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Abstract: As a continuation of the paper “Adjunction Identity to Hypersemigroup” in Turk J Math 2022; 46 (7):
2834–2853, it has been proved here that the adjunction of a greatest element to an ordered hypersemigroup is actually
an embedding problem. The concept of pseudoideal has been introduced and has been proved that for each ordered
hypersemigroup S an ordered hypersemigroup V having a greatest element (poe -hypersemigroup) can be constructed
in such a way that there exists a pseudoideal T of S such that S is isomorphic to T . If S does not have a greatest
element, then this can be regarded as the embedding of an ordered hypersemigroup in an ordered semigroup with greatest
element.
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1. Introduction
Fuchs and Halperin have shown that every regular ring can be embedded in a regular ring with identity [1].
The problem of adjunction identity to semigroups, greatest element to ordered sets has been considered in [2].
In both cases the adjunction has the same meaning: If S (P ) is a semigroup (ordered set) without identity
(greatest element), the adjunction of an identity to S (P ) means that we construct a semigroup (ordered set)
V with identity (greatest element) in such a way that there exists an ideal I of V such that S ∼= I (P ∼= I) .
Later, it has been proved that each ordered semigroup S can be embedded in an ordered semigroup having a
greatest element. If S does not have a greatest element, then this is a problem of adjunction greatest element
to S [3]. The problem of adjunction identity to hypersemigroups has been considered [7]. As a continuation of
the paper in [7], we discuss here the problem of adjunction of a greatest element to an ordered hypersemigroup.

2. Main result
A hypersemigroup is a nonempty set S with an “operation” ◦ assigning to each couple (a, b) of S a nonempty
subset a ◦ b (called hyperoperation as the a ◦ b is a subset and not element of S ) and an operation ∗
between the nonempty subsets A,B of S such that A ∗ B =

∪
{a ◦ b | a ∈ A, b ∈ B} satisfying the relation

{a} ∗ (b ◦ c) = (a ◦ b) ∗ {c} for all a, b, c ∈ S [4]. A hypersemigroup (S, ◦) is called an ordered hypersemigroup
if there exists an order relation ≤ on S such that a ≤ b implies a ◦ c ≤ b ◦ c and c ◦ a ≤ c ◦ b for every c ∈ S ;
in the sense that for every u ∈ a ◦ c there exists v ∈ b ◦ c such that u ≤ v and for every u ∈ c ◦ a there exists
v ∈ c ◦ b such that u ≤ v [5].
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Definition 2.1 Let (S, ◦,≤) be an ordered hypersemigroup. A nonempty subset T of S is called pseudoideal
of (S, ◦,≤) if

(1) T ∗ T ⊆ T and
(2) if a ∈ T and S ∋ b ≤ a then b ∈ T.

Definition 2.2 Two ordered hypersemigroups (S, ◦,≤) and (T, ◦,⪯) are called isomorphic if there exists a
(1-1) mapping f of S onto T such that, for every a, b ∈ S , we have

(1) f(a ◦ b) ⊆ f(a) ◦ f(b) ; in the sense that if u ∈ a ◦ b , then f(u) ∈ f(a) ◦ f(b)

(2) if a ≤ b , then f(a) ⪯ f(b)

(3) if a, b ∈ S such that f(a) ⪯ f(b) , the a ≤ b .

Theorem 2.3 Let (S, ◦,≤) be an ordered hypersemigroup. Then there exists an ordered hypersemigroup V

having a greatest element (poe-hypersemigroup) and a pseudoideal T of V such that S ∼= T .

Proof For an element e not containing in S ((x, x) is, for example, such an element), we consider the set
S ∪ {e} . We define an hyperoperation “ ◦” on S ∪ {e} and an operation “∗” on the set P∗(S ∪ {e}

)
of all

nonempty subsets of S as follows:

◦ :
(
S ∪ {e}

)
×
(
S ∪ {e}

)
→ P∗(S ∪ {e}

)
| (x, y) → x ◦ y where

x ◦ y =


x ◦ y if x, y ∈ S
{e} if x ∈ S, y = e
{e} if x = e, y ∈ S
{e} if x = y = e

∗ : P∗(S ∪ {e}
)
× P∗(S ∪ {e}

)
→ P∗(S ∪ {e}

)
| (A,B) → A ∗ B where

A ∗ B =
∪

a∈A, b∈B

a ◦ b

(For A = {x} , B = {y} , we clearly have {x} ∗ {y} =
∪

u∈{x},v∈{y}
u ◦ v =

∪
u=x,v=y

u ◦ v = x ◦ y )

Then
(
S ∪ {e}, ◦, ∗) is a hypersemigroup. In fact:

(A) The operation ◦ is well defined. Indeed: If x, y ∈ S , then x ◦ y = x ◦ y ⊆ S ⊆ S ∪ {e} . Otherwise,
x ◦ y = {e} ⊆ S ∪ {e} . Let (x, y), (z, t) ∈

(
S ∪ {e}

)
×

(
S ∪ {e}

)
such that (x, y) = (z, t) . Then x ◦ y = z ◦ t .

Indeed: If x, y ∈ S , then z, t ∈ S , x ◦ y = x ◦ y = z ◦ t = z ◦ t . If x ∈ S , y = e , then z ∈ S , t = e , x ◦ y = {e}
and z ◦ t = {e} and so x ◦ y = z ◦ t . If x = e , y ∈ S , then z = e , t ∈ S , x ◦ y = {e} , z ◦ t = {e} and so
x ◦ y = z ◦ t = {e} . If x = y = e , then z = t = e and x ◦ y = {e} = z ◦ t .

(B) The operation ∗ is well defined. Indeed: Let A,B ∈ P∗(S ∪ {e}
)
. Since ∅ ̸= a ◦ b ⊆ S ∪ {e} for every

a ∈ A and every b ∈ B , we have ∅ ̸= A ∗ B ⊆ S ∪ {e} . Let (A,B), (C,D) ∈ P∗(S ∪ {e}
)
× P∗(S ∪ {e}

)
such

that (A,B) = (C,D) . Then A ∗ B =
∪

a∈A, b∈B

a ◦ b =
∪

a∈C, b∈D

a ◦ b = C ∗ D .
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(C) {x} ∗ (y ◦ z) = (x ◦ y) ∗ {z} for every x, y, z ∈ S ∪ {e} . Indeed:
We have to check the following two cases:

(a) x ∈ S,
(
y ∈ S or y = e

)
,
(
z ∈ S or z = e

)
and

(b) x = e,
(
y ∈ S or y = e

)
,
(
z ∈ S or z = e

)
.

(1) If x, y, z ∈ S , then {x} ∗ (y ◦ z) = (x ◦ y) ∗ {z} ; its proof is the same with the proof in [7, p. 2838].

(2) Let x, y ∈ S , z = e . Then {x} ∗ (y ◦ z) = (x ◦ y) ∗ {z} . Indeed: We have
{x} ∗ (y ◦ z) = {x} ∗ {e} = x ◦ e = {e} and (x ◦ y) ∗ {z} = (x ◦ y) ∗ {e} .

On the other hand, (x ◦ y) ∗ {e} = {e} . Indeed: If t ∈ (x ◦ y) ∗ {e} , then t ∈ u ◦ e for some u ∈ x ◦ y .
Since x, y ∈ S , we have x ◦ y = x ◦ y , then u ∈ x ◦ y ⊆ S . Since u ∈ S , we have u ◦ e = {e} , then t = e

and so (x ◦ y) ∗ {e} ⊆ {e} . Let now t = e . Take an element u ∈ x ◦ y (x ◦ y ̸= ∅) . Since x, y ∈ S , we have
x ◦ y = x ◦ y ⊆ S . Since u ∈ S , we have u ◦ e = {e} . Then t = e ∈ u ◦ e = {u} ∗ {e} ⊆ (x ◦ y) ∗ {e} and so
{e} ⊆ (x ◦ y) ∗ {e} .

(3) Let x ∈ S , y = e , z ∈ S . Then {x} ∗ (y ◦ z) = (x ◦ y) ∗ {z} . Indeed: We have
{x} ∗ (y ◦ z) = {x} ∗ (e ◦ z) = {x} ∗ {e} = x ◦ e = {e} and
(x ◦ y) ∗ {z} = (x ◦ e) ∗ {z} = {e} ∗ {z} = e ◦ z = {e} .

(4) Let x ∈ S , y = z = e . Then {x} ∗ (y ◦ z) = (x ◦ y) ∗ {z} . Indeed: We have
{x} ∗ (y ◦ z) = {x} ∗ (e ◦ e) = {x} ∗ {e} = x ◦ e = {e} and
(x ◦ y) ∗ {z} = (x ◦ e) ∗ {e} = {e} ∗ {e} = e ◦ e = {e} .

(5) Let x = e , y ∈ S , z ∈ S . Then {x} ∗ (y ◦ z) = (x ◦ y) ∗ {z} . Indeed: We have
{x} ∗ (y ◦ z) = {e} ∗ (y ◦ z) and
(x ◦ y) ∗ {z} = (e ◦ y) ∗ {z} = {e} ∗ {z} = e ◦ z = {e} .

