigroups, greatest element to ordered sets has been considered in [2]. In both cases the adjunction has the same meaning: If $S(P)$ is a semigroup (ordered set) without identity (greatest element), the adjunction of an identity to $S(P)$ means that we construct a semigroup (ordered set) V with identity (greatest element) in such a way that there exists an ideal I of V such that $S \cong I(P \cong I)$. Later, it has been proved that each ordered semigroup S can be embedded in an ordered semigroup having a greatest element. If S does not have a greatest element, then this is a problem of adjunction greatest element to S [3]. The problem of adjunction identity to hypersemigroups has been considered [7]. As a continuation of the paper in [7], we discuss here the problem of adjunction of a greatest element to an ordered hypersemigroup.

2. Main result

A hypersemigroup is a nonempty set S with an "operation" o assigning to each couple (a, b) of S a nonempty subset $a \circ b$ (called hyperoperation as the $a \circ b$ is a subset and not element of S) and an operation * between the nonempty subsets A, B of S such that $A * B=\bigcup\{a \circ b \mid a \in A, b \in B\}$ satisfying the relation $\{a\} *(b \circ c)=(a \circ b) *\{c\}$ for all $a, b, c \in S$ [4]. A hypersemigroup (S, \circ) is called an ordered hypersemigroup if there exists an order relation \leq on S such that $a \leq b$ implies $a \circ c \leq b \circ c$ and $c \circ a \leq c \circ b$ for every $c \in S$; in the sense that for every $u \in a \circ c$ there exists $v \in b \circ c$ such that $u \leq v$ and for every $u \in c \circ a$ there exists $v \in c \circ b$ such that $u \leq v[5]$.

[^0]Definition 2.1 Let (S, \circ, \leq) be an ordered hypersemigroup. A nonempty subset T of S is called pseudoideal of (S, \circ, \leq) if
(1) $T * T \subseteq T$ and
(2) if $a \in T$ and $S \ni b \leq a$ then $b \in T$.

Definition 2.2 Two ordered hypersemigroups (S, \circ, \leq) and $(T, \bar{\circ}, \preceq)$ are called isomorphic if there exists a (1-1) mapping f of S onto T such that, for every $a, b \in S$, we have
(1) $f(a \circ b) \subseteq f(a) \circ f(b)$; in the sense that if $u \in a \circ b$, then $f(u) \in f(a) \circ f(b)$
(2) if $a \leq b$, then $f(a) \preceq f(b)$
(3) if $a, b \in S$ such that $f(a) \preceq f(b)$, the $a \leq b$.

Theorem 2.3 Let (S, \circ, \leq) be an ordered hypersemigroup. Then there exists an ordered hypersemigroup V having a greatest element (poe-hypersemigroup) and a pseudoideal T of V such that $S \cong T$.

Proof For an element e not containing in $S((x, x)$ is, for example, such an element), we consider the set $S \cup\{e\}$. We define an hyperoperation " $\bar{\circ}$ " on $S \cup\{e\}$ and an operation "不" on the $\operatorname{set} \mathcal{P}^{*}(S \cup\{e\})$ of all nonempty subsets of S as follows:

$$
\begin{gathered}
\bar{\circ}:(S \cup\{e\}) \times(S \cup\{e\}) \rightarrow \mathcal{P}^{*}(S \cup\{e\}) \mid(x, y) \rightarrow x \bar{\circ} y \text { where } \\
x \bar{\circ} y= \begin{cases}x \circ y & \text { if } x, y \in S \\
\{e\} & \text { if } x \in S, y=e \\
\{e\} & \text { if } x=e, y \in S \\
\{e\} & \text { if } x=y=e\end{cases} \\
\bar{*}: \mathcal{P}^{*}(S \cup\{e\}) \times \mathcal{P}^{*}(S \cup\{e\}) \rightarrow \mathcal{P}^{*}(S \cup\{e\}) \mid(A, B) \rightarrow A \bar{*} B \text { where } \\
A \neq B=\bigcup_{a \in A, b \in B} a \bar{\circ} b
\end{gathered}
$$

$$
\text { (For } A=\{x\}, B=\{y\} \text {, we clearly have }\{x\} \bar{*}\{y\}=\bigcup_{u \in\{x\}, v \in\{y\}} u \bar{\circ} v=\bigcup_{u=x, v=y} u \bar{\circ} v=x \bar{\circ} y \text {) }
$$

Then $(S \cup\{e\}, \bar{\circ}, \bar{*})$ is a hypersemigroup. In fact:
(A) The operation $\bar{\circ}$ is well defined. Indeed: If $x, y \in S$, then $x \bar{\circ} y=x \circ y \subseteq S \subseteq S \cup\{e\}$. Otherwise, $x \bar{\circ} y=\{e\} \subseteq S \cup\{e\}$. Let $(x, y),(z, t) \in(S \cup\{e\}) \times(S \cup\{e\})$ such that $(x, y)=(z, t)$. Then $x \bar{\sigma} y=z \bar{\sigma} t$. Indeed: If $x, y \in S$, then $z, t \in S, x \bar{\sigma} y=x \circ y=z \circ t=z \bar{\sigma} t$. If $x \in S, y=e$, then $z \in S, t=e, x \bar{\circ} y=\{e\}$ and $z \bar{\circ} t=\{e\}$ and so $x \bar{\circ} y=z \bar{\circ} t$. If $x=e, y \in S$, then $z=e, t \in S, x \bar{\circ} y=\{e\}, z \bar{\circ} t=\{e\}$ and so $x \bar{\circ} y=z \bar{\circ} t=\{e\}$. If $x=y=e$, then $z=t=e$ and $x \bar{\circ} y=\{e\}=z \bar{\circ} t$.
(B) The operation $\bar{*}$ is well defined. Indeed: Let $A, B \in \mathcal{P}^{*}(S \cup\{e\})$. Since $\emptyset \neq a \bar{\circ} b \subseteq S \cup\{e\}$ for every $a \in A$ and every $b \in B$, we have $\emptyset \neq A \mp B \subseteq S \cup\{e\}$. Let $(A, B),(C, D) \in \mathcal{P}^{*}(S \cup\{e\}) \times \mathcal{P}^{*}(S \cup\{e\})$ such that $(A, B)=(C, D)$. Then $A \not \approx B=\underset{a \in A, b \in B}{\bigcup} a \bar{\circ} b=\bigcup_{a \in C, b \in D} a \bar{\circ} b=C \bar{*} D$.

KEHAYOPULU/Turk J Math

(C) $\{x\} \neq(y \bar{\sigma} z)=(x \bar{\circ} y) \not \approx\{z\}$ for every $x, y, z \in S \cup\{e\}$. Indeed:

We have to check the following two cases:
(a) $x \in S,(y \in S$ or $y=e),(z \in S$ or $z=e)$ and
(b) $x=e,(y \in S$ or $y=e),(z \in S$ or $z=e)$.
(1) If $x, y, z \in S$, then $\{x\} \bar{*}(y \bar{\sigma} z)=(x \bar{\circ} y) \neq\{z\}$; its proof is the same with the proof in [7, p. 2838].
(2) Let $x, y \in S, z=e$. Then $\{x\} \bar{*}(y \bar{\circ} z)=(x \bar{\circ} y) \neq\{z\}$. Indeed: We have

$$
\{x\} \bar{*}(y \bar{\circ} z)=\{x\} \bar{*}\{e\}=x \bar{\circ} e=\{e\} \text { and }(x \bar{\circ} y) \bar{*}\{z\}=(x \bar{\circ} y) \bar{*}\{e\} .
$$

On the other hand, $(x \bar{\circ} y) \bar{*}\{e\}=\{e\}$. Indeed: If $t \in(x \bar{\circ} y) \bar{*}\{e\}$, then $t \in u \bar{\circ} e$ for some $u \in x \bar{\circ} y$. Since $x, y \in S$, we have $x \circ y=x \circ y$, then $u \in x \circ y \subseteq S$. Since $u \in S$, we have $u \bar{\circ} e=\{e\}$, then $t=e$ and so $(x \bar{\circ} y) \bar{*}\{e\} \subseteq\{e\}$. Let now $t=e$. Take an element $u \in x \bar{\circ} y(x \bar{\circ} y \neq \emptyset)$. Since $x, y \in S$, we have $x \bar{\circ} y=x \circ y \subseteq S$. Since $u \in S$, we have $u \bar{\circ} e=\{e\}$. Then $t=e \in u \bar{\circ} e=\{u\} \bar{*}\{e\} \subseteq(x \bar{\circ} y) \neq\{e\}$ and so $\{e\} \subseteq(x \bar{\circ} y) \neq\{e\}$.
(3) Let $x \in S, y=e, z \in S$. Then $\{x\} \bar{*}(y \bar{\circ} z)=(x \bar{\circ} y) \bar{*}\{z\}$. Indeed: We have

$$
\begin{aligned}
& \{x\} \nexists(y \bar{\circ} z)=\{x\} \neq(e \bar{\circ} z)=\{x\} \bar{*}\{e\}=x \bar{\circ} e=\{e\} \text { and } \\
& (x \bar{\circ} y) \bar{*}\{z\}=(x \bar{\circ} e) \bar{*}\{z\}=\{e\} \neq\{z\}=e \bar{\circ} z=\{e\} .
\end{aligned}
$$

(4) Let $x \in S, y=z=e$. Then $\{x\} \neq(y \bar{\circ} z)=(x \bar{\circ} y) \neq\{z\}$. Indeed: We have

$$
\begin{aligned}
& \{x\} \neq(y \bar{\circ} z)=\{x\} \neq(e \bar{\circ} e)=\{x\} \bar{*}\{e\}=x \bar{\circ} e=\{e\} \text { and } \\
& (x \bar{\circ} y) \neq\{z\}=(x \bar{\circ} e) \bar{*}\{e\}=\{e\} \neq\{e\}=e \bar{\circ} e=\{e\} .
\end{aligned}
$$

(5) Let $x=e, y \in S, z \in S$. Then $\{x\} \neq(y \bar{\circ} z)=(x \bar{\circ} y)^{\mp}\{z\}$. Indeed: We have

$$
\begin{aligned}
& \{x\} \bar{*}(y \bar{\circ} z)=\{e\} \bar{*}(y \bar{\circ} z) \text { and } \\
& (x \bar{\circ} y) \bar{*}\{z\}=(e \bar{\circ} y) \bar{*}\{z\}=\{e\} \neq\{z\}=e \bar{\sigma} z=\{e\} .
\end{aligned}
$$