On the other hand, {e} ∗ (y ◦ z) = {e} . Indeed: If t ∈ {e} ∗ (y ◦ z) , then t ∈ e ◦ u for some u ∈ y ◦ z . Since
y, z ∈ S , we have y ◦ z = y ◦ z ⊆ S . Since u ∈ S , we have e ◦ u = {e} and so t = e . Let now t = e . Take an
element u ∈ y ◦ z (y ◦ z ̸= ∅) . Since y, z ∈ S , we have y ◦ z = y ◦ z ⊆ S . Since u ∈ S , we have e ◦ u = {e} .
Then we have t = e ∈ e ◦ u = {e} ∗ {u} ⊆ {e} ∗ (y ◦ z) and so {e} ⊆ {e} ∗ (y ◦ z) .

(6) Let x = e , y ∈ S , z = e . Then {x} ∗ (y ◦ z) = (x ◦ y) ∗ {z} . Indeed: We have
{x} ∗ (y ◦ z) = {e} ∗ (y ◦ e) = {e} ∗ {e} = e ◦ e = {e} and
(x ◦ y) ∗ {z} = (e ◦ y) ∗ {e} = {e} ∗ {e} = {e} .

(7) Let x = e , y = e , z ∈ S . Then {x} ∗ (y ◦ z) = (x ◦ y) ∗ {z} . Indeed: We have
{x} ∗ (y ◦ z) = {e} ∗ (e ◦ z) = {e} ∗ {e} = e ◦ e = {e} and
(x ◦ y) ∗ {z} = (e ◦ e) ∗ {z} = {e} ∗ {z} = e ◦ z = {e} .

(8) Let x = y = z = e . Then {x} ∗ (y ◦ z) = (x ◦ y) ∗ {z} . Indeed: We have
{x} ∗ (y ◦ z) = {e} ∗ (e ◦ e) = {e} ∗ {e} = e ◦ e = {e} and
(x ◦ y) ∗ {z} = (e ◦ e) ∗ {e} = {e} ∗ {e} = {e} .

We endow S ∪ {e} with the relation ⪯ defined by

⪯:=≤ ∪{(x, e) | x ∈ S ∪ {e}}.
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(D) The relation ⪯ is an order on S ∪ {e} . Indeed:
It is reflexive: Let a ∈ S ∪ {e} . If a ∈ S , then (a, a) ∈≤⊆⪯ ; if a = e , then (a, a) ∈ {(x, e) | x ∈ S ∪ {e}} ⊆⪯ .
Thus, we have (a, a) ∈⪯ for every a ∈ S and the relation ⪯ is reflexive.

The relation ⪯ is symmetric. Indeed: Let (a, b) ∈⪯ and (b, a) ∈⪯ . Then
(a, b) ∈≤ or (a, b) = (x, e) for some x ∈ S ∪ {e} and
(b, a) ∈≤ or (b, a) = (y, e) for some y ∈ S ∪ {e} .

We consider the cases:
(1) (a, b) ∈≤ and (b, a) ∈≤
(2) (a, b) ∈≤ and (b, a) = (y, e) for some y ∈ S ∪ {e}
(3) (a, b) = (x, e) for some x ∈ S ∪ {e} and (b, a) ∈≤
(4) (a, b) = (x, e) for some x ∈ S ∪ {e} and (b, a) = (y, e) for some y ∈ S ∪ {e} .

(1) If a ≤ b and b ≤ a , then a = b .
(2) Let (a, b) ∈≤ and (b, a) = (y, e) for some y ∈ S∪{e} . Since (a, b) ∈≤ , we have a, b ∈ S . Since (y, a) = (y, e)

for some y ∈ S ∪ {e} , we have a = e . Thus, we have S ∋ a = e . The case is impossible.
(3) Let (a, b) = (x, e) for some x ∈ S ∪ {e} and (b, a) ∈≤ . Then we have S ∋ b = e . The case is impossible.
(4) Let (a, b) = (x, e) for some x ∈ S ∪ {e} and (b, a) = (y, e) for some y ∈ S ∪ {e} . Then we have b = e = a

and so a = b .
The relation ⪯ is transitive. Indeed: Let (a, b) ∈⪯ and (b, c) ∈⪯ . Then

(a, b) ∈≤ or (a, b) = (x, e) for some x ∈ S ∪ {e} and
(b, c) ∈≤ or (b, c) = (y, e) for some y ∈ S ∪ {e} . We consider the cases:

(1) (a, b) ∈≤ and (b, c) ∈≤ . Then (a, c) ∈≤⊆⪯ .
(2) (a, b) ∈≤ and (b, c) = (y, e) for some y ∈ S ∪ {e} . Since (b, c) = (y, e) ; y ∈ S ∪ {e} , we have c = e . Then
we have (a, c) = (a, e) ∈ {(x, e) | x ∈ S ∪ {e}} ⊆⪯ .
(3) Let (a, b) = (x, e) for some x ∈ S ∪ {e} and (b, c) ∈≤ . Then we have S ∋ b = e . The case is impossible.
(4) (a, b) = (x, e) for some x ∈ S ∪ {e} and (b, c) = (y, e) for some y ∈ S ∪ {e} . Then we have (a, c) = (a, e) ∈
{(x, e) | x ∈ S ∪ {e}} ⊆⪯ .

(E) The element e is the greatest element of S ∪ {e} . Indeed: Let a ∈ S ∪ {e} . Then (a, e) ∈ {(x, e) | x ∈
S ∪ {e}} ⊆⪯ and so (a, e) ∈⪯ i.e. a ⪯ e .

(F) (S ∪ {e}, ◦,⪯) is a poe -hypersemigroup.
Let a, b ∈ S ∪ {e} such that a ⪯ b . Then a ◦ c ⪯ b ◦ c and c ◦ a ⪯ c ◦ b for every c ∈ S ∪ {e} . Let us prove
the first one. The proof of the second is similar.
We have

(
a ∈ S or a = e

)
, a ⪯ b ,

(
c ∈ S or c = e

)
. Thus, we have

a ∈ S , a ⪯ b , c ∈ S

a ∈ S , a ⪯ b , c = e

a = e , a ⪯ b , c ∈ S

a = e , a ⪯ b , c = e .
Thus, we have to check the following cases:

(1) a ∈ S , a ≤ b , c ∈ S

(2) a ∈ S , (a, b) = (x, e) for some x ∈ S ∪ {e} , c ∈ S
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(3) a ∈ S , a ≤ b , c = e

(4) a ∈ S , (a, b) = (x, e) for some x ∈ S ∪ {e} , c = e

(5) a = e , a ≤ b , c ∈ S

(6) a = e , (a, b) = (x, e) for some x ∈ S ∪ {e} , c ∈ S

(7) a = e , a ≤ b , c = e

(8) a = e , (a, b) = (x, e) for some x ∈ S ∪ {e} , c = e .

(1) Let a ∈ S , a ≤ b , c ∈ S and u ∈ a ◦ c . Then there exists v ∈ b ◦ c such that u ⪯ v . Indeed: Since
a, c ∈ S , we have a ◦ c = a ◦ c . Since a ≤ b , we have a ◦ c ⪯ b ◦ c . Since u ∈ a ◦ c , there exists v ∈ b ◦ c such
that u ≤ v . Since b, c ∈ S , we have b ◦ c = b ◦ c . Since u ≤ v , we have (u, v) ∈≤⊆⪯ . Thus, we have v ∈ b ◦ c

and u ⪯ v .

(2) Let a ∈ S , (a, b) = (x, e) for some x ∈ S ∪ {e} , c ∈ S and u ∈ a ◦ c . Then there exists v ∈ b ◦ c

such that u ⪯ v . Indeed: Since a, c ∈ S , we have u ∈ a ◦ c = a ◦ c ⊆ S . Since u ∈ S , we have
(u, e) ∈ {(x, e) | x ∈ S ∪ {e}} ⊆⪯ and so u ⪯ e . Since b = e , we have b ◦ c = e ◦ c = {e} . For the
element v := e ∈ b ◦ c , we have u ⪯ v .

(3) Let a ∈ S , a ≤ b , c = e and u ∈ a ◦ c . Then there exists v ∈ b ◦ c such that u ⪯ v . Indeed: We have
u ∈ a ◦ c = a ◦ e = {e} and so u = e . We also have b ◦ c = b ◦ e = {e} and e ⪯ e (since ⪯ is reflexive). So,
for the element v := e ∈ b ◦ c , we have u ⪯ v .

(4) Let a ∈ S , (a, b) = (x, e) for some x ∈ S ∪ {e} , c = e and u ∈ a ◦ c . Then there exists v ∈ b ◦ c such that
u ⪯ v . Indeed: We have u ∈ a ◦ c = a ◦ e = {e} and so u = e . We also have b ◦ c = e ◦ c = {e} and e ⪯ e (as
⪯ is reflexive). For the element v := e ∈ b ◦ c , we have u ⪯ v .

(5) Let a = e , a ≤ b , c ∈ S and u ∈ a ◦ c . Since a ≤ b , we have a ∈ S . Since a = e , we have e ∈ S . The case
is impossible.

(6) Let a = e , (a, b) = (x, e) for some x ∈ S ∪ {e} , c ∈ S and u ∈ a ◦ c . Then there exists v ∈ b ◦ c such that
u ⪯ v . Indeed: We have u ∈ a ◦ c = e ◦ c = {e} and so u = e . We also have b ◦ c = e ◦ c = {e} . For the
element v := e ∈ b ◦ c , we have u ⪯ v .

(7) Let a = e , a ≤ b , c = e and u ∈ a ◦ c . Then there exists v ∈ b ◦ c such that u ⪯ v . Indeed: We have
u ∈ a ◦ c = e ◦ e = {e} and so u = e . We also have b ◦ c = b ◦ e = {e} . So, for the element v := e ∈ b ◦ c , we
have u ⪯ v .

(8) Let a = e , (a, b) = (x, e) for some x ∈ S ∪ {e} , c = e and u ∈ a ◦ c . Then there exists v ∈ b ◦ c such that
u ⪯ v . Indeed: We have u ∈ a ◦ c = e ◦ e = {e} and so u = e . We also have b ◦ c = e ◦ e = {e} . So, for the
element v := e ∈ b ◦ c , we have u ⪯ v .

(G) The ordered hypersemigroups (S, ◦,≤) and (S, ◦,⪯) are isomorphic under the identity mapping. Indeed,
for the one to one and onto mapping

i : (S, ◦,≤) → (S, ◦,⪯) | a → i(a) := a

and, any a, b ∈ S , we have

(1) i(a ◦ b) ⊆ i(a) ◦ i(b) ; that is if u ∈ a ◦ b , then u ∈ a ◦ b . This is clear, as a, b ∈ S implies a ◦ b = a ◦ b .
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(2) a ≤ b implies a ⪯ b . Indeed, if a ≤ b , then (a, b) ∈≤⊆≤ ∪{(x, e) | x ∈ S ∪ {e}} =⪯ i.e. (a, b) ∈⪯ and
so a ⪯ b .

(3) if a, b ∈ S such that i(a) ⪯ i(b) , then a ≤ b . Indeed: if i(a) ⪯ i(b) , then a ⪯ b i.e. (a, b) ∈≤ ∪{(x, e) |
c ∈ S ∪ {e}} . If (a, b) ∈≤ , then a ≤ b and the proof is complete. If (a, b) ∈ {(x, e) | x ∈ S ∪ {e}} , then
(a, b) = (x, e) for some x ∈ S ∪ {e} . Then we have S ∋ b = e i.e. e ∈ S and the case is impossible.

(G) S is a pseudoideal of (S∪{e}, ◦,⪯) . Indeed, ∅ ̸= S ⊆ S∪{e} , S ∗S ⊆ S and if a ∈ S and S∪{e} ∋ b ⪯ a ,
then b ∈ S (as b = e implies e = a ∈ S that is impossible). 2

3. Some further results
A poe -semigroup (S, ·,≤) is called regular if a ≤ aea for every a ∈ S ; intra-regular if a ≤ ea2e for every a ∈ S .
It is called right (resp. left) regular if a ≤ a2e (resp. a ≤ ea2) for every a ∈ S . A poe -semigroup (S, ·,≤) is
called right (resp. left) quasi-regular if a ≤ aeae (resp. a ≤ eaea) for every a ∈ S . It is called semisimple if
a ≤ eaeae for every a ∈ S .

These concepts can be extended for a poe -hypersemigroup (S, ◦,≤) in the way indicated below.

Definition 3.1 A poe-hypersemigroup (S, ◦,≤) is called regular if {a} ≤ (a ◦ e) ∗ {a} for any a ∈ S ; in the
sense that for any a ∈ S there exists t ∈ S such that t ∈ (a ◦ e) ∗ {a} and a ≤ t .

To see that Definition 3.1 is correct, we have to prove that it coincides with the definition of a regular
poe -hypersemigroup. A poe -hypersemigroup (S, ◦,≤) is called regular if for every a ∈ S there exists x ∈ S

such that {a} ≤ (a ◦ x) ∗ {a} (in the sense that for every a ∈ S there exist x, t ∈ S such that t ∈ (a ◦ x) ∗ {a}
and a ≤ t) [6].
In this respect, the following proposition holds.

Proposition 3.2 Let (S, ◦,≤) is a poe-hypersemigroup. The following are equivalent:
(1) S is regular.
(2) {a} ≤ (a ◦ e) ∗ {a} for every a ∈ S .

Proof First of all, for any nonempty subsets A,B,C of S , A ⪯ B implies A ∗ C ⊆ (B ∗ C] . Indeed: Let
x ∈ A ∗ C . Then x ∈ a ◦ c for some a ∈ A , c ∈ C . Since a ∈ A , there exists b ∈ B such that a ≤ b . Then
a ◦ c ⪯ b ◦ c . Since x ∈ a ◦ c , there exists y ∈ b ◦ c such that x ≤ y ∈ B ∗ C and so x ∈ (B ∗ C] .
(1) =⇒ (2) . Let a ∈ S . Since S is regular, there exist x, t ∈ S such that t ∈ (a ◦ x) ∗ {a} and a ≤ t .

Since x ≤ e , we have a ◦ x ⪯ a ◦ e , then t ∈ (a ◦ x) ∗ {a} ⊆
(
(a ◦ e) ∗ {a}

]
. Then t ≤ y for some

y ∈ (a ◦ e) ∗ {a} (⊆ (S ∗ S) ∗ S ⊆ S ∗ S ⊆ S) , y ∈ (a ◦ e) ∗ {a} and a ≤ y and property (2) is satisfied.
(2) =⇒ (1) . Let a ∈ S . By (2), there exists t ∈ S such that t ∈ (a ◦ e) ∗ {a} and a ≤ t . We put x := e . Then
x, t ∈ S , t ∈ (a ◦ x) ∗ {a} and a ≤ t and property (1) holds. 2

In a similar way, the following definitions are true.

Definition 3.3 A poe-hypersemigroup (S, ◦,≤) is called intra-regular if {a} ≤ (e ◦ a) ∗ (a ◦ e) for any a ∈ S ;
in the sense that for any a ∈ S there exists t ∈ S such that t ∈ (e ◦ a) ∗ (a ◦ e) and a ≤ t .
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Definition 3.4 A poe-hypersemigroup (S, ◦,≤) is called right regular if {a} ≤ {a} ∗ (a ◦ e) (= (a ◦ a) ∗ {e})
for any a ∈ S ; in the sense that for any a ∈ S there exists t ∈ S such that t ∈ {a} ∗ (a ◦ e) and a ≤ t . It is
called left regular if {a} ≤ (e ◦ a) ∗ {a} (= {e} ∗ (a ◦ a)) for any a ∈ S ; in the sense that for any a ∈ S there
exists t ∈ S such that t ∈ (e ◦ a) ∗ {a} and a ≤ t .

Definition 3.5 A poe-hypersemigroup (S, ◦,≤) is called right quasi-regular if {a} ≤ (a ◦ e) ∗ (a ◦ e) for every
a ∈ S ; in the sense that for any a ∈ S there exists t ∈ S such that t ∈ (a ◦ e) ∗ (a ◦ e) and a ≤ t . It is called
left quasi-regular if {a} ≤ (e ◦ a) ∗ (e ◦ a) for any a ∈ S ; in the sense that for any a ∈ S there exists t ∈ S such
that t ∈ (e ◦ a) ∗ (e ◦ a) and a ≤ t .

Definition 3.6 A poe-hypersemigroup (S, ◦,≤) is called semisimple if {a} ≤ (e ◦ a) ∗ (e ◦ a) ∗ {e} for any
a ∈ S ; in the sense that for any a ∈ S there exists t ∈ S such that t ∈ (e ◦ a) ∗ (e ◦ a) ∗ {e} and a ≤ t .

Proposition 3.7 The poe-hypersemigroup
(
S ∪ {e}, ◦,⪯

)
constructed in Theorem 2.3 is regular and intra-

regular.

Proof Let a ∈ S ∪ {e} . Then there exists t ∈ S ∪ {e} such that t ∈ (a ◦ e) ∗ {a} and a ⪯ t . Indeed: If
a ∈ S , then a ◦ e = {e} , (a ◦ e) ∗ {a} = {e} ∗ {a} = e ◦ a = {e} . If a = e , then a ◦ e = e ◦ e = {e} ,
(a ◦ e) ∗ {a} = {e} ∗ {a} = {e} . In each case, we have e ∈ (a ◦ e) ∗ {a} and a ⪯ e .

Let a ∈ S ∪ {e} . Then there exists t ∈ S ∪ {e} such that t ∈ (e ◦ a) ∗ (a ◦ e) and a ⪯ t . Indeed,
for the element t := e ∈ S ∪ {e} , we have e ∈ {e} = e ◦ e = {e} ∗ {e} = (e ◦ a) ∗ (a ◦ e) ; thus, we have
e ∈ (e ◦ a) ∗ (a ◦ e) and a ⪯ e and so

(
S ∪ {e}, ◦,⪯

)
is intra-regular. 2

Proposition 3.8 The poe-hypersemigroup (S ∪ {e}, ◦,⪯) is right regular and left regular.