On the other hand, $\{e\} \bar{*}(y \bar{\sigma} z)=\{e\}$. Indeed: If $t \in\{e\} \bar{*}(y \bar{\sigma} z)$, then $t \in e \overline{\bar{\sigma}} u$ for some $u \in y \bar{\sigma} z$. Since $y, z \in S$, we have $y \bar{\circ} z=y \circ z \subseteq S$. Since $u \in S$, we have $e \bar{\circ} u=\{e\}$ and so $t=e$. Let now $t=e$. Take an element $u \in y \bar{\circ} z(y \bar{\circ} z \neq \emptyset)$. Since $y, z \in S$, we have $y \bar{\circ} z=y \circ z \subseteq S$. Since $u \in S$, we have $e \bar{\circ} u=\{e\}$. Then we have $t=e \in e \bar{\circ} u=\{e\} \bar{*}\{u\} \subseteq\{e\} \bar{*}(y \bar{\circ} z)$ and so $\{e\} \subseteq\{e\} \bar{*}(y \bar{\sigma} z)$.
(6) Let $x=e, y \in S, z=e$. Then $\{x\} \neq(y \bar{\circ} z)=(x \bar{\circ} y) \neq\{z\}$. Indeed: We have

$$
\begin{aligned}
& \{x\} \bar{*}(y \bar{\circ} z)=\{e\} \bar{*}(y \bar{\circ} e)=\{e\} \neq\{e\}=e \bar{\circ} e=\{e\} \text { and } \\
& (x \bar{\circ} y) \neq\{z\}=(e \bar{\circ} y) \neq\{e\}=\{e\} \neq\{e\}=\{e\} .
\end{aligned}
$$

(7) Let $x=e, y=e, z \in S$. Then $\{x\} \neq(y \bar{\sigma} z)=(x \bar{\circ} y) \neq\{z\}$. Indeed: We have

$$
\begin{aligned}
& \{x\} \nexists(y \bar{\circ} z)=\{e\} \neq(e \bar{\circ} z)=\{e\} \neq\{e\}=e \bar{\sigma} e=\{e\} \text { and } \\
& (x \bar{\circ} y) \neq\{z\}=(e \bar{\circ} e) \neq\{z\}=\{e\} \neq\{z\}=e \bar{\circ} z=\{e\}
\end{aligned}
$$

(8) Let $x=y=z=e$. Then $\{x\} \overline{\mathcal{F}}(y \bar{\circ} z)=(x \bar{\circ} y) \bar{*}\{z\}$. Indeed: We have

$$
\begin{aligned}
& \{x\} \bar{*}(y \bar{\circ} z)=\{e\} \neq(e \bar{\circ} e)=\{e\} \neq\{e\}=e \bar{\circ} e=\{e\} \text { and } \\
& (x \bar{\circ} y) \bar{*}\{z\}=(e \bar{\circ} e) \bar{*}\{e\}=\{e\} \bar{*}\{e\}=\{e\}
\end{aligned}
$$

We endow $S \cup\{e\}$ with the relation \preceq defined by

$$
\preceq:=\leq \cup\{(x, e) \mid x \in S \cup\{e\}\} \text {. }
$$

KEHAYOPULU/Turk J Math

(D) The relation \preceq is an order on $S \cup\{e\}$. Indeed:

It is reflexive: Let $a \in S \cup\{e\}$. If $a \in S$, then $(a, a) \in \leq \subseteq \preceq$; if $a=e$, then $(a, a) \in\{(x, e) \mid x \in S \cup\{e\}\} \subseteq \preceq$. Thus, we have $(a, a) \in \preceq$ for every $a \in S$ and the relation \preceq is reflexive.
The relation \preceq is symmetric. Indeed: Let $(a, b) \in \preceq$ and $(b, a) \in \preceq$. Then
$(a, b) \in \leq$ or $(a, b)=(x, e)$ for some $x \in S \cup\{e\}$ and
$(b, a) \in \leq$ or $(b, a)=(y, e)$ for some $y \in S \cup\{e\}$.
We consider the cases:
(1) $(a, b) \in \leq$ and $(b, a) \in \leq$
(2) $(a, b) \in \leq$ and $(b, a)=(y, e)$ for some $y \in S \cup\{e\}$
(3) $(a, b)=(x, e)$ for some $x \in S \cup\{e\}$ and $(b, a) \in \leq$
(4) $(a, b)=(x, e)$ for some $x \in S \cup\{e\}$ and $(b, a)=(y, e)$ for some $y \in S \cup\{e\}$.
(1) If $a \leq b$ and $b \leq a$, then $a=b$.
(2) Let $(a, b) \in \leq$ and $(b, a)=(y, e)$ for some $y \in S \cup\{e\}$. Since $(a, b) \in \leq$, we have $a, b \in S$. Since $(y, a)=(y, e)$ for some $y \in S \cup\{e\}$, we have $a=e$. Thus, we have $S \ni a=e$. The case is impossible.
(3) Let $(a, b)=(x, e)$ for some $x \in S \cup\{e\}$ and $(b, a) \in \leq$. Then we have $S \ni b=e$. The case is impossible.
(4) Let $(a, b)=(x, e)$ for some $x \in S \cup\{e\}$ and $(b, a)=(y, e)$ for some $y \in S \cup\{e\}$. Then we have $b=e=a$ and so $a=b$.
The relation \preceq is transitive. Indeed: Let $(a, b) \in \preceq$ and $(b, c) \in \preceq$. Then

$$
\begin{aligned}
& (a, b) \in \leq \text { or }(a, b)=(x, e) \text { for some } x \in S \cup\{e\} \text { and } \\
& (b, c) \in \leq \text { or }(b, c)=(y, e) \text { for some } y \in S \cup\{e\} . \text { We consider the cases: }
\end{aligned}
$$

(1) $(a, b) \in \leq$ and $(b, c) \in \leq$. Then $(a, c) \in \leq \subseteq \preceq$.
(2) $(a, b) \in \leq$ and $(b, c)=(y, e)$ for some $y \in S \cup\{e\}$. Since $(b, c)=(y, e) ; y \in S \cup\{e\}$, we have $c=e$. Then we have $(a, c)=(a, e) \in\{(x, e) \mid x \in S \cup\{e\}\} \subseteq \preceq$.
(3) Let $(a, b)=(x, e)$ for some $x \in S \cup\{e\}$ and $(b, c) \in \leq$. Then we have $S \ni b=e$. The case is impossible.
(4) $(a, b)=(x, e)$ for some $x \in S \cup\{e\}$ and $(b, c)=(y, e)$ for some $y \in S \cup\{e\}$. Then we have $(a, c)=(a, e) \in$ $\{(x, e) \mid x \in S \cup\{e\}\} \subseteq \preceq$.
(E) The element e is the greatest element of $S \cup\{e\}$. Indeed: Let $a \in S \cup\{e\}$. Then $(a, e) \in\{(x, e) \mid x \in$ $S \cup\{e\}\} \subseteq \preceq$ and so $(a, e) \in \preceq$ i.e. $a \preceq e$.
(F) $(S \cup\{e\}, \bar{\sigma}, \preceq)$ is a poe-hypersemigroup.

Let $a, b \in S \cup\{e\}$ such that $a \preceq b$. Then $a \bar{\sigma} c \preceq b \bar{\circ} c$ and $c \bar{\sigma} a \preceq c \bar{\circ} b$ for every $c \in S \cup\{e\}$. Let us prove the first one. The proof of the second is similar.
We have $(a \in S$ or $a=e), a \preceq b,(c \in S$ or $c=e)$. Thus, we have

$$
\begin{aligned}
& a \in S, a \preceq b, c \in S \\
& a \in S, a \preceq b, c=e \\
& a=e, a \preceq b, c \in S \\
& a=e, a \preceq b, c=e .
\end{aligned}
$$

Thus, we have to check the following cases:
(1) $a \in S, a \leq b, c \in S$
(2) $a \in S,(a, b)=(x, e)$ for some $x \in S \cup\{e\}, c \in S$
(3) $a \in S, a \leq b, c=e$
(4) $a \in S,(a, b)=(x, e)$ for some $x \in S \cup\{e\}, c=e$
(5) $a=e, a \leq b, c \in S$
(6) $a=e,(a, b)=(x, e)$ for some $x \in S \cup\{e\}, c \in S$
(7) $a=e, a \leq b, c=e$
(8) $a=e,(a, b)=(x, e)$ for some $x \in S \cup\{e\}, c=e$.
(1) Let $a \in S, a \leq b, c \in S$ and $u \in a \bar{\circ} c$. Then there exists $v \in b \bar{\circ} c$ such that $u \preceq v$. Indeed: Since $a, c \in S$, we have $a \bar{\circ} c=a \circ c$. Since $a \leq b$, we have $a \circ c \preceq b \circ c$. Since $u \in a \circ c$, there exists $v \in b \circ c$ such that $u \leq v$. Since $b, c \in S$, we have $b \circ c=b \bar{\circ} c$. Since $u \leq v$, we have $(u, v) \in \leq \subseteq \preceq$. Thus, we have $v \in b \bar{\circ} c$ and $u \preceq v$.
(2) Let $a \in S,(a, b)=(x, e)$ for some $x \in S \cup\{e\}, c \in S$ and $u \in a \bar{\circ} c$. Then there exists $v \in b \bar{\circ} c$ such that $u \preceq v$. Indeed: Since $a, c \in S$, we have $u \in a \bar{\circ} c=a \circ c \subseteq S$. Since $u \in S$, we have $(u, e) \in\{(x, e) \mid x \in S \cup\{e\}\} \subseteq \preceq$ and so $u \preceq e$. Since $b=e$, we have $b \bar{\circ} c=e \bar{\circ} c=\{e\}$. For the element $v:=e \in b \bar{\circ} c$, we have $u \preceq v$.
(3) Let $a \in S, a \leq b, c=e$ and $u \in a \bar{\sigma} c$. Then there exists $v \in b \bar{\circ} c$ such that $u \preceq v$. Indeed: We have $u \in a \bar{\circ} c=a \bar{\circ} e=\{e\}$ and so $u=e$. We also have $b \bar{\circ} c=b \bar{\sigma} e=\{e\}$ and $e \preceq e$ (since \preceq is reflexive). So, for the element $v:=e \in b \bar{\sigma} c$, we have $u \preceq v$.
(4) Let $a \in S,(a, b)=(x, e)$ for some $x \in S \cup\{e\}, c=e$ and $u \in a \bar{\circ} c$. Then there exists $v \in b \bar{o} c$ such that $u \preceq v$. Indeed: We have $u \in a \bar{\circ} c=a \bar{\circ} e=\{e\}$ and so $u=e$. We also have $b \bar{\circ} c=e \bar{\circ} c=\{e\}$ and $e \preceq e$ (as \preceq is reflexive). For the element $v:=e \in b \bar{\delta} c$, we have $u \preceq v$.
(5) Let $a=e, a \leq b, c \in S$ and $u \in a \bar{\circ} c$. Since $a \leq b$, we have $a \in S$. Since $a=e$, we have $e \in S$. The case is impossible.
(6) Let $a=e,(a, b)=(x, e)$ for some $x \in S \cup\{e\}, c \in S$ and $u \in a \bar{\circ} c$. Then there exists $v \in b \bar{\circ} c$ such that $u \preceq v$. Indeed: We have $u \in a \bar{\circ} c=e \bar{\circ} c=\{e\}$ and so $u=e$. We also have $b \bar{\circ} c=e \bar{\circ} c=\{e\}$. For the element $v:=e \in b \bar{\sigma} c$, we have $u \preceq v$.
(7) Let $a=e, a \leq b, c=e$ and $u \in a \bar{\sigma} c$. Then there exists $v \in b \bar{\circ} c$ such that $u \preceq v$. Indeed: We have $u \in a \bar{\circ} c=e \bar{\sigma} e=\{e\}$ and so $u=e$. We also have $b \bar{\circ} c=b \bar{\sigma} e=\{e\}$. So, for the element $v:=e \in b \bar{\sigma} c$, we have $u \preceq v$.
(8) Let $a=e,(a, b)=(x, e)$ for some $x \in S \cup\{e\}, c=e$ and $u \in a \bar{\circ} c$. Then there exists $v \in b \bar{\circ} c$ such that $u \preceq v$. Indeed: We have $u \in a \bar{\circ} c=e \bar{o} e=\{e\}$ and so $u=e$. We also have $b \bar{\sigma} c=e \bar{o} e=\{e\}$. So, for the element $v:=e \in b \bar{\sigma} c$, we have $u \preceq v$.
(G) The ordered hypersemigroups (S, \circ, \leq) and ($S, \bar{\circ}, \preceq$) are isomorphic under the identity mapping. Indeed, for the one to one and onto mapping