Proof Let a ∈ S ∪ {e} . Then there exists t ∈ S ∪ {e} such that t ∈ {a} ∗ (a ◦ e) and a ⪯ t . Indeed: for the
element t := e ∈ S ∪ {e} , we have e ∈ {e} = a ◦ e = {a} ∗ {e} = {a} ∗ (a ◦ e) ; thus, we have e ∈ {a} ∗ (a ◦ e)

and a ⪯ e and so
(
S ∪ {e}, ◦,⪯

)
is right regular. We also have e ∈ {e} = e ◦ a = {e} ∗ {a} = (e ◦ a) ∗ {a} ;

thus, we have e ∈ (e ◦ a) ∗ {a} and a ⪯ e and so
(
S ∪ {e}, ◦,⪯

)
is left regular. 2

Proposition 3.9 The poe-semigroup (S ∪ {e}, ◦,⪯) is right quasi-regular and left quasi-regular.

Proof Let a ∈ S ∪ {e} . Then there exists t ∈ S ∪ {e} such that t ∈ (a ◦ e) ∗ (a ◦ e) and a ⪯ t . In fact,
for the element t := e ∈ S ∪ {e} , we have e ∈ {e} = e ◦ e = {e} ∗ {e} = (a ◦ e) ∗ (a ◦ e) and a ⪯ e and so
(S ∪ {e}, ◦,⪯) is right quasi-regular. We also have e ∈ {e} = e ◦ e = {e} ∗ {e} = (e ◦ a) ∗ (e ◦ a) and a ⪯ e

and so (S ∪ {e}, ◦,⪯) is left quasi-regular. 2

Proposition 3.10 The poe-semigroup (S ∪ {e}, ◦,⪯) is semisimple.

Proof Let a ∈ S ∪ {e} . Then there exists t ∈ S ∪ {e} such that t ∈ (e ◦ a) ∗ (e ◦ a) ∗ {e} and a ⪯ t . Indeed,
for the element t := e ∈ S ∪ {e} , we have e ∈ (e ◦ a) ∗ (e ◦ a) ∗ {e} and a ⪯ e . 2

According to Proposition 3.7,
(
S ∪ {e}, ◦,⪯

)
is intra-regular. This can be also obtained as corollary to

the next proposition. To prove it, we need the following lemma.
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If (S, ◦, ∗,≤) is an ordered hypersemigroup and A,B nonempty subsets of S we write A ≤ B if for any
a ∈ A there exists b ∈ B such that a ≤ b .

Lemma 3.11 Let (S, ◦,≤) be an ordered hypersemigroup. Then we have the following:

(a) For any nonempty subsets A,B,C of S such that A ≤ B , we have A ∗ C ≤ B ∗ C and C ∗A ≤ C ∗B

(b) The operation ∗ is associative (see, for example [4]) .

(c) If A ≤ B ≤ C , then A ≤ C .

Proof (a) Let A ≤ B and x ∈ A ∗C . Then there exists y ∈ B ∗C such that x ≤ y . Indeed: Since x ∈ A ∗C ,
we have x ∈ a ◦ c for some a ∈ A , c ∈ C . Since a ∈ A , there exists b ∈ B such that a ≤ b . Then a ◦ c ≤ b ◦ c .
Since x ∈ a ◦ c , there exists y ∈ b ◦ c = B ∗ C such that x ≤ y .
(c) If a ∈ A , then there exists b ∈ B such that a ≤ b . Since b ∈ B , there exists c ∈ C such that b ≤ c . Hence,
for any a ∈ A there exists c ∈ C such that a ≤ c and so A ≤ C .

2

Proposition 3.12 A poe-hypersemigroup (S, ◦,≤) that is right regular or left regular is intra-regular.

Proof Let (S, ◦,≤
)

be right regular and a ∈ S . Then we have

{a} ≤ (a ◦ a) ∗ {e} = {a} ∗ {a} ∗ {e} ≤ {e} ∗ {a} ∗ {e} (since a ≤ e implies {a} ≤ {e})

≤ {e} ∗
(
{a} ∗ {a} ∗ {e}

)
∗ {e} = {e} ∗ {a} ∗ {a} ∗

(
{e} ∗ {e}

)
≤ {e} ∗ {a} ∗ {a} ∗ {e} (as {e} ∗ {e} = e ◦ e ≤ {e})

= (e ◦ a) ∗ (a ◦ e))

and so S is intra-regular. 2

By Propositions 3.7, 3.8, 3.9, and 3.10, we have the following corollary.

Corollary 3.13 Each ordered hypersemigroup can be embedded
(1) in a regular poe-hypersemigroup.
(2) in an intra-regular poe-hypersemigroup.
(3) in a right regular (or left regular) poe-hypersemigroup.
(4) in right quasi-regular (or left quasi-regular) poe-hypersemigroup.
(5) in a semisimple poe-hypersemigroup.

4. Examples
We apply the above results to the following examples.

Remark 4.1 Theorem 2.3 can be also applied to a poe -hypersemigroup and we have the following: If (S, ◦,≤)

is a poe -hypersemigroup, t an element not included in S , ◦ the hyperoperation and ⪯ the order S∪{t} defined
in Theorem 2.3, then the set V :=

(
S ∪ {t}, ◦,⪯

)
is still a poe -hypersemigroup and S is a pseudoideal of V .
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Let us give an example based on the remark.

Example 4.2 We consider the ordered semigroup S = {a, b, c} given by Table 1 and Figure 1. From this, the
ordered hypersemigroup given by Table 2 and the same figure (Figure 1) can be obtained. Take an element t not
included in S and consider the ordered hypersemigroup S ∪{t} . Then (S ∪{t}, ◦,⪯) is a poe -hypersemigroup
having the S as a pseudoideal. According to Section 2, the ordered hypersemigroup (S ∪ {e}, ◦,⪯) given by
Table 3 and Figure 2 is regular, intra-regular, right regular, left regular, right quasi-regular, left quasi-regular,
and semisimple. Independently,
(S∪{e}, ◦,⪯) is regular, that is, {a} ⪯ (a ◦ e) ◦ {a} for every a ∈ S∪{e} ; in other words, for every a ∈ S∪{e}
there exists t ∈ (a ◦ e) ∗ {a} such that a ⪯ t . In fact,

e ∈ (a ◦ e) ∗ {a} = {e} ∗ {a} = e ◦ a = {e} and a ⪯ e ;
e ∈ (b ◦ e) ∗ {b} = {e} ∗ {b} = e ◦ b = {e} and b ⪯ e ;
e ∈ (c ◦ e) ∗ {c} = {e} ∗ {c} = e ◦ c = {e} and c ⪯ e ;
e ∈ (e ◦ e) ∗ {e} = {e} ∗ {e} = e ◦ e = {e} and e ⪯ e .

(S ∪ {e}, ◦,⪯) is intra-regular as
e ∈ (e ◦ a) ∗ (a ◦ e) = {e} ∗ {e} = e ◦ e = {e} and a ⪯ e ;
e ∈ (e ◦ b) ∗ (b ◦ e) = {e} ∗ {e} = {e} and b ⪯ e ;
e ∈ (e ◦ c) ∗ (c ◦ e) = {e} ∗ {e} = {e} and c ⪯ e ;
e ∈ (e ◦ e) ∗ (e ◦ e) = {e} ∗ {e} = {e} and e ⪯ e .

(S ∪ {e}, ◦,⪯) is right regular as
e ∈ (a ◦ a) ∗ {e} = {a} ∗ {e} = a ◦ e = {e} and a ⪯ e ;
e ∈ (b ◦ b) ∗ {e} = {b} ∗ {e} = b ◦ e = {e} and b ⪯ e ;
e ∈ (c ◦ c) ∗ {e} = {a, b, c} ∗ {e} = b ◦ e = {e} and c ⪯ e ;
e ∈ (e ◦ e) ∗ {e} = {e} ∗ {e} = e ◦ e = {e} and e ⪯ e .

(S ∪ {e}, ◦,⪯) is left regular as
e ∈ (e ◦ a) ∗ {a} = {e} ∗ {a} = e ◦ a = {e} and a ⪯ e ;
e ∈ (e ◦ b) ∗ {b} = {a, b, c} ∗ {b} = {a, b, c} and b ⪯ e ;
e ∈ (e ◦ c) ∗ {c} = {a, b, c} ∗ {c} = {a, b, c} and c ⪯ e ;
e ∈ (e ◦ e) ∗ {e} = {e} ∗ {e} = e ◦ e = {e} and e ⪯ e .

(S ∪ {e}, ◦,⪯) is right quasi-regular as
e ∈ (a ◦ e) ∗ (a ◦ e) = {e} ∗ {e} = e ◦ e = {e} and a ⪯ e ;
e ∈ (b ◦ e) ∗ (b ◦ e) = {e} ∗ {e} = {e} and b ⪯ e ;
e ∈ (c ◦ e) ∗ (c ◦ e) = {e} ∗ {e} = {e} and c ⪯ e ;
e ∈ (e ◦ e) ∗ (e ◦ e) = {e} and e ⪯ e .