$$
i:(S, \circ, \leq) \rightarrow(S, \bar{\circ}, \preceq) \mid a \rightarrow i(a):=a
$$

and, any $a, b \in S$, we have
(1) $i(a \circ b) \subseteq i(a) \bar{\circ} i(b)$; that is if $u \in a \circ b$, then $u \in a \bar{\circ} b$. This is clear, as $a, b \in S$ implies $a \circ b=a \bar{\circ} b$.
(2) $a \leq b$ implies $a \preceq b$. Indeed, if $a \leq b$, then $(a, b) \in \leq \subseteq \leq \cup\{(x, e) \mid x \in S \cup\{e\}\}=\preceq$ i.e. $(a, b) \in \preceq$ and so $a \preceq b$.
(3) if $a, b \in S$ such that $i(a) \preceq i(b)$, then $a \leq b$. Indeed: if $i(a) \preceq i(b)$, then $a \preceq b$ i.e. $(a, b) \in \leq \cup\{(x, e) \mid$ $c \in S \cup\{e\}\}$. If $(a, b) \in \leq$, then $a \leq b$ and the proof is complete. If $(a, b) \in\{(x, e) \mid x \in S \cup\{e\}\}$, then $(a, b)=(x, e)$ for some $x \in S \cup\{e\}$. Then we have $S \ni b=e$ i.e. $e \in S$ and the case is impossible.
(G) S is a pseudoideal of $(S \cup\{e\}, \bar{\circ}, \preceq)$. Indeed, $\emptyset \neq S \subseteq S \cup\{e\}, S * S \subseteq S$ and if $a \in S$ and $S \cup\{e\} \ni b \preceq a$, then $b \in S$ (as $b=e$ implies $e=a \in S$ that is impossible).

3. Some further results

A poe-semigroup (S, \cdot, \leq) is called regular if $a \leq a e a$ for every $a \in S$; intra-regular if $a \leq e a^{2} e$ for every $a \in S$. It is called right (resp. left) regular if $a \leq a^{2} e$ (resp. $a \leq e a^{2}$) for every $a \in S$. A poe-semigroup (S, \cdot, \leq) is called right (resp. left) quasi-regular if $a \leq$ aeae (resp. $a \leq e a e a$) for every $a \in S$. It is called semisimple if $a \leq e a e a e$ for every $a \in S$.

These concepts can be extended for a poe-hypersemigroup (S, \circ, \leq) in the way indicated below.

Definition 3.1 A poe-hypersemigroup (S, \circ, \leq) is called regular if $\{a\} \leq(a \circ e) *\{a\}$ for any $a \in S$; in the sense that for any $a \in S$ there exists $t \in S$ such that $t \in(a \circ e) *\{a\}$ and $a \leq t$.

To see that Definition 3.1 is correct, we have to prove that it coincides with the definition of a regular poe-hypersemigroup. A poe-hypersemigroup (S, \circ, \leq) is called regular if for every $a \in S$ there exists $x \in S$ such that $\{a\} \leq(a \circ x) *\{a\}$ (in the sense that for every $a \in S$ there exist $x, t \in S$ such that $t \in(a \circ x) *\{a\}$ and $a \leq t)[6]$.
In this respect, the following proposition holds.

Proposition 3.2 Let (S, \circ, \leq) is a poe-hypersemigroup. The following are equivalent:
(1) S is regular.
(2) $\{a\} \leq(a \circ e) *\{a\}$ for every $a \in S$.

Proof First of all, for any nonempty subsets A, B, C of $S, A \preceq B$ implies $A * C \subseteq(B * C]$. Indeed: Let $x \in A * C$. Then $x \in a \circ c$ for some $a \in A, c \in C$. Since $a \in A$, there exists $b \in B$ such that $a \leq b$. Then $a \circ c \preceq b \circ c$. Since $x \in a \circ c$, there exists $y \in b \circ c$ such that $x \leq y \in B * C$ and so $x \in(B * C]$.
$(1) \Longrightarrow(2)$. Let $a \in S$. Since S is regular, there exist $x, t \in S$ such that $t \in(a \circ x) *\{a\}$ and $a \leq t$. Since $x \leq e$, we have $a \circ x \preceq a \circ e$, then $t \in(a \circ x) *\{a\} \subseteq((a \circ e) *\{a\}]$. Then $t \leq y$ for some $y \in(a \circ e) *\{a\}(\subseteq(S * S) * S \subseteq S * S \subseteq S), y \in(a \circ e) *\{a\}$ and $a \leq y$ and property (2) is satisfied.
$(2) \Longrightarrow(1)$. Let $a \in S$. By (2), there exists $t \in S$ such that $t \in(a \circ e) *\{a\}$ and $a \leq t$. We put $x:=e$. Then $x, t \in S, t \in(a \circ x) *\{a\}$ and $a \leq t$ and property (1) holds.

In a similar way, the following definitions are true.

Definition 3.3 A poe-hypersemigroup (S, \circ, \leq) is called intra-regular if $\{a\} \leq(e \circ a) *(a \circ e)$ for any $a \in S$; in the sense that for any $a \in S$ there exists $t \in S$ such that $t \in(e \circ a) *(a \circ e)$ and $a \leq t$.

Definition 3．4 A poe－hypersemigroup (S, \circ, \leq) is called right regular if $\{a\} \leq\{a\} *(a \circ e)(=(a \circ a) *\{e\})$ for any $a \in S$ ；in the sense that for any $a \in S$ there exists $t \in S$ such that $t \in\{a\} *(a \circ e)$ and $a \leq t$ ．It is called left regular if $\{a\} \leq(e \circ a) *\{a\} \quad(=\{e\} *(a \circ a))$ for any $a \in S$ ；in the sense that for any $a \in S$ there exists $t \in S$ such that $t \in(e \circ a) *\{a\}$ and $a \leq t$ ．

Definition 3．5 A poe－hypersemigroup (S, \circ, \leq) is called right quasi－regular if $\{a\} \leq(a \circ e) *(a \circ e)$ for every $a \in S$ ；in the sense that for any $a \in S$ there exists $t \in S$ such that $t \in(a \circ e) *(a \circ e)$ and $a \leq t$ ．It is called left quasi－regular if $\{a\} \leq(e \circ a) *(e \circ a)$ for any $a \in S$ ；in the sense that for any $a \in S$ there exists $t \in S$ such that $t \in(e \circ a) *(e \circ a)$ and $a \leq t$ ．

Definition 3．6 A poe－hypersemigroup (S, \circ, \leq) is called semisimple if $\{a\} \leq(e \circ a) *(e \circ a) *\{e\}$ for any $a \in S$ ；in the sense that for any $a \in S$ there exists $t \in S$ such that $t \in(e \circ a) *(e \circ a) *\{e\}$ and $a \leq t$ ．

Proposition 3．7 The poe－hypersemigroup $(S \cup\{e\}, \bar{\circ}, \preceq)$ constructed in Theorem 2.3 is regular and intra－ regular．

Proof Let $a \in S \cup\{e\}$ ．Then there exists $t \in S \cup\{e\}$ such that $t \in(a \bar{o} e) \bar{*}\{a\}$ and $a \preceq t$ ．Indeed：If $a \in S$ ，then $a \bar{\circ} e=\{e\},(a \bar{\circ} e)^{*}\{a\}=\{e\} \neq\{a\}=e \bar{\circ} a=\{e\}$ ．If $a=e$ ，then $a \bar{\circ} e=e \bar{\circ} e=\{e\}$ ， $(a \bar{\circ} e) \nexists\{a\}=\{e\} \nexists\{a\}=\{e\}$ ．In each case，we have $e \in(a \bar{\circ} e) \neq\{a\}$ and $a \preceq e$ ．

Let $a \in S \cup\{e\}$ ．Then there exists $t \in S \cup\{e\}$ such that $t \in(e \bar{\circ} a) \bar{*}(a \bar{\circ} e)$ and $a \preceq t$ ．Indeed， for the element $t:=e \in S \cup\{e\}$ ，we have $e \in\{e\}=e \bar{\circ} e=\{e\} \neq\{e\}=(e \bar{\circ} a) \bar{*}(a \bar{\circ} e)$ ；thus，we have $e \in(e \bar{\circ} a) \bar{*}(a \bar{\circ} e)$ and $a \preceq e$ and so $(S \cup\{e\}, \bar{\circ}, \preceq)$ is intra－regular．

Proposition 3．8 The poe－hypersemigroup $(S \cup\{e\}, \bar{\circ}, \preceq)$ is right regular and left regular．
Proof Let $a \in S \cup\{e\}$ ．Then there exists $t \in S \cup\{e\}$ such that $t \in\{a\} ⿻ 肀 ⿲ 丶 丶 丶=(a \bar{\circ} e)$ and $a \preceq t$ ．Indeed：for the element $t:=e \in S \cup\{e\}$ ，we have $e \in\{e\}=a \bar{\circ} e=\{a\} \bar{*}\{e\}=\{a\} \bar{*}(a \bar{\circ} e)$ ；thus，we have $e \in\{a\} \bar{*}(a \bar{\circ} e)$ and $a \preceq e$ and so $(S \cup\{e\}, \bar{\sigma}, \preceq)$ is right regular．We also have $e \in\{e\}=e \bar{\sigma} a=\{e\} \neq\{a\}=(e \bar{\circ} a) \neq\{a\}$ ； thus，we have $e \in(e \bar{\circ} a) \bar{\not}\{a\}$ and $a \preceq e$ and so $(S \cup\{e\}, \bar{\circ}, \preceq)$ is left regular．

Proposition 3．9 The poe－semigroup $(S \cup\{e\}, \bar{\sigma}, \preceq)$ is right quasi－regular and left quasi－regular．
Proof Let $a \in S \cup\{e\}$ ．Then there exists $t \in S \cup\{e\}$ such that $t \in(a \bar{\circ} e) \bar{*}(a \bar{\circ} e)$ and $a \preceq t$ ．In fact， for the element $t:=e \in S \cup\{e\}$ ，we have $e \in\{e\}=e \bar{\sigma}=\{e\} \bar{*}\{e\}=(a \bar{\circ} e) \bar{*}(a \bar{\circ})$ and $a \preceq e$ and so $(S \cup\{e\}, \bar{\circ}, \preceq)$ is right quasi－regular．We also have $e \in\{e\}=e \bar{\circ} e=\{e\} \bar{*}\{e\}=(e \bar{\circ} a) \neq(e \bar{\circ} a)$ and $a \preceq e$ and so $(S \cup\{e\}, \bar{\circ}, \preceq)$ is left quasi－regular．

Proposition 3．10 The poe－semigroup $(S \cup\{e\}, \bar{\varnothing}, \preceq)$ is semisimple．
Proof Let $a \in S \cup\{e\}$ ．Then there exists $t \in S \cup\{e\}$ such that $t \in(e \bar{\sigma} a) \bar{*}(e \bar{o} a) \bar{*}\{e\}$ and $a \preceq t$ ．Indeed， for the element $t:=e \in S \cup\{e\}$ ，we have $e \in(e \bar{\sigma} a) \neq(e \bar{\sigma} a) \neq\{e\}$ and $a \preceq e$ ．

According to Proposition 3．7，$(S \cup\{e\}, \bar{\sigma}, \preceq)$ is intra－regular．This can be also obtained as corollary to the next proposition．To prove it，we need the following lemma．

If $(S, \circ, *, \leq)$ is an ordered hypersemigroup and A, B nonempty subsets of S we write $A \leq B$ if for any $a \in A$ there exists $b \in B$ such that $a \leq b$.

Lemma 3.11 Let (S, \circ, \leq) be an ordered hypersemigroup. Then we have the following:
(a) For any nonempty subsets A, B, C of S such that $A \leq B$, we have $A * C \leq B * C$ and $C * A \leq C * B$
(b) The operation * is associative (see, for example [4]).
(c) If $A \leq B \leq C$, then $A \leq C$.

Proof (a) Let $A \leq B$ and $x \in A * C$. Then there exists $y \in B * C$ such that $x \leq y$. Indeed: Since $x \in A * C$, we have $x \in a \circ c$ for some $a \in A, c \in C$. Since $a \in A$, there exists $b \in B$ such that $a \leq b$. Then $a \circ c \leq b \circ c$. Since $x \in a \circ c$, there exists $y \in b \circ c=B * C$ such that $x \leq y$.
(c) If $a \in A$, then there exists $b \in B$ such that $a \leq b$. Since $b \in B$, there exists $c \in C$ such that $b \leq c$. Hence, for any $a \in A$ there exists $c \in C$ such that $a \leq c$ and so $A \leq C$.

Proposition 3.12 A poe-hypersemigroup (S, \circ, \leq) that is right regular or left regular is intra-regular.
Proof Let (S, \circ, \leq) be right regular and $a \in S$. Then we have

$$
\begin{aligned}
\{a\} & \leq(a \circ a) *\{e\}=\{a\} *\{a\} *\{e\} \leq\{e\} *\{a\} *\{e\}(\text { since } a \leq e \text { implies }\{a\} \leq\{e\}) \\
& \leq\{e\} *(\{a\} *\{a\} *\{e\}) *\{e\}=\{e\} *\{a\} *\{a\} *(\{e\} *\{e\}) \\
& \leq\{e\} *\{a\} *\{a\} *\{e\}(\text { as }\{e\} *\{e\}=e \circ e \leq\{e\}) \\
& =(e \circ a) *(a \circ e))
\end{aligned}
$$

and so S is intra-regular.
By Propositions 3.7, 3.8, 3.9, and 3.10, we have the following corollary.

Corollary 3.13 Each ordered hypersemigroup can be embedded
(1) in a regular poe-hypersemigroup.
(2) in an intra-regular poe-hypersemigroup.
(3) in a right regular (or left regular) poe-hypersemigroup.
(4) in right quasi-regular (or left quasi-regular) poe-hypersemigroup.
(5) in a semisimple poe-hypersemigroup.

4. Examples

We apply the above results to the following examples.

Remark 4.1 Theorem 2.3 can be also applied to a poe-hypersemigroup and we have the following: If (S, \circ, \leq) is a poe-hypersemigroup, t an element not included in S, б the hyperoperation and \preceq the order $S \cup\{t\}$ defined in Theorem 2.3, then the set $V:=(S \cup\{t\}, \bar{\circ}, \preceq)$ is still a poe-hypersemigroup and S is a pseudoideal of V.

Let us give an example based on the remark.

Example 4.2 We consider the ordered semigroup $S=\{a, b, c\}$ given by Table 1 and Figure 1. From this, the ordered hypersemigroup given by Table 2 and the same figure (Figure 1) can be obtained. Take an element t not included in S and consider the ordered hypersemigroup $S \cup\{t\}$. Then $(S \cup\{t\}, \bar{\sigma}, \preceq)$ is a poe-hypersemigroup having the S as a pseudoideal. According to Section 2, the ordered hypersemigroup ($S \cup\{e\}, \bar{\circ}, \preceq$) given by Table 3 and Figure 2 is regular, intra-regular, right regular, left regular, right quasi-regular, left quasi-regular, and semisimple. Independently,
$(S \cup\{e\}, \bar{\circ}, \preceq)$ is regular, that is, $\{a\} \preceq(a \bar{\circ} e) \bar{\circ}\{a\}$ for every $a \in S \cup\{e\}$; in other words, for every $a \in S \cup\{e\}$ there exists $t \in(a \bar{\circ} e) \not \approx\{a\}$ such that $a \preceq t$. In fact,
$e \in(a \bar{\circ} e) \not \approx\{a\}=\{e\} \neq\{a\}=e \bar{\circ} a=\{e\}$ and $a \preceq e ;$
$e \in(b \bar{\sigma} e) \not \approx\{b\}=\{e\} \bar{*}\{b\}=e \bar{\sigma} b=\{e\}$ and $b \preceq e ;$
$e \in(c \bar{\circ} e) \bar{*}\{c\}=\{e\} \bar{*}\{c\}=e \bar{\circ} c=\{e\}$ and $c \preceq e ;$
$e \in(e \bar{\sigma} e)^{\mp}\{e\}=\{e\} \not{ }^{\mp}\{e\}=e \bar{o} e=\{e\}$ and $e \preceq e$.
$(S \cup\{e\}, \bar{\sigma}, \preceq)$ is intra-regular as
$e \in(e \bar{\circ} a) \bar{*}(a \bar{\circ} e)=\{e\} \neq\{e\}=e \bar{\circ} e=\{e\}$ and $a \preceq e ;$
$e \in(e \bar{\circ} b) \neq(b \bar{\circ} e)=\{e\} \neq\{e\}=\{e\}$ and $b \preceq e ;$
$e \in(e \bar{\circ} c) \not ⿻(c \bar{\sigma} e)=\{e\} \neq\{e\}=\{e\}$ and $c \preceq e ;$
$e \in(e \bar{\circ} e) \neq(e \bar{\circ} e)=\{e\} \neq\{e\}=\{e\}$ and $e \preceq e$.
$(S \cup\{e\}, \bar{\sigma}, \preceq)$ is right regular as
$e \in(a \bar{\circ} a) \bar{*}\{e\}=\{a\} \bar{*}\{e\}=a \bar{\circ} e=\{e\}$ and $a \preceq e ;$
$e \in(b \bar{\circ} b) \neq\{e\}=\{b\} \bar{*}\{e\}=b \bar{\circ} e=\{e\}$ and $b \preceq e ;$
$e \in(c \bar{\circ} c) \neq\{e\}=\{a, b, c\} \neq\{e\}=b \bar{\circ} e=\{e\}$ and $c \preceq e ;$
$e \in(e \bar{\circ} e) \neq\{e\}=\{e\} \bar{*}\{e\}=e \bar{\sigma} e=\{e\}$ and $e \preceq e$.
$(S \cup\{e\}, \bar{\circ}, \preceq)$ is left regular as
$e \in(e \bar{\circ} a) \bar{*}\{a\}=\{e\} \bar{*}\{a\}=e \bar{\circ} a=\{e\}$ and $a \preceq e ;$
$e \in(e \bar{\sigma} b) \not \approx\{b\}=\{a, b, c\} \not \approx\{b\}=\{a, b, c\}$ and $b \preceq e ;$
$e \in(e \bar{\circ} c) \neq\{c\}=\{a, b, c\} \neq\{c\}=\{a, b, c\}$ and $c \preceq e ;$
$e \in(e \bar{\circ} e) \bar{*}\{e\}=\{e\} \bar{\mp}\{e\}=e \bar{\circ} e=\{e\}$ and $e \preceq e$.
$(S \cup\{e\}, \bar{\circ}, \preceq)$ is right quasi-regular as
$e \in(a \bar{\circ} e) \neq(a \bar{\circ} e)=\{e\} \neq\{e\}=e \bar{\circ} e=\{e\}$ and $a \preceq e ;$
$e \in(b \bar{\circ} e) \neq(b \bar{\circ} e)=\{e\} \neq\{e\}=\{e\}$ and $b \preceq e ;$
$e \in(c \bar{\circ} e) \bar{*}(c \bar{\circ} e)=\{e\} \bar{*}\{e\}=\{e\}$ and $c \preceq e ;$
$e \in(e \bar{\sigma} e) \bar{*}(e \bar{\sigma} e)=\{e\}$ and $e \preceq e$.
$(S \cup\{e\}, \bar{\circ}, \preceq)$ is left quasi-regular as
$e \in(e \bar{\circ} a) \neq(e \bar{\circ} a)=\{e\} \neq\{e\}=\{e\}$ and $a \preceq e$.
$e \in(e \bar{\sigma} b) \neq(e \bar{\sigma})=\{e\} \bar{*}\{e\}=\{e\}$ and $b \preceq e$.
$e \in(e \bar{\circ} c) \not \approx(e \bar{\circ} c)=\{e\} \neq\{e\}=\{e\}$ and $c \preceq e$.

KEHAYOPULU/Turk J Math

$e \in(e \bar{\sigma} e) \bar{*}(e \bar{\sigma} e)=\{e\} \bar{*}\{e\}=\{e\}$ and $e \preceq e$.
$(S \cup\{e\}, \bar{\sigma}, \preceq)$ is semisimple as
$e \in(e \bar{\sigma} a) \bar{*}(e \bar{\sigma} a) \bar{*}\{e\}=\{e\} \bar{*}\{e\}=\{e\}$ and $a \preceq e$.
$e \in(e \bar{\sigma}) \bar{*}(e \bar{\sigma}) \bar{*}\{e\}=\{e\} \bar{*}\{e\}=\{e\}$ and $b \preceq e$.
$e \in(e \bar{\sigma} c) \bar{*}(e \bar{\sigma} c) \bar{*}\{e\}=\{e\} \bar{F}\{e\}=\{e\}$ and $c \preceq e$.
$e \in(e \bar{\sigma} e) \bar{*}(e \bar{\sigma} e) \bar{*}\{e\}=\{e\} \bar{*}\{e\}=\{e\}$ and $e \preceq e$.
S is a pseudoideal of $S \cup\{e\}$. Indeed:

$$
\begin{aligned}
S * S & =\{a, b, c\} *\{a, b, c\}=a \circ a \cup a \circ b \cup a \circ c \cup b \circ a \cup b \circ b \cup b \circ c \cup c \circ a \cup c \circ b \cup c \circ c \\
& =\{a, b, c\} \subseteq S
\end{aligned}
$$

and if $a \in S$ and $S \cup\{e\} \ni b \preceq a$, then $b \in S$ (as $b=e$ implies $e \preceq a$ and so $e=a \in S$ that is impossible).
Table 1: The multiplication of the ordered semigroup of Example 4.2.