(S ∪ {e}, ◦,⪯) is left quasi-regular as
e ∈ (e ◦ a) ∗ (e ◦ a) = {e} ∗ {e} = {e} and a ⪯ e .
e ∈ (e ◦ b) ∗ (e ◦ b) = {e} ∗ {e} = {e} and b ⪯ e .
e ∈ (e ◦ c) ∗ (e ◦ c) = {e} ∗ {e} = {e} and c ⪯ e .
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e ∈ (e ◦ e) ∗ (e ◦ e) = {e} ∗ {e} = {e} and e ⪯ e .

(S ∪ {e}, ◦,⪯) is semisimple as
e ∈ (e ◦ a) ∗ (e ◦ a) ∗ {e} = {e} ∗ {e} = {e} and a ⪯ e .
e ∈ (e ◦ b) ∗ (e ◦ b) ∗ {e} = {e} ∗ {e} = {e} and b ⪯ e .
e ∈ (e ◦ c) ∗ (e ◦ c) ∗ {e} = {e} ∗ {e} = {e} and c ⪯ e .
e ∈ (e ◦ e) ∗ (e ◦ e) ∗ {e} = {e} ∗ {e} = {e} and e ⪯ e .

S is a pseudoideal of S ∪ {e} . Indeed:

S ∗ S = {a, b, c} ∗ {a, b, c} = a ◦ a ∪ a ◦ b ∪ a ◦ c ∪ b ◦ a ∪ b ◦ b ∪ b ◦ c ∪ c ◦ a ∪ c ◦ b ∪ c ◦ c

= {a, b, c} ⊆ S

and if a ∈ S and S ∪ {e} ∋ b ⪯ a , then b ∈ S (as b = e implies e ⪯ a and so e = a ∈ S that is impossible).

Table 1: The multiplication of the ordered semigroup of Example 4.2.

· a b c
a a a c
b a b c
c a c c

a

b

c

Figure 1: The order of Example 4.2.

Table 2: The hyperoperation of (S, ◦,≤) of Example 4.2.

◦ a b c
a {a} {a} {a, b, c}
b {a} {b} {a, b, c}
c {a} {a, b, c} {a, b, c}

Example 4.3 (see also [3]) We consider the ordered semigroup S = {a, b, c, d, e, f, g} given by Table 4 and
Figure 3. From this, in the way indicated in [5], the ordered hypersemigroup defined by Table 5 and the same
figure (Figure 3) can be obtained. If h is an element not containing in S , then the Table 6 and Figure 4 define a
poe -hypersemigroup that is regular, intra-regular, right (left) regular, right (left) quasi-regular, and semisimple.
In Theorem 2.3, we assume that S is an ordered hypersemigroup. In case of poe -hypersemigroups, one can
continue the process given in Theorem 2.3 for countable many steps as it is shown in Figure 5.
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Table 3: The hyperoperation of (S ∪ {e}, ◦,⪯) of Example 4.2.

◦ a b c e
a {a} {a} {a, b, c} {e}
b {a} {b} {a, b, c} {e}
c {a} {a, b, c} {a, b, c} {e}
e {e} {e} {e} {e}

a

b

e

c

Figure 2: The order S ∪ {e} of Example 4.2.

Independently,
(S∪{h}, ◦,⪯) is regular, that is {a} ⪯ (a ◦ h) ∗ {a} for every a ∈ S∪{h} ; in other words, for every a ∈ S∪{h}
there exists t ∈ (a ◦ h) ∗ {a} such that a ⪯ t . Indeed, we have

h ∈ (a ◦ h) ∗ {a} = {h} ∗ {a} = h ◦ a = {h} and a ⪯ h

h ∈ (b ◦ h) ∗ {b} = {h} ∗ {b} = h ◦ b = {h} and b ⪯ h

h ∈ (c ◦ h) ∗ {c} = {h} ∗ {c} = h ◦ c = {h} and c ⪯ h

h ∈ (d ◦ h) ∗ {d} = {h} ∗ {d} = h ◦ d = {h} and d ⪯ h

h ∈ (h ◦ h) ∗ {e} = {h} ∗ {e} = h ◦ e = {h} and e ⪯ h

h ∈ (f ◦ h) ∗ {f} = {h} ∗ {f} = h ◦ f = {h} and f ⪯ h

h ∈ (g ◦ h) ∗ {g} = {h} ∗ {g} = h ◦ g = {h} and g ⪯ h

h ∈ (h ◦ h) ∗ {h} = {h} ∗ {h} = h ◦ h = {h} and h ⪯ h .

(S ∪ {h}, ◦,⪯) is intraregular, that is {a} ⪯ (h ◦ a) ∗ (a ◦ h) for every a ∈ S ∪ {h} ; in other words, for every
a ∈ S ∪ {h} there exists t ∈ (h ◦ a) ∗ (a ◦ h) such that a ⪯ t . Indeed, we have

h ∈ (h ◦ a) ∗ (a ◦ h) = {h} ◦ {h} = h ◦ h = {h} and a ⪯ h

h ∈ (h ◦ b) ∗ (b ◦ h) = {h} ◦ {h} = h ◦ h = {h} and b ⪯ h

h ∈ (h ◦ c) ∗ (c ◦ h) = {h} ◦ {h} = h ◦ h = {h} and c ⪯ h

h ∈ (h ◦ d) ∗ (d ◦ h) = {h} ◦ {h} = {h} and d ⪯ h

h ∈ (h ◦ e) ∗ (e ◦ h) = {h} ◦ {h} = {h} and e ⪯ h

h ∈ (h ◦ f) ∗ (f ◦ h) = {h} ◦ {h} = {h} and f ⪯ h

h ∈ (h ◦ g) ∗ (g ◦ h) = {h} ◦ {h} = {h} and g ⪯ h

h ∈ (h ◦ h) ∗ (h ◦ h) = {h} ◦ {h} = {h} and h ⪯ h .

(S ∪ {h}, ◦,⪯) is right regular, that is {a} ⪯ (a ◦ a) ∗ {h} for every a ∈ S ∪ {h} ; in other words, for every
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a ∈ S ∪ {h} there exists t ∈ (a ◦ a) ∗ {h} such that a ⪯ t . Indeed, we have
h ∈ (a ◦ a) ∗ {h} = {a} ∗ {h} = a ◦ h = {h} and a ⪯ h

h ∈ (b ◦ b) ∗ {h} = {a} ∗ {h} = a ◦ h = {h} and b ⪯ h

h ∈ (c ◦ c) ∗ {h} = {a} ∗ {h} = {h} and c ⪯ h

h ∈ (d ◦ d) ∗ {h} = {a} ∗ {h} = {h} and d ⪯ d

h ∈ (e ◦ e) ∗ {h} = {a} ∗ {h} = {h} and e ⪯ h

h ∈ (f ◦ f) ∗ {h} = {f} ∗ {h} = f ◦ h = {h} and f ⪯ h

h ∈ (g ◦ g) ∗ {h} = {a} ∗ {h} = a ◦ h = {h} and g ⪯ h

h ∈ (h ◦ h) ∗ {h} = {h} ∗ {h} = h ◦ h = {h} and h ⪯ h .

(S ∪ {h}, ◦,⪯) is left regular, that is {a} ⪯ {h} ∗ (a ◦ a) for every a ∈ S ∪ {h} ; that is for every a ∈ S ∪ {h}
there exists t ∈ {h} ∗ (a ◦ a) such that a ⪯ t . Indeed, we have

h ∈ {h} ∗ (a ◦ a) = {h} ∗ {a} = h ◦ a = {h} and a ⪯ h

h ∈ {h} ∗ (b ◦ b) = {h} ∗ {a} = {h} and b ⪯ h

c ∈ {h} ∗ (c ◦ c) = {h} ∗ {a} = {h} and c ≤ h

h ∈ {h} ∗ (d ◦ d) = {h} ∗ {a} = {h} and d ⪯ h

h ∈ {h} ∗ (e ◦ e) = {h} ∗ {a} = {h} and e ⪯ h

h ∈ {h} ∗ (f ◦ f) = {h} ∗ {f} = h ◦ f = h and f ⪯ h

h ∈ {h} ∗ (g ◦ g) = {h} ∗ {a} = {h} and g ⪯ h

h ∈ {h} ∗ (h ◦ h) = {h} ∗ {h} = h ◦ h = {h} and h ⪯ h .