\cdot	a	b	c
a	a	a	c
b	a	b	c
c	a	c	c

Figure 1: The order of Example 4.2.

Table 2: The hyperoperation of (S, \circ, \leq) of Example 4.2.

\circ	a	b	c
a	$\{a\}$	$\{a\}$	$\{a, b, c\}$
b	$\{a\}$	$\{b\}$	$\{a, b, c\}$
c	$\{a\}$	$\{a, b, c\}$	$\{a, b, c\}$

Example 4.3 (see also [3]) We consider the ordered semigroup $S=\{a, b, c, d, e, f, g\}$ given by Table 4 and Figure 3. From this, in the way indicated in [5], the ordered hypersemigroup defined by Table 5 and the same figure (Figure 3) can be obtained. If h is an element not containing in S, then the Table 6 and Figure 4 define a poe-hypersemigroup that is regular, intra-regular, right (left) regular, right (left) quasi-regular, and semisimple. In Theorem 2.3, we assume that S is an ordered hypersemigroup. In case of poe-hypersemigroups, one can continue the process given in Theorem 2.3 for countable many steps as it is shown in Figure 5.

Table 3: The hyperoperation of $(S \cup\{e\}, \bar{\sigma}, \preceq)$ of Example 4.2.

$\bar{\circ}$	a	b	c	e
a	$\{a\}$	$\{a\}$	$\{a, b, c\}$	$\{e\}$
b	$\{a\}$	$\{b\}$	$\{a, b, c\}$	$\{e\}$
c	$\{a\}$	$\{a, b, c\}$	$\{a, b, c\}$	$\{e\}$
e	$\{e\}$	$\{e\}$	$\{e\}$	$\{e\}$

Figure 2: The order $S \cup\{e\}$ of Example 4.2.

Independently,
$(S \cup\{h\}, \bar{\circ}, \preceq)$ is regular, that is $\{a\} \preceq(a \bar{\circ} h) \not \approx\{a\}$ for every $a \in S \cup\{h\}$; in other words, for every $a \in S \cup\{h\}$ there exists $t \in(a \bar{\circ} h) \not \approx\{a\}$ such that $a \preceq t$. Indeed, we have
$h \in(a \bar{\circ} h \not \approx\{a\}=\{h\} \neq\{a\}=h \bar{\circ} a=\{h\}$ and $a \preceq h$
$h \in(b \bar{\circ} h) \not \approx\{b\}=\{h\} \not \approx\{b\}=h \bar{\circ} b=\{h\}$ and $b \preceq h$
$h \in(c \bar{\circ} h) \neq\{c\}=\{h\} \neq\{c\}=h \bar{\sigma} c=\{h\}$ and $c \preceq h$
$h \in(d \bar{\circ} h) \bar{*}\{d\}=\{h\} \bar{*}\{d\}=h \bar{\circ} d=\{h\}$ and $d \preceq h$
$h \in(h \bar{\circ} h) \bar{*}\{e\}=\{h\} \bar{*}\{e\}=h \bar{\circ} e=\{h\}$ and $e \preceq h$
$h \in(f \bar{\circ} h) \neq\{f\}=\{h\} \neq\{f\}=h \bar{\circ} f=\{h\}$ and $f \preceq h$
$h \in(g \bar{\circ} h) \neq\{g\}=\{h\} \neq\{g\}=h \bar{\circ} g=\{h\}$ and $g \preceq h$
$h \in(h \bar{\circ} h) \bar{*}\{h\}=\{h\} \bar{*}\{h\}=h \bar{\circ} h=\{h\}$ and $h \preceq h$.
$(S \cup\{h\}, \bar{\circ}, \preceq)$ is intraregular, that is $\{a\} \preceq(h \bar{\circ} a) \neq(a \bar{\circ} h)$ for every $a \in S \cup\{h\}$; in other words, for every $a \in S \cup\{h\}$ there exists $t \in(h \bar{\circ} a) \neq(a \bar{\circ} h)$ such that $a \preceq t$. Indeed, we have
$h \in(h \bar{\circ} a) \not \not \approx(a \bar{\circ} h)=\{h\} \bar{\circ}\{h\}=h \bar{\circ} h=\{h\}$ and $a \preceq h$
$h \in(h \bar{\circ} b) \neq(b \bar{\circ} h)=\{h\} \bar{\circ}\{h\}=h \bar{\circ} h=\{h\}$ and $b \preceq h$
$h \in(h \bar{\circ} c) \neq(c \bar{\circ} h)=\{h\} \bar{\circ}\{h\}=h \bar{\circ} h=\{h\}$ and $c \preceq h$
$h \in(h \bar{\circ} d) \neq(d \bar{\circ} h)=\{h\} \bar{\circ}\{h\}=\{h\}$ and $d \preceq h$
$h \in(h \bar{\circ} e \bar{*}(e \bar{\circ} h)=\{h\} \bar{\circ}\{h\}=\{h\}$ and $e \preceq h$
$h \in(h \bar{\circ} f) \neq(f \bar{\circ} h)=\{h\} \bar{\circ}\{h\}=\{h\}$ and $f \preceq h$
$h \in(h \bar{\circ} g) \neq(g \bar{\circ} h)=\{h\} \bar{\circ}\{h\}=\{h\}$ and $g \preceq h$
$h \in(h \bar{\circ} h) \bar{*}(h \bar{\circ} h)=\{h\} \bar{\circ}\{h\}=\{h\}$ and $h \preceq h$.
$(S \cup\{h\}, \bar{\circ}, \preceq)$ is right regular, that is $\{a\} \preceq(a \bar{\circ} a) \neq\{h\}$ for every $a \in S \cup\{h\}$; in other words, for every

KEHAYOPULU/Turk J Math

$a \in S \cup\{h\}$ there exists $t \in(a \bar{\circ} a) \mp\{h\}$ such that $a \preceq t$. Indeed, we have

$$
\begin{aligned}
& h \in(a \bar{\circ} a) \neq\{h\}=\{a\} \neq\{h\}=a \bar{\circ} h=\{h\} \text { and } a \preceq h \\
& h \in(b \bar{\circ} b) \bar{*}\{h\}=\{a\} \bar{\mp}\{h\}=a \bar{\circ} h=\{h\} \text { and } b \preceq h \\
& h \in(c \bar{\circ} c) \not \approx\{h\}=\{a\} \neq\{h\}=\{h\} \text { and } c \preceq h \\
& h \in(d \bar{\circ} d) \mp\{h\}=\{a\} \not \approx\{h\}=\{h\} \text { and } d \preceq d \\
& h \in(e \bar{\circ} e) \neq\{h\}=\{a\} \bar{*}\{h\}=\{h\} \text { and } e \preceq h \\
& h \in(f \bar{\circ}) \bar{*}\{h\}=\{f\} \bar{*}\{h\}=f \bar{\circ} h=\{h\} \text { and } f \preceq h \\
& h \in(g \bar{\circ} g) \not \approx\{h\}=\{a\} \not \approx\{h\}=a \bar{\circ} h=\{h\} \text { and } g \preceq h \\
& h \in(h \bar{\circ} h) \not \approx\{h\}=\{h\} \neq\{h\}=h \bar{\circ} h=\{h\} \text { and } h \preceq h .
\end{aligned}
$$

$(S \cup\{h\}, \bar{\sigma}, \preceq)$ is left regular, that is $\{a\} \preceq\{h\} \bar{*}(a \bar{\circ} a)$ for every $a \in S \cup\{h\}$; that is for every $a \in S \cup\{h\}$ there exists $t \in\{h\} \neq(a \bar{\circ} a)$ such that $a \preceq t$. Indeed, we have
$h \in\{h\} \not \approx(a \bar{\circ} a)=\{h\} \not \approx\{a\}=h \bar{\circ} a=\{h\}$ and $a \preceq h$
$h \in\{h\} \bar{*}(b \bar{\circ} b)=\{h\} \bar{*}\{a\}=\{h\}$ and $b \preceq h$
$c \in\{h\} \neq(c \bar{\circ} c)=\{h\} \neq\{a\}=\{h\}$ and $c \leq h$
$h \in\{h\} \neq(d \bar{\circ} d)=\{h\} \bar{*}\{a\}=\{h\}$ and $d \preceq h$
$h \in\{h\} \neq(e \bar{\sigma} e)=\{h\} \neq\{a\}=\{h\}$ and $e \preceq h$
$h \in\{h\} \bar{*}(f \bar{\circ} f)=\{h\} \neq\{f\}=h \bar{\circ} f=h$ and $f \preceq h$
$h \in\{h\} \bar{*}(g \bar{\circ})=\{h\} \bar{*}\{a\}=\{h\}$ and $g \preceq h$
$h \in\{h\} \bar{*}(h \bar{\circ} h)=\{h\} \neq\{h\}=h \bar{\circ} h=\{h\}$ and $h \preceq h$.
$(S \cup\{h\}, \bar{\sigma}, \preceq)$ is right quasi-regular, that is $\{a\} \preceq(a \bar{\circ} h) \bar{*}(a \bar{*} h)$ for every $a \in S \cup\{h\}$. Indeed, we have
$\{a\} \preceq(a \bar{\circ}) \bar{\circ}(a \bar{\circ})=\{h\} \neq\{h\}=h \bar{\circ} h=\{h\},\{b\} \preceq(b \bar{\circ} h) \bar{\circ}(b \bar{\circ} h)=\{h\} \neq\{h\}=\{h\}$
$\{c\} \preceq(c \bar{\sigma} h) \bar{\circ}(c \bar{\circ} h)=\{h\} \bar{*}\{h\}=\{h\}, \quad\{d\} \preceq(d \bar{\circ} h) \bar{\circ}(h \bar{\circ} d)=\{h\} \bar{*}\{h\}=\{h\}$
$\{e\} \preceq(e \bar{\circ} h) \bar{\circ}(e \bar{\circ} h)=\{h\} \bar{*}\{h\}=\{h\},\{f\} \preceq(f \bar{\circ} h) \bar{\circ}(f \bar{\circ} h)=\{h\} \neq\{h\}=\{h\}$
$\{g\} \preceq(g \bar{\circ} h) \bar{\circ}(g \bar{\circ})=\{h\} \bar{*}\{h\}=\{h\},\{h\} \preceq(h \bar{\circ} h) \bar{\circ}(h \bar{\circ} h)=\{h\} \bar{*}\{h\}=\{h\}$
$(S \cup\{h\}, \bar{\circ}, \preceq)$ is left quasi-regular, that is $\{a\} \preceq(h \bar{\circ} a) \bar{*}(h \bar{\circ} a)$ for every $a \in S \cup\{h\}$. Indeed, we have
$\{a\} \preceq(h \bar{\circ} a) \bar{\circ}(h \bar{\sigma} a)=\{h\} \neq\{h\}=\{h\},\{b\} \preceq(h \bar{\circ} b) \bar{\circ}(h \bar{\circ})=\{h\} \neq\{h\}=\{h\}$
$\{c\} \preceq(h \bar{\circ} c) \bar{\circ}(h \bar{\circ} c)=\{h\} \neq\{h\}=\{h\}, \quad\{d\} \preceq(h \bar{\circ} d) \bar{\circ}(h \bar{\circ} d)=\{h\} \bar{*}\{h\}=\{h\}$
$\{e\} \preceq(h \bar{\circ} e) \bar{\circ}(h \bar{\circ} e)=\{h\} \bar{*}\{h\}=\{h\},\{f\} \preceq(h \bar{\circ}) \bar{\circ}(h \bar{\circ})=\{h\} \bar{*}\{h\}=\{h\}$
$\{g\} \preceq(h \bar{\circ} g) \bar{\circ}(h \bar{\sigma})=\{h\} \neq\{h\}=\{h\},\{h\} \preceq(h \bar{\circ}) \bar{\circ}(h \bar{\circ})=\{h\} \neq\{h\}=\{h\}$
$(S \cup\{h\}, \bar{\sigma}, \preceq)$ is semisimple, that is $\{a\} \preceq(h \bar{\circ} a) \neq(h \bar{\circ} a)$ for every $a \in S \cup\{h\}$. Indeed, for every $x \in S$, we have
$(x \circ h) \neq(x \bar{\circ})=\{h\} ;$ and $a \leq h, b \leq h, c \leq h, d \leq h, e \leq h, f \leq h, g \leq h, h \leq h$.
For the definitions of intra-regular, right (left) regular, right (left) quasi-regular, and semisimple ordered hypersemigroups, we refer to [6]

Recall that the ordered hypersemigroup (S, \cdot, \leq) given by Table 4 and Figure 3 is
(a) not regular as, for example, $\nexists x \in S$ such that $\{b\} \leq(b \circ x) *\{b\}$
(b) not intra-regular as, for example, $\nexists x, y \in S$ such that $\{c\} \leq(x \circ x) *(c \circ y)$
(c) not right regular, as $\nexists x \in S$ such that $\{f\} \leq(f \circ f) *\{x\}$
(d) not left regular, as $\nexists x \in S$ such that $\{f\} \leq\{x\} *(a \circ a)$
(e) not right quasi-regular, as $\nexists x, y \in S$ such that $\{e\} \leq(e \circ x) *(e \circ y)$
(f) not left quasi-regular, as $\nexists x, y \in S$ such that $\{e\} \leq(x \circ e) *(y \circ y)$
(g) not semisimple, as $\nexists x, y, z \in S$ such that $\{f\} \leq(x \circ f) *(y \circ f) *\{z\}$.

Table 4: The multiplication of the ordered semigroup S of Example 4.3.

\cdot	a	b	c	d	e	f	g
a	a	a	a	a	a	a	a
b	a						
c	a						
d	a						
e	a	a	a	a	a	a	b
f	a	b	c	d	e	f	a
g	a						

Figure 3: The order of S of Example 4.3.

Table 5: The hyperoperation of S of Example 4.3.

\circ	a	b	c	d	e	f	g
a	$\{a\}$						
b	$\{a\}$						
c	$\{a\}$						
d	$\{a\}$						
e	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a, b\}$
f	$\{a\}$	$\{a, b\}$	$\{a, c\}$	$\{a, d\}$	$\{e\}$	$\{f\}$	$\{a\}$
g	$\{a\}$						

According to Remark 4.1, we can continue this process for countable many steps, the resulting figure is the following:

KEHAYOPULU/Turk J Math

Figure 4: The order of $S \cup\{h\}$ of Example 4.3.
Table 6: The hyperoperation of $S \cup\{h\}$ of Example 4.3.

$\bar{\circ}$	a	b	c	d	e	f	g	h
a	$\{a\}$	$\{h\}$						
b	$\{a\}$	$\{h\}$						
c	$\{a\}$	$\{h\}$						
d	$\{a\}$	$\{h\}$						
e	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a, b\}$	$\{h\}$
f	$\{a\}$	$\{a, b\}$	$\{a, c\}$	$\{a, d\}$	$\{e\}$	$\{f\}$	$\{a\}$	$\{h\}$
g	$\{a\}$	$\{h\}$						
h	$\{h\}$							

5. Pseudoideal and ideals of $S \cup\{e\}$

Proposition 5.1 If (S, \circ, \leq) is an ordered hypersemigroup and T is a pseudoideal of S, then T is a pseudoideal of $(S \cup\{e\}, \bar{\sigma}, \preceq)$.

Proof Since $T * T \subseteq T$, we have $T \nexists T \subseteq T$. Indeed: Let $x \in T \neq T$. Then $x \in a \bar{\circ} b$ for some $a, b \in T$. Since $a, b \in T \subseteq S$, we have $a \bar{\circ} b=a \circ b$. Then $x \in a \circ b=\{a\} *\{b\} \subseteq T * T \subseteq T$ and so $x \in T$.
Let now $a \in T$ and $S \cup\{e\} \ni b \preceq a$. Then $b \in T$. Indeed: We have
$a \in T,(b \in S$ or $b=e), b \preceq a$; that is we have the following two cases:
(a) $a \in T, b \in S,(b \leq a$ or $(b, a)=(x, e)$ for some $x \in S \cup\{e\})$
(b) $a \in T, b=e,(b \leq a$ or $(b, a)=(x, e)$ for some $x \in S \cup\{e\})$

So we have to check the following:
(1) $a \in T, b \in S, b \leq a$
(2) $a \in T, b \in S,(b, a)=(x, e)$ for some $x \in S$
(3) $a \in T, b \in S,(b, a)=(e, e)$

Figure 5: Theorem 2.3 holds for a poe-hypersemigroup as well and the process given in that theorem can be continued for countable many sets leading to the order of Figure 5.
(4) $a \in T, b=e, b \leq a$
(5) $a \in T, b=e,(b, a)=(x, e)$ for some $x \in S$
(6) $a \in T, b=e,(b, a)=(e, e)$.
(1) If $a \in T, b \in S, b \leq a$ then, since T is a pseudoideal of (S, \circ, \leq), we have $b \in T$.
(2) Let $a \in T, b \in S,(b, a)=(x, e)$ for some $x \in S$. Since $T \subseteq S$, we have $a \in S$. Since $(b, a)=(x, e)$ for some $x \in S$, we have $a=e$. Thus, we have $e \in S$. The case is impossible.
(3) Let $a \in T, b \in S,(b, a)=(e, e)$. Then we have $S \ni b=e$. The case is impossible.
(4) Let $a \in T, b=e, b \leq a$. Then we have $S \ni b=e$. The case is impossible.
(5) Let $a \in T, b=e,(b, a)=(x, e)$ for some $x \in S$. Then $e=b=x \in S$. The case is impossible.
(6) Let $a \in T, b=e,(b, a)=(e, e)$. Then we have $T \ni a=e=b$ and so $b \in T$.

Proposition 5.2 Let (S, \circ, \leq) be an ordered hypersemigroup. If A is an ideal of (S, \circ, \leq), then $A \cup\{e\}$ is an ideal of $(S \cup\{e\}, \bar{\circ})$ but it is not an ideal of $(S \cup\{e\}, \bar{\circ} \preceq)$.

Proof We have $(A \cup\{e\}) \bar{*}(S \cup\{e\}) \subseteq A \cup\{e\}$. Indeed: Let $t \in(A \cup\{e\}) \bar{*}(S \cup\{e\})$. Then $t \in x \bar{\circ} y$ for some $x \in A \cup\{e\}$ and $y \in S \cup\{e\}$. We consider the cases:
(1) $x \in A, y \in S$
(2) $x \in A, y=e$
(3) $x=e, y \in S$

KEHAYOPULU/Turk J Math

(4) $x=y=e$.
(1) Let $x \in A, y \in S$. Since $x, y \in S$, we have $x \bar{\circ} y=x \circ y$. We have $t \in x \circ y=\{x\} \bar{*}\{y\} \subseteq A * S \subseteq A$ and so $t \in A \subseteq A \cup\{e\}$.
(2) Let $x \in A, y=e$. Then $t \in x \bar{\sigma} y=x \bar{\circ} e=\{e\}$ and so $t=e \in A \cup\{e\}$.
(3) Let $x=e, y \in S$. Then $t \in x \bar{\sigma} y=e \bar{\circ} y=\{e\}$ and so $t \in A \cup\{e\}$.
(4) Let $x=y=e$. Then $t \in x \bar{\circ} y=e \bar{o} e=\{e\}$ and so $t \in A \cup\{e\}$.

Similarly, $(S \cup\{e\}) \mp(A \cup\{e\}) \subseteq A \cup\{e\}$.
We consider the ordered hypersemigroup $S=\{a, b, c, d, e, f, g\}$ given by Table 5 and Figure 3. The set $\{a, b, e\}$ is an ideal of $S=\{a, b, c, d, e, f, g\}$. Indeed: We have

$$
\begin{aligned}
\{a, b, e\} *\{a, b, c, d, e, f, g\}= & (a \circ a) \cup(a \circ b) \cup(a \circ c) \cup(a \circ d) \cup(a \circ e) \cup(a \circ f) \cup(a \circ g) \\
& \cup(b \circ a) \cup(b \circ b) \cup(b \circ c) \cup(b \circ d) \cup(b \circ e) \cup(b \circ f) \cup(b \circ g) \\
& \cup(e \circ a) \cup(e \circ b) \cup e \circ c) \cup(e \circ d) \cup(e \circ e) \cup(e \circ f) \cup(e \circ g) \\
& =\{a\} \cup\{b\}=\{a, b\} \subseteq\{a, b, e\},
\end{aligned}
$$

similarly, $\{a, b, c, d, e, f, g\} *\{a, b, e\}=\{a\} \cup\{a, b\} \cup\{e\} \subseteq\{a, b, e\}$ and if $x \in\{a, b, e\}$ and $\{a, b, c, d, e, f, g\} \ni$ $y \leq x$, then $y \in\{a, b, e\}$, but $\{a, b, e, h\}$ is not an ideal of $S \cup\{h\}$ as $f \in S \cup\{h\}, f \leq h$ and $f \notin\{a, b, e, h\}$.

Proposition 5.3 Let (S, \circ, \leq) be an ordered hypersemigroup. If B is a bi-ideal of (S, \circ, \leq), then $B \cup\{e\}$ is a bi-ideal of $(S \cup\{e\}, \bar{\circ})$, but it is not an ideal of $(S \cup\{e\}, \bar{\circ}, \preceq)$.