(S ∪ {h}, ◦,⪯) is right quasi-regular, that is {a} ⪯ (a ◦ h) ∗ (a ∗ h) for every a ∈ S ∪ {h} . Indeed, we have
{a} ⪯ (a ◦ h) ◦ (a ◦ h) = {h} ∗ {h} = h ◦ h = {h} , {b} ⪯ (b ◦ h) ◦ (b ◦ h) = {h} ∗ {h} = {h}
{c} ⪯ (c ◦ h) ◦ (c ◦ h) = {h} ∗ {h} = {h} , {d} ⪯ (d ◦ h) ◦ (h ◦ d) = {h} ∗ {h} = {h}
{e} ⪯ (e ◦ h) ◦ (e ◦ h) = {h} ∗ {h} = {h} , {f} ⪯ (f ◦ h) ◦ (f ◦ h) = {h} ∗ {h} = {h}
{g} ⪯ (g ◦ h) ◦ (g ◦ h) = {h} ∗ {h} = {h} , {h} ⪯ (h ◦ h) ◦ (h ◦ h) = {h} ∗ {h} = {h}

(S ∪ {h}, ◦,⪯) is left quasi-regular, that is {a} ⪯ (h ◦ a) ∗ (h ◦ a) for every a ∈ S ∪ {h} . Indeed, we have
{a} ⪯ (h ◦ a) ◦ (h ◦ a) = {h} ∗ {h} = {h} , {b} ⪯ (h ◦ b) ◦ (h ◦ b) = {h} ∗ {h} = {h}
{c} ⪯ (h ◦ c) ◦ (h ◦ c) = {h} ∗ {h} = {h} , {d} ⪯ (h ◦ d) ◦ (h ◦ d) = {h} ∗ {h} = {h}
{e} ⪯ (h ◦ e) ◦ (h ◦ e) = {h} ∗ {h} = {h} , {f} ⪯ (h ◦ f) ◦ (h ◦ f) = {h} ∗ {h} = {h}
{g} ⪯ (h ◦ g) ◦ (h ◦ g) = {h} ∗ {h} = {h} , {h} ⪯ (h ◦ h) ◦ (h ◦ h) = {h} ∗ {h} = {h}

(S ∪ {h}, ◦,⪯) is semisimple, that is {a} ⪯ (h ◦ a) ∗ (h ◦ a) for every a ∈ S ∪ {h} . Indeed, for every x ∈ S ,
we have

(x ◦ h) ∗ (x ◦ h) = {h} ; and a ≤ h , b ≤ h , c ≤ h , d ≤ h , e ≤ h , f ≤ h , g ≤ h , h ≤ h .

For the definitions of intra-regular, right (left) regular, right (left) quasi-regular, and semisimple ordered
hypersemigroups, we refer to [6]

Recall that the ordered hypersemigroup (S, ·,≤) given by Table 4 and Figure 3 is

(a) not regular as, for example, ∄ x ∈ S such that {b} ≤ (b ◦ x) ∗ {b}
(b) not intra-regular as, for example, ∄ x, y ∈ S such that {c} ≤ (x ◦ x) ∗ (c ◦ y)
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(c) not right regular, as ∄ x ∈ S such that {f} ≤ (f ◦ f) ∗ {x}
(d) not left regular, as ∄ x ∈ S such that {f} ≤ {x} ∗ (a ◦ a)
(e) not right quasi-regular, as ∄ x, y ∈ S such that {e} ≤ (e ◦ x) ∗ (e ◦ y)
(f) not left quasi-regular, as ∄ x, y ∈ S such that {e} ≤ (x ◦ e) ∗ (y ◦ y)
(g) not semisimple, as ∄ x, y, z ∈ S such that {f} ≤ (x ◦ f) ∗ (y ◦ f) ∗ {z} .

Table 4: The multiplication of the ordered semigroup S of Example 4.3.

· a b c d e f g
a a a a a a a a
b a a a a a a a
c a a a a a a a
d a a a a a a a
e a a a a a a b
f a b c d e f a
g a a a a a a a

b

c

d

f

e

ga

Figure 3: The order of S of Example 4.3.

Table 5: The hyperoperation of S of Example 4.3.

◦ a b c d e f g
a {a} {a} {a} {a} {a} {a} {a}
b {a} {a} {a} {a} {a} {a} {a}
c {a} {a} {a} {a} {a} {a} {a}
d {a} {a} {a} {a} {a} {a} {a}
e {a} {a} {a} {a} {a} {a} {a, b}
f {a} {a, b} {a, c} {a, d} {e} {f} {a}
g {a} {a} {a} {a} {a} {a} {a}

According to Remark 4.1, we can continue this process for countable many steps, the resulting figure is
the following:
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f

e

ga

d

b

c

h

Figure 4: The order of S ∪ {h} of Example 4.3.

Table 6: The hyperoperation of S ∪ {h} of Example 4.3.

◦ a b c d e f g h
a {a} {a} {a} {a} {a} {a} {a} {h}
b {a} {a} {a} {a} {a} {a} {a} {h}
c {a} {a} {a} {a} {a} {a} {a} {h}
d {a} {a} {a} {a} {a} {a} {a} {h}
e {a} {a} {a} {a} {a} {a} {a, b} {h}
f {a} {a, b} {a, c} {a, d} {e} {f} {a} {h}
g {a} {a} {a} {a} {a} {a} {a} {h}
h {h} {h} {h} {h} {h} {h} {h} {h}

5. Pseudoideal and ideals of S ∪ {e}

Proposition 5.1 If (S, ◦,≤) is an ordered hypersemigroup and T is a pseudoideal of S , then T is a pseudoideal
of (S ∪ {e}, ◦,⪯) .

Proof Since T ∗T ⊆ T , we have T ∗ T ⊆ T . Indeed: Let x ∈ T ∗ T . Then x ∈ a ◦ b for some a, b ∈ T . Since
a, b ∈ T ⊆ S , we have a ◦ b = a ◦ b . Then x ∈ a ◦ b = {a} ∗ {b} ⊆ T ∗ T ⊆ T and so x ∈ T .
Let now a ∈ T and S ∪ {e} ∋ b ⪯ a . Then b ∈ T . Indeed: We have

a ∈ T,
(
b ∈ S or b = e

)
, b ⪯ a ; that is we have the following two cases:

(a) a ∈ T, b ∈ S,
(
b ≤ a or (b, a) = (x, e) for some x ∈ S ∪ {e}

)
(b) a ∈ T, b = e,

(
b ≤ a or (b, a) = (x, e) for some x ∈ S ∪ {e}

)
So we have to check the following:

(1) a ∈ T , b ∈ S , b ≤ a

(2) a ∈ T , b ∈ S , (b, a) = (x, e) for some x ∈ S

(3) a ∈ T , b ∈ S , (b, a) = (e, e)
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f

e

ga

d

b

c

h

Figure 5: Theorem 2.3 holds for a poe -hypersemigroup as well and the process given in that theorem can be
continued for countable many sets leading to the order of Figure 5.

(4) a ∈ T , b = e , b ≤ a

(5) a ∈ T , b = e , (b, a) = (x, e) for some x ∈ S

(6) a ∈ T , b = e , (b, a) = (e, e) .

(1) If a ∈ T , b ∈ S , b ≤ a then, since T is a pseudoideal of (S, ◦,≤) , we have b ∈ T .
(2) Let a ∈ T , b ∈ S , (b, a) = (x, e) for some x ∈ S . Since T ⊆ S , we have a ∈ S . Since (b, a) = (x, e) for
some x ∈ S , we have a = e . Thus, we have e ∈ S . The case is impossible.
(3) Let a ∈ T , b ∈ S , (b, a) = (e, e) . Then we have S ∋ b = e . The case is impossible.
(4) Let a ∈ T , b = e , b ≤ a . Then we have S ∋ b = e . The case is impossible.
(5) Let a ∈ T , b = e , (b, a) = (x, e) for some x ∈ S . Then e = b = x ∈ S . The case is impossible.
(6) Let a ∈ T , b = e , (b, a) = (e, e) . Then we have T ∋ a = e = b and so b ∈ T . 2

Proposition 5.2 Let (S, ◦,≤) be an ordered hypersemigroup. If A is an ideal of (S, ◦,≤) , then A∪ {e} is an
ideal of (S ∪ {e}, ◦) but it is not an ideal of (S ∪ {e}, ◦ ⪯) .

Proof We have
(
A ∪ {e}

)
∗
(
S ∪ {e}

)
⊆ A ∪ {e} . Indeed: Let t ∈

(
A ∪ {e}

)
∗
(
S ∪ {e}

)
. Then t ∈ x ◦ y

for some x ∈ A ∪ {e} and y ∈ S ∪ {e} . We consider the cases:
(1) x ∈ A , y ∈ S

(2) x ∈ A , y = e

(3) x = e , y ∈ S
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(4) x = y = e .
(1) Let x ∈ A , y ∈ S . Since x, y ∈ S , we have x ◦ y = x ◦ y . We have t ∈ x ◦ y = {x} ∗ {y} ⊆ A ∗ S ⊆ A and
so t ∈ A ⊆ A ∪ {e} .
(2) Let x ∈ A , y = e . Then t ∈ x ◦ y = x ◦ e = {e} and so t = e ∈ A ∪ {e} .
(3) Let x = e , y ∈ S . Then t ∈ x ◦ y = e ◦ y = {e} and so t ∈ A ∪ {e} .
(4) Let x = y = e . Then t ∈ x ◦ y = e ◦ e = {e} and so t ∈ A ∪ {e} .

Similarly,
(
S ∪ {e}

)
∗
(
A ∪ {e}

)
⊆ A ∪ {e} .