Proof We have $(B \cup\{e\}) \bar{*}(S \cup\{e\}) \bar{*}(B \cup\{e\}) \subseteq B \cup\{e\}$. In fact:
Let $t \in(B \cup\{e\}) \bar{*}(S \cup\{e\}) \bar{*}(B \cup\{e\})$. We have $t \in u \bar{\sigma} v$ for some $u \in(B \cup\{e\}) \bar{*}(S \cup\{e\}), v \in B \cup\{e\}$ and $u \in x \bar{\circ} y$ for sone $x \in B \cup\{e\}, y \in S \cup\{e\}$. We have the cases:
(a) $x \in B,(y \in S$ or $y=e),(v \in B$ or $v=e)$
(b) $x=e,(y \in S$ or $y=e),(v \in B$ or $v=e)$.

So we have to check the following:
(1) $x \in B, y \in S, v \in B$
(2) $x \in B, y \in S, v=e$
(3) $x \in B, y=e, v \in B$
(4) $x \in B, y=e, v=e$
(5) $x=e, y \in S, v \in B$
(6) $x=e, y \in S, v=e$
(7) $x=e, y=e, v \in B$
(8) $x=y=v=e$.
(1) Let $x \in B, y \in S, v \in B$. We have $t \in u \bar{\circ} v=\{u\} \bar{*}\{v\} \subseteq(x \bar{\circ} y) \neq\{v\}$. We also have $(x \bar{\circ} y) \not \approx\{v\} \subseteq(x \circ y) *\{v\}$. Indeed: Let $t \in(x \bar{\circ} y) \not \approx\{v\}$. Then $t \in a \bar{\circ} v$ for some $a \in x \bar{\circ} y$. Since $x, y \in S$, we have $a \in x \bar{\circ} y=x \circ y \subseteq S$. Since $a, v \in S$, we have $a \bar{\circ} v=a \circ v$. Thus, we have $t \in a \circ v=\{a\} *\{v\} \subseteq(x \circ y) *\{v\}$
and so $(x \bar{\circ} y) \bar{F}\{v\} \subseteq(x \circ y) *\{v\}$. Hence, we have $t \in(x \circ y) *\{v\}=\{x\} *\{y\} *\{v\} \subseteq B * S * B \subseteq B$ and so $t \in B \subseteq B \cup\{e\}$.
(2) Let $x \in B, y \in S, v=e$. Since $t \in u \bar{\sigma} v=t \in u \bar{\sigma} e=\{e\}$, we have $t=e \in B \cup\{e\}$.
(3) Let $x \in B, y=e, v \in B$. We have

$$
t \in u \bar{\circ} v=\{u\} \bar{*}\{v\} \subseteq(x \bar{\sigma} y) \nexists\{v\}=(x \bar{\circ} e) \nexists\{v\}=\{e\} \nexists\{v\}=e \bar{\circ} c=\{e\}
$$

and so $t=e \in B \cup\{e\}$.
(4) Let $x \in B, y=e, v=e$. We have

$$
t \in u \bar{\circ} v=\{u\} \bar{*}\{v\} \subseteq(x \bar{\circ} y) \bar{*}\{e\}=(x \bar{\circ} e) \bar{*}\{e\}=\{e\} \bar{*}\{e\}=e \bar{\circ} e=\{e\}
$$

and so $t=e \in B \cup\{e\}$.
(5) Let $x=e, y \in S, v \in B$. We have

$$
t \in u \bar{\circ} v=\{u\} \bar{*}\{v\} \subseteq(x \bar{\sigma} y) \nexists\{v\}=(e \bar{\circ} y) \bar{*}\{v\}=\{e\} \bar{*}\{v\}=e \bar{\sigma} v=\{e\}
$$

and so $t \in B \cup\{e\}$.
(6) Let $x=e, y \in S, v=e$. We have

$$
t \in u \bar{\circ} v=\{u\} \bar{*}\{v\} \subseteq(x \bar{\circ} y) \bar{\mp}\{v\}=(e \bar{\circ} y) \neq\{e\}=\{e\} \bar{\circ}\{e\}=e \bar{\circ} e=\{e\}
$$

and so $t \in B \cup\{e\}$.
(7) Let $x=e, y=e, v \in B$. We have

$$
t \in u \bar{\circ} v=\{u\} \bar{*}\{v\} \subseteq(x \bar{\sigma} y) \bar{*}\{v\}=(e \bar{\sigma} e) \bar{*}\{v\}=\{e\} \bar{*}\{v\}=e \bar{\circ} v=\{e\}
$$

and so $t \in B \cup\{e\}$.
(8) Let $t=y=v=e$. We have

$$
t \in u \bar{\circ} v=\{u\} \bar{*}\{v\} \subseteq(x \bar{\circ} y) \bar{\mp}\{v\}=(e \bar{\circ} e) \bar{*}\{e\}=\{e\} \bar{*}\{e\}=e \bar{\circ} e=\{e\}
$$

and so $t \in B \cup\{e\}$.
We consider the ordered hypersemigroup $S=\{a, b, c, d, e, f, g\}$ given by Table 5 and Figure 3. The set $\{a, b, e\}$ (as an ideal) is a bi-ideal of $S=\{a, b, c, d, e, f, g\}$, but, as we have already seen, $f \in S \cup\{h\}, f \leq h$ and $f \notin\{a, b, e, h\}$ and so $\{a, b, e, h\}$ is not a bi-ideal of $S \cup\{h\}$.

The set $\{a, d, e, g\}$ is a bi-ideal of $\{a, b, c, d, e, f, g\}$ as
$\{a, d, e, g\} *\{a, b, c, d, e, f, g\} *\{a, d, e, g\}=\{a, b\} *\{a, b, c, d, e, f, g\}=\{a\} \subseteq\{a, d, e, g\}$,
$x \in\{a, d, e, g\}$ and $\{a, b, c, d, e, f, g\} \ni y \leq x$ implies $x \in\{a, d, e, g\}$, but $\{a, d, e, g, h\}$ is not a bi-ideal of $\{a, b, c, d, e, f, g, h\}$ as $h \in\{a, d, e, g, h\}$ and $\{a, b, c, d, e, f, g, h\} \ni f \leq h$, but $f \notin\{a, d, e, g, h\}$.

Proposition 5.4 Let (S, \circ, \leq) be an ordered hypersemigroup. If Q is a quasi-ideal of (S, \circ, \leq), then $Q \cup\{e\}$ is a quasi-ideal of $(S \cup\{e\}, \bar{\circ})$, but it is not a quasi-ideal of $(S \cup\{e\}, \bar{\circ}, \preceq)$.

KEHAYOPULU/Turk J Math

Proof We have $((Q \cup\{e\}) \neq(S \cup\{e\})) \cap((S \cup\{e\}) \neq(Q \cup\{e\})) \subseteq Q \cup\{e\}$. Indeed:
Let $t \in((Q \cup\{e\}) \bar{*}(S \cup\{e\})) \cap((S \cup\{e\}) \neq(Q \cup\{e\}))$. Then $t \in x \bar{\sigma} y$ for some $x \in Q \cup\{e\}, y \in S \cup\{e\}$ and $t \in z \bar{\sigma} h$ for some $z \in S \cup\{e\}, h \in S \cup\{e\}$. We have the cases:
(a) $x \in Q,(y \in S$ or $y=e),(z \in S$ or $z=e),(h \in Q$ or $h=e)$
(b) $x=e,(y \in S$ or $y=e),(z \in S$ or $z=e),(h \in Q$ or $h=e)$

So, we have to check the following:

$$
\begin{array}{ll}
\text { (1) } x \in Q, y \in S, z \in S, h \in Q & \text { (2) } x \in Q, y \in S, z \in S, h=e \\
\text { (3) } x \in Q, y \in S, z=e, h \in Q & \text { (4) } x \in Q, y \in S, z=e, h=e \\
\text { (5) } x \in Q, y=e, z \in S, h \in Q & \text { (6) } x \in Q, y=e, z \in S, h=e \\
\text { (7) } x \in Q, y=e, z=e, h \in Q & \text { (8) } x \in Q, y=e, z=e, h=e \\
\text { (9) } x=e, y \in S, z \in S, h \in Q & \text { (10) } x=e, y \in S, z \in S, h=e \\
\text { (11) } x=e, y \in S, z=e, h \in Q & \text { (12) } x=e, y \in S, z=e, h=e \\
\text { (13) } x=e, y=e, z \in S, h \in Q & \text { (14) } x=e, y=e, z \in S, h=e \\
\text { (15) } x=e, y=e, z=e, h \in Q & \text { (16) } x=e, y=e, z=e, h=e .
\end{array}
$$

(1) Let $x \in Q, y \in S, z \in S, h \in Q$. Since $x, y \in S$, we have $t \in x \bar{\circ} y=x \circ y=\{x\} *\{y\} \subseteq Q * S$. Since $z, h \in S$, we have $t \in z \bar{\circ} h=z \circ h=\{z\} *\{h\} \subseteq S * Q$. Then we have $t \in(Q * S) \cap(S * Q) \subseteq(Q * S] \cap(S * Q] \subseteq Q$ and so $t \in Q \subseteq Q \cup\{e\}$.
(2) Let $x \in Q, y \in S, z \in S, h=e$. Since $x, y \in S$, we have $t \in x \bar{\circ} y=x \circ y=\{x\} *\{y\} \subseteq Q * S \subseteq S$. Since $z \in S, h=e$, we have $t \in z \bar{\circ} h=z \bar{\circ} e=\{e\}$. Then $S \ni t=e$. The case is impossible.
(3) Let $x \in Q, y \in S, z=e, h \in Q$. Then $t \in x \bar{\circ} y=x \circ y=\{x\} *\{y\} \subseteq Q * S \subseteq S$ and $t \in z \bar{\circ} h=z \overline{\bar{\sigma}} e=\{e\}$. Then we have $S \ni t=e$. The case is impossible.
(4) Let $x \in Q, y \in S, z=e, h=e$. Then $t \in x \bar{\circ} y=x \circ y=\{x\} *\{y\} \subseteq Q * S \subseteq S$ and $t \in z \bar{\circ} h=e \bar{\sigma} e=\{e\}$. Then $S \ni t=e$, the case is impossible.
(5) Let $x \in Q, y=e, z \in S, h \in Q$. Then $t \in x \bar{\circ} y=x \bar{\circ} e=\{e\}, t \in z \bar{\circ} h=z \circ h=\{z\} *\{h\} \subseteq S * Q \subseteq S$. Then $S \ni t=e$, the case is impossible.
(6) Let $x \in Q, y=e, z \in S, h=e$. Then $t \in x \bar{\circ} y=x \bar{\circ} e=\{e\}, t \in z \bar{\circ} h=z \bar{\circ} e=\{e\}$. Then $t=e \in Q \cup\{e\}$.
(7) Let $x \in Q, y=e, z=e, h \in Q$. Then $t \in x \bar{\sigma} y=x \bar{\sigma}=\{e\}, t \in z \bar{\circ} h=e \bar{\circ} h=\{e\}$. Then $t=e \in Q \cup\{e\}$.
(8) Let $x \in Q, y=e, z=e, h=e$. Then $t \in x \bar{\circ} y=x \bar{\circ} e=\{e\}, t \in z \bar{\circ} h=e \bar{\circ} e=\{e\}$. Then $t=e \in Q \cup\{e\}$.
(9) Let $x=e, y \in S, z \in S, h \in Q$. Then $t \in x \bar{\circ} y=e \bar{\circ} y=\{e\}, t \in z \bar{\circ} h=z \circ h=\{z\} *\{h\} \subseteq S * Q \subseteq S$. Then $S \ni t=e$, the case is impossible.
(10) Let $x=e, y \in S, z \in S, h=e$. Then $t \in x \bar{\circ} y=e \bar{\sigma} y=\{e\}, t \in z \bar{\circ} h=z \bar{\circ}=\{e\}$ and so $t=e \in Q \cup\{e\}$.
(11) Let $x=e, y \in S, z=e, h \in Q$. Then $t \in x \bar{\circ} y=e \bar{\circ} y=\{e\}, t \in z \bar{\circ} h=e \bar{\circ} h=\{e\}$ and so $t=e \in Q \cup\{e\}$.
(12) Let $x=e, y \in S, z=e, h=e$. Then $t \in x \bar{\circ} y=e \bar{\sigma} y=\{e\}, t \in z \bar{\circ} h=e \bar{\circ} e=\{e\}$ and so
$t=e \in Q \cup\{e\}$.
(13) Let $x=e, y=e, z \in S, h \in Q$. Then $t \in x \bar{\circ} y=e \bar{\circ} e=\{e\}, t \in z \bar{\circ} h=z \circ h=\{z\} *\{h\} \subseteq S * Q \subseteq S$ and so $S \ni t=e$, the case is impossible.
(14) Let $x=e, y=e, z \in S, h=e$. Then $t \in x \bar{\circ} y=e \bar{\circ}=\{e\}, t \in z \bar{\circ} h=z \bar{\circ}=\{e\}$ and so $t=e \in Q \cup\{e\}$.
(15) Let $x=e, y=e, z=e, h \in Q$. Then $t \in x \bar{\circ} y=e \bar{\circ}=\{e\}, t \in z \bar{\circ} h=e \bar{\circ} h=\{e\}$ and so $t=e \in Q \cup\{e\}$.
(16) Let $x=e, y=e, z=e, h=e$. Then $t \in x \bar{\circ} y=e \bar{\sigma}=\{e\}, t \in z \bar{\circ} h=e \bar{\sigma}=\{e\}$ and so $t=e \in Q \cup\{e\}$.