We consider the ordered hypersemigroup S = {a, b, c, d, e, f, g} given by Table 5 and Figure 3. The set
{a, b, e} is an ideal of S = {a, b, c, d, e, f, g} . Indeed: We have

{a, b, e} ∗ {a, b, c, d, e, f, g} = (a ◦ a) ∪ (a ◦ b) ∪ (a ◦ c) ∪ (a ◦ d) ∪ (a ◦ e) ∪ (a ◦ f) ∪ (a ◦ g)

∪(b ◦ a) ∪ (b ◦ b) ∪ (b ◦ c) ∪ (b ◦ d) ∪ (b ◦ e) ∪ (b ◦ f) ∪ (b ◦ g)

∪(e ◦ a) ∪ (e ◦ b) ∪ e ◦ c) ∪ (e ◦ d) ∪ (e ◦ e) ∪ (e ◦ f) ∪ (e ◦ g)

= {a} ∪ {b} = {a, b} ⊆ {a, b, e},

similarly, {a, b, c, d, e, f, g} ∗ {a, b, e} = {a} ∪ {a, b} ∪ {e} ⊆ {a, b, e} and if x ∈ {a, b, e} and {a, b, c, d, e, f, g} ∋
y ≤ x , then y ∈ {a, b, e} , but {a, b, e, h} is not an ideal of S ∪ {h} as f ∈ S ∪ {h} , f ≤ h and f ̸∈ {a, b, e, h} .

2

Proposition 5.3 Let (S, ◦,≤) be an ordered hypersemigroup. If B is a bi-ideal of (S, ◦,≤) , then B ∪ {e} is
a bi-ideal of (S ∪ {e}, ◦) , but it is not an ideal of (S ∪ {e}, ◦,⪯) .

Proof We have
(
B ∪ {e}

)
∗
(
S ∪ {e}

)
∗
(
B ∪ {e}

)
⊆ B ∪ {e} . In fact:

Let t ∈
(
B∪{e}

)
∗
(
S∪{e}

)
∗
(
B∪{e}

)
. We have t ∈ u ◦ v for some u ∈

(
B∪{e}

)
∗
(
S∪{e}

)
, v ∈ B∪{e}

and u ∈ x ◦ y for sone x ∈ B ∪ {e} , y ∈ S ∪ {e} . We have the cases:
(a) x ∈ B ,

(
y ∈ S or y = e

)
,
(
v ∈ B or v = e

)
(b) x = e ,

(
y ∈ S or y = e

)
,
(
v ∈ B or v = e

)
.

So we have to check the following:
(1) x ∈ B , y ∈ S , v ∈ B

(2) x ∈ B , y ∈ S , v = e

(3) x ∈ B , y = e , v ∈ B

(4) x ∈ B , y = e , v = e

(5) x = e , y ∈ S , v ∈ B

(6) x = e , y ∈ S , v = e

(7) x = e , y = e , v ∈ B

(8) x = y = v = e .

(1) Let x ∈ B , y ∈ S , v ∈ B . We have t ∈ u ◦ v = {u} ∗ {v} ⊆ (x ◦ y) ∗ {v} . We also have
(x ◦ y) ∗ {v} ⊆ (x◦y)∗{v} . Indeed: Let t ∈ (x ◦ y) ∗ {v} . Then t ∈ a ◦ v for some a ∈ x ◦ y . Since x, y ∈ S , we
have a ∈ x ◦ y = x◦y ⊆ S . Since a, v ∈ S , we have a ◦ v = a◦v . Thus, we have t ∈ a◦v = {a}∗{v} ⊆ (x◦y)∗{v}
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and so (x ◦ y) ∗ {v} ⊆ (x ◦ y) ∗ {v} . Hence, we have t ∈ (x ◦ y) ∗ {v} = {x} ∗ {y} ∗ {v} ⊆ B ∗ S ∗B ⊆ B and so
t ∈ B ⊆ B ∪ {e} .
(2) Let x ∈ B , y ∈ S , v = e . Since t ∈ u ◦ v = t ∈ u ◦ e = {e} , we have t = e ∈ B ∪ {e} .
(3) Let x ∈ B , y = e , v ∈ B . We have

t ∈ u ◦ v = {u} ∗ {v} ⊆ (x ◦ y) ∗ {v} = (x ◦ e) ∗ {v} = {e} ∗ {v} = e ◦ c = {e}

and so t = e ∈ B ∪ {e} .
(4) Let x ∈ B , y = e , v = e . We have

t ∈ u ◦ v = {u} ∗ {v} ⊆ (x ◦ y) ∗ {e} = (x ◦ e) ∗ {e} = {e} ∗ {e} = e ◦ e = {e}

and so t = e ∈ B ∪ {e} .
(5) Let x = e , y ∈ S , v ∈ B . We have

t ∈ u ◦ v = {u} ∗ {v} ⊆ (x ◦ y) ∗ {v} = (e ◦ y) ∗ {v} = {e} ∗ {v} = e ◦ v = {e}

and so t ∈ B ∪ {e} .
(6) Let x = e , y ∈ S , v = e . We have

t ∈ u ◦ v = {u} ∗ {v} ⊆ (x ◦ y) ∗ {v} = (e ◦ y) ∗ {e} = {e} ◦ {e} = e ◦ e = {e}

and so t ∈ B ∪ {e} .
(7) Let x = e , y = e , v ∈ B . We have

t ∈ u ◦ v = {u} ∗ {v} ⊆ (x ◦ y) ∗ {v} = (e ◦ e) ∗ {v} = {e} ∗ {v} = e ◦ v = {e}

and so t ∈ B ∪ {e} .
(8) Let t = y = v = e . We have

t ∈ u ◦ v = {u} ∗ {v} ⊆ (x ◦ y) ∗ {v} = (e ◦ e) ∗ {e} = {e} ∗ {e} = e ◦ e = {e}

and so t ∈ B ∪ {e} .
We consider the ordered hypersemigroup S = {a, b, c, d, e, f, g} given by Table 5 and Figure 3. The set

{a, b, e} (as an ideal) is a bi-ideal of S = {a, b, c, d, e, f, g} , but, as we have already seen, f ∈ S ∪ {h} , f ≤ h

and f ̸∈ {a, b, e, h} and so {a, b, e, h} is not a bi-ideal of S ∪ {h} .
The set {a, d, e, g} is a bi-ideal of {a, b, c, d, e, f, g} as
{a, d, e, g} ∗ {a, b, c, d, e, f, g} ∗ {a, d, e, g} = {a, b} ∗ {a, b, c, d, e, f, g} = {a} ⊆ {a, d, e, g} ,
x ∈ {a, d, e, g} and {a, b, c, d, e, f, g} ∋ y ≤ x implies x ∈ {a, d, e, g} , but {a, d, e, g, h} is not a bi-ideal

of {a, b, c, d, e, f, g, h} as h ∈ {a, d, e, g, h} and {a, b, c, d, e, f, g, h} ∋ f ≤ h , but f /∈ {a, d, e, g, h} . 2

Proposition 5.4 Let (S, ◦,≤) be an ordered hypersemigroup. If Q is a quasi-ideal of (S, ◦,≤) , then Q ∪ {e}
is a quasi-ideal of (S ∪ {e}, ◦) , but it is not a quasi-ideal of (S ∪ {e}, ◦,⪯) .
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Proof We have
((

Q ∪ {e}
)
∗
(
S ∪ {e}

))
∩
((

S ∪ {e}
)
∗
(
Q ∪ {e}

))
⊆ Q ∪ {e} . Indeed:

Let t ∈
((

Q∪ {e}
)
∗
(
S ∪ {e}

))
∩
((

S ∪ {e}
)
∗
(
Q∪ {e}

))
. Then t ∈ x ◦ y for some x ∈ Q∪ {e} , y ∈ S ∪ {e}

and t ∈ z ◦ h for some z ∈ S ∪ {e} , h ∈ S ∪ {e} . We have the cases:
(a) x ∈ Q ,

(
y ∈ S or y = e

)
,
(
z ∈ S or z = e

)
,
(
h ∈ Q or h = e

)
(b) x = e ,

(
y ∈ S or y = e

)
,
(
z ∈ S or z = e

)
,
(
h ∈ Q or h = e

)
So, we have to check the following:

(1) x ∈ Q , y ∈ S , z ∈ S , h ∈ Q (2) x ∈ Q , y ∈ S , z ∈ S , h = e

(3) x ∈ Q , y ∈ S , z = e , h ∈ Q (4) x ∈ Q , y ∈ S , z = e , h = e

(5) x ∈ Q , y = e , z ∈ S , h ∈ Q (6) x ∈ Q , y = e , z ∈ S , h = e

(7) x ∈ Q , y = e , z = e , h ∈ Q (8) x ∈ Q , y = e , z = e , h = e

(9) x = e , y ∈ S , z ∈ S , h ∈ Q (10) x = e , y ∈ S , z ∈ S , h = e

(11) x = e , y ∈ S , z = e , h ∈ Q (12) x = e , y ∈ S , z = e , h = e

(13) x = e , y = e , z ∈ S , h ∈ Q (14) x = e , y = e , z ∈ S , h = e

(15) x = e , y = e , z = e , h ∈ Q (16) x = e , y = e , z = e , h = e .