We consider the ordered hypersemigroup $S=\{a, b, c, d, e, f, g\}$ given by Table 5 and Figure 3. The set $\{a, b, f, g\}$ is a quasi-ideal of $\{a, b, c, d, e, f, g\}$ as

$$
\begin{aligned}
(\{a, b, f, g\} *\{a, b, c, d, e, f, g\}] & \cap(\{a, b, c, d, e, f, g\} *\{a, b, f, g\}] \\
& =(\{a, b, c, d, e, f\}] \cap(\{a, b, f\}] \\
& =\{a, b, c, d, f, e\} \cap\{a, b, f\} \\
& =\{a, b, f\} \subseteq\{a, b, f, g\}
\end{aligned}
$$

$x \in\{a, b, f, g\}$ and $\{a, b, c, d, e, f, g\} \ni y \leq x$ implies $y \in\{a, b, f, g\}$, but $\{a, b, f, g, h\}$ is not a quasi-ideal of $\{a, b, c, d, e, f, g, h\}$ as $h \in\{a, b, f, g, h\}$ and $\{a, b, c, d, e, f, g\} \ni h \preceq h$, but $c \notin\{a, b, f, g, h\}$.

Proposition 5.5 Let (S, \circ, \leq) be an ordered hypersemigroup. If A is an interior ideal of (S, \circ, \leq), then $A \cup\{e\}$ is an interior ideal of $(S \cup\{e\}, \bar{\sigma})$, but it is not an interior ideal of $(S \cup\{e\}, \bar{\sigma}, \preceq)$.

Proof We have $(S \cup\{e\}) \not{ }^{*}(A \cup\{e\}) \not{ }^{*}(S \cup\{e\}) \subseteq A \cup\{e\}$. Indeed:
Let $t \in(S \cup\{e\}) \not \approx(A \cup\{e\}) \not \approx(S \cup\{e\})$. Then $t \in x \bar{\sigma} y$ for some $x \in(S \cup\{e\}) \neq(A \cup\{e\}), y \in S \cup\{e\}$ and $x \in u \bar{o} v$ for some $u \in S \cup\{e\}, v \in A \cup\{e\}$. We have the cases:
(a) $y \in S,(u \in S$ or $u=e),(v \in A$ or $v=e)$
(b) $y=e,(u \in S$ or $u=e),(v \in A$ or $v=e)$.

So we have to check the following:
(1) $y \in S, u \in S, v \in A$
(2) $y \in S, u \in S, v=e$
(3) $y \in S, u=e, v \in A$
(4) $y \in S, u=e, v=e$
(5) $y=e, u \in S, v \in A$
(6) $y=e, u \in S, v=e$
(7) $y=e, u=e, v \in A$
(8) $y=e, u=e, v=e$.
(1) Let $y \in S, u \in S, v \in A$. Then we have

$$
t \in x \bar{\circ} y=\{x\} \bar{*}\{y\} \subseteq(u \bar{\circ} v) \nexists\{y\}=\{u\} \nexists\{v\} \bar{*}\{y\} \subseteq S * A * S \subseteq A \subseteq A \cup\{e\}
$$

(2) Let $y \in S, u \in S, v=e$. Then $t \in u \bar{\circ} v=u \bar{\circ} e=\{e\} \subseteq A \cup\{e\}$.
(3) Let $y \in S, u=e, v \in A$. Then $t \in u \bar{\circ} v=e \bar{\sigma} v=\{e\} \subseteq A \cup\{e\}$.
(4) Let $y \in S, u=e, v=e$. Then $t \in u \bar{\circ} v=e \bar{\circ} e=\{e\} \subseteq A \cup\{e\}$.
(5) Let $y=e, u \in S, v \in A$. Then $t \in x \bar{\sigma} y=x \bar{\circ} e=\{e\} \subseteq A \cup\{e\}$.
(6) let $y=e, u \in S, v=e$. Then $t \in x \bar{\circ} y=x \bar{\circ} e=\{e\} \subseteq A \cup\{e\}$.
(7) Let $y=e, u=e, v \in A$. Then $t \in x \bar{\sigma} y=x \bar{\sigma} e=\{e\} \subseteq A \cup\{e\}$
(8) Let $y=e, u=e, v=e$. Then $t \in x \bar{\circ} y=e \bar{\circ} e=\{e\} \subseteq A \cup\{e\}$.

We consider the ordered hypersemigroup $S=\{a, b, c, d, e, f, g\}$ given by Table 5 and Figure 3. The set
$\{a\}$ is an interior ideal element of $S=\{a, b, c, d, e, f, g\}$ as

$$
\begin{aligned}
& \{a, b, c, d, e, f, g\} *\{a\}=(a \circ a) \cup(b \circ a) \cdots(f \circ a) \cup(g \circ a)=\{a\}, \\
& \{a, b, c, d, e, f, g\} *\{a\} *\{a, b, c, d, e, f, g\}=\{a\} \\
& \text { if } x \in\{a\} \text { and }\{a, b, c, d, e, f, g\} \ni y \leq a, \text { then } y=a
\end{aligned}
$$

However, $\{a\} \cup\{h\}$ is not an interior ideal of $\{a, b, c, d, e, f, g, h\}$. Indeed, $\{a, b, c, d, e, f, g, h\} \ni c \leq h$, but $c \notin\{a, h\}$.

Note Concerning the ordered hypersemigroup (S, \circ, \leq) given by Table 5 and Figure 3, it might be mentioned that

The ideals of (S, \circ, \leq) are the sets: $\{a\},\{a, b\},\{a, c\},\{a, b, c\},\{a, d\},\{a, b, d\},\{a, c, d\},\{a, b, c, d\}$, $\{a, b, e\},\{a, b, c, e\},\{a, b, d, e\},\{a, b, c, d, e\},\{a, b, c, d, e, f\},\{a, b, g\}\{a, b, c, g\},\{a, b, d, g\},\{a, b, c, d, g\}$, $\{a, b, e, g\},\{a, b, c, e, g\},\{a, b, d, e, g\},\{a, b, c, d, e, g\}$ and S (total 22).

The quasi-ideals of (S, \circ, \leq) are the ideals of S plus the sets $\{a, e\},\{a, c, e\},\{a, d, e\},\{a, c, d, e\},\{a, f\}$, $\{a, b, f\},\{a, c, f\},\{a, b, c, f\},\{a, d, f\},\{a, b, d, f\},\{a, c, d, f\},\{a, b, c, d, f\},\{a, e, f\},\{a, b, e, f\},\{a, c, e, f\}$, $\{a, b, c, e, f\},\{a, d, e, f\},\{a, b, d, e, f\},\{a, c, d, e, f\},\{a, g\},\{a, c, g\},\{a, d, g\},\{a, c, d, g\},\{a, b, f, g\},\{a, b, c, f, g\}$, $\{a, b, d, f, g\},\{a, b, c, d, f, g\},\{a, b, e, f, g\},\{a, b, c, e, f, g\},\{a, b, d, e, f, g\}$ (total 52).

The bi-ideals of (S, \circ, \leq) are the quasi-ideals of S plus the sets $\{a, e, g\},\{a, c, e, g\},\{a, d, e, g\}$, $\{a, c, d, e, g\}($ total 56$)$.

References

[1] Fuchs L, Halperin I. On the imbedding of a regular ring in a regular ring with identity. Fundamenta Mathematicae 1964; 54: 285-290.
[2] Kehayopulu N. On adjoining identity to semigroups, greatest element of ordered sets. Mathematica Japonica 1991; 36 (4): 695-702.
[3] Kehayopulu N. On adjoining greatest element to ordered semigroups. Mathematica Japonica 1993; 38 (1): 61-66.
[4] Kehayopulu N. On hypersemigroups. Pure Mathematics and Applications. PU.M.A. 2015; 25 (2): 151-156. https://doi.org/10.1515/puma-2015-0015
[5] Kehayopulu N. On ordered hypersemigroups given by a table of multiplication and a figure. Turkish Journal of Mathematics 2018; 42 (4): 2045-060. https://doi.org/10.3906/mat-1711-53
[6] Kehayopulu N. From ordered semigroups to ordered hypersemigroups. Turkish Journal of Mathematics 2019; 43 (1): 21-35. https://doi.org/10.3906/mat-1806-104

KEHAYOPULU/Turk J Math

[7] Kehayopulu N. Adjunction identity to hypersemigroups. Turkish Journal of Mathematics 2022; 46 (7): 2834-2853. https://doi.org/10.55730/1300-0098.3333

[^0]: *Correspondence: niovi.kehayopulu-tbae@tubitak.gov.tr
 2010 AMS Mathematics Subject Classification: 06F99, 08A99, 20M75.