(1) Let x ∈ Q , y ∈ S , z ∈ S , h ∈ Q . Since x, y ∈ S , we have t ∈ x ◦ y = x ◦ y = {x} ∗ {y} ⊆ Q ∗ S . Since
z, h ∈ S , we have t ∈ z ◦ h = z◦h = {z}∗{h} ⊆ S∗Q . Then we have t ∈ (Q∗S)∩(S∗Q) ⊆ (Q∗S]∩(S∗Q] ⊆ Q

and so t ∈ Q ⊆ Q ∪ {e} .
(2) Let x ∈ Q , y ∈ S , z ∈ S , h = e . Since x, y ∈ S , we have t ∈ x ◦ y = x ◦ y = {x} ∗ {y} ⊆ Q ∗ S ⊆ S . Since
z ∈ S , h = e , we have t ∈ z ◦ h = z ◦ e = {e} . Then S ∋ t = e . The case is impossible.
(3) Let x ∈ Q , y ∈ S , z = e , h ∈ Q . Then t ∈ x ◦ y = x◦y = {x}∗{y} ⊆ Q∗S ⊆ S and t ∈ z ◦ h = z ◦ e = {e} .
Then we have S ∋ t = e . The case is impossible.
(4) Let x ∈ Q , y ∈ S , z = e , h = e . Then t ∈ x ◦ y = x◦y = {x}∗{y} ⊆ Q∗S ⊆ S and t ∈ z ◦ h = e ◦ e = {e} .
Then S ∋ t = e , the case is impossible.
(5) Let x ∈ Q , y = e , z ∈ S , h ∈ Q . Then t ∈ x ◦ y = x ◦ e = {e} , t ∈ z ◦ h = z ◦ h = {z} ∗ {h} ⊆ S ∗Q ⊆ S .
Then S ∋ t = e , the case is impossible.
(6) Let x ∈ Q , y = e , z ∈ S , h = e . Then t ∈ x ◦ y = x ◦ e = {e} , t ∈ z ◦ h = z ◦ e = {e} . Then
t = e ∈ Q ∪ {e} .
(7) Let x ∈ Q , y = e , z = e , h ∈ Q . Then t ∈ x ◦ y = x ◦ e = {e} , t ∈ z ◦ h = e ◦ h = {e} . Then
t = e ∈ Q ∪ {e} .
(8) Let x ∈ Q , y = e , z = e , h = e . Then t ∈ x ◦ y = x ◦ e = {e} , t ∈ z ◦ h = e ◦ e = {e} . Then
t = e ∈ Q ∪ {e} .
(9) Let x = e , y ∈ S , z ∈ S , h ∈ Q . Then t ∈ x ◦ y = e ◦ y = {e} , t ∈ z ◦ h = z ◦ h = {z} ∗ {h} ⊆ S ∗Q ⊆ S .
Then S ∋ t = e , the case is impossible.
(10) Let x = e , y ∈ S , z ∈ S , h = e . Then t ∈ x ◦ y = e ◦ y = {e} , t ∈ z ◦ h = z ◦ e = {e} and so
t = e ∈ Q ∪ {e} .
(11) Let x = e , y ∈ S , z = e , h ∈ Q . Then t ∈ x ◦ y = e ◦ y = {e} , t ∈ z ◦ h = e ◦ h = {e} and so
t = e ∈ Q ∪ {e} .
(12) Let x = e , y ∈ S , z = e , h = e . Then t ∈ x ◦ y = e ◦ y = {e} , t ∈ z ◦ h = e ◦ e = {e} and so
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t = e ∈ Q ∪ {e} .
(13) Let x = e , y = e , z ∈ S , h ∈ Q . Then t ∈ x ◦ y = e ◦ e = {e} , t ∈ z ◦ h = z ◦ h = {z} ∗ {h} ⊆ S ∗Q ⊆ S

and so S ∋ t = e , the case is impossible.
(14) Let x = e , y = e , z ∈ S , h = e . Then t ∈ x ◦ y = e ◦ e = {e} , t ∈ z ◦ h = z ◦ e = {e} and so
t = e ∈ Q ∪ {e} .
(15) Let x = e , y = e , z = e , h ∈ Q . Then t ∈ x ◦ y = e ◦ e = {e} , t ∈ z ◦ h = e ◦ h = {e} and so
t = e ∈ Q ∪ {e} .
(16) Let x = e , y = e , z = e , h = e . Then t ∈ x ◦ y = e ◦ e = {e} , t ∈ z ◦ h = e ◦ e = {e} and so
t = e ∈ Q ∪ {e} .

We consider the ordered hypersemigroup S = {a, b, c, d, e, f, g} given by Table 5 and Figure 3. The set
{a, b, f, g} is a quasi-ideal of {a, b, c, d, e, f, g} as(

{a, b, f, g} ∗ {a, b, c, d, e, f, g}
]

∩
(
{a, b, c, d, e, f, g} ∗ {a, b, f, g}

]
=

(
{a, b, c, d, e, f}

]
∩
(
{a, b, f}

]
= {a, b, c, d, f, e} ∩ {a, b, f}

= {a, b, f} ⊆ {a, b, f, g};

x ∈ {a, b, f, g} and {a, b, c, d, e, f, g} ∋ y ≤ x implies y ∈ {a, b, f, g} , but {a, b, f, g, h} is not a quasi-ideal of
{a, b, c, d, e, f, g, h} as h ∈ {a, b, f, g, h} and {a, b, c, d, e, f, g} ∋ h ⪯ h , but c /∈ {a, b, f, g, h} . 2

Proposition 5.5 Let (S, ◦,≤) be an ordered hypersemigroup. If A is an interior ideal of (S, ◦,≤) , then A∪{e}
is an interior ideal of (S ∪ {e}, ◦) , but it is not an interior ideal of (S ∪ {e}, ◦,⪯) .

Proof We have
(
S ∪ {e}

)
∗
(
A ∪ {e}

)
∗
(
S ∪ {e}

)
⊆ A ∪ {e} . Indeed:

Let t ∈
(
S ∪ {e}

)
∗
(
A ∪ {e}

)
∗
(
S ∪ {e}

)
. Then t ∈ x ◦ y for some x ∈

(
S ∪ {e}

)
∗
(
A ∪ {e}

)
, y ∈ S ∪ {e}

and x ∈ u ◦ v for some u ∈ S ∪ {e} , v ∈ A ∪ {e} . We have the cases:
(a) y ∈ S ,

(
u ∈ S or u = e

)
,
(
v ∈ A or v = e

)
(b) y = e ,

(
u ∈ S or u = e

)
,
(
v ∈ A or v = e

)
.

So we have to check the following:
(1) y ∈ S , u ∈ S , v ∈ A

(2) y ∈ S , u ∈ S , v = e

(3) y ∈ S , u = e , v ∈ A

(4) y ∈ S , u = e , v = e

(5) y = e , u ∈ S , v ∈ A

(6) y = e , u ∈ S , v = e

(7) y = e , u = e , v ∈ A

(8) y = e , u = e , v = e .

(1) Let y ∈ S , u ∈ S , v ∈ A . Then we have
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t ∈ x ◦ y = {x} ∗ {y} ⊆ (u ◦ v) ∗ {y} = {u} ∗ {v} ∗ {y} ⊆ S ∗A ∗ S ⊆ A ⊆ A ∪ {e}.

(2) Let y ∈ S , u ∈ S , v = e . Then t ∈ u ◦ v = u ◦ e = {e} ⊆ A ∪ {e} .
(3) Let y ∈ S , u = e , v ∈ A . Then t ∈ u ◦ v = e ◦ v = {e} ⊆ A ∪ {e} .
(4) Let y ∈ S , u = e , v = e . Then t ∈ u ◦ v = e ◦ e = {e} ⊆ A ∪ {e} .
(5) Let y = e , u ∈ S , v ∈ A . Then t ∈ x ◦ y = x ◦ e = {e} ⊆ A ∪ {e} .
(6) let y = e , u ∈ S , v = e . Then t ∈ x ◦ y = x ◦ e = {e} ⊆ A ∪ {e} .
(7) Let y = e , u = e , v ∈ A . Then t ∈ x ◦ y = x ◦ e = {e} ⊆ A ∪ {e}
(8) Let y = e , u = e , v = e . Then t ∈ x ◦ y = e ◦ e = {e} ⊆ A ∪ {e} .

We consider the ordered hypersemigroup S = {a, b, c, d, e, f, g} given by Table 5 and Figure 3. The set
{a} is an interior ideal element of S = {a, b, c, d, e, f, g} as

{a, b, c, d, e, f, g} ∗ {a} = (a ◦ a) ∪ (b ◦ a) · · · (f ◦ a) ∪ (g ◦ a) = {a} ,
{a, b, c, d, e, f, g} ∗ {a} ∗ {a, b, c, d, e, f, g} = {a} ,
if x ∈ {a} and {a, b, c, d, e, f, g} ∋ y ≤ a , then y = a .

However, {a} ∪ {h} is not an interior ideal of {a, b, c, d, e, f, g, h} . Indeed, {a, b, c, d, e, f, g, h} ∋ c ≤ h , but
c ̸∈ {a, h} . 2

Note Concerning the ordered hypersemigroup (S, ◦,≤) given by Table 5 and Figure 3, it might be mentioned
that

The ideals of (S, ◦,≤) are the sets: {a} , {a, b} , {a, c} , {a, b, c} , {a, d} , {a, b, d} , {a, c, d} , {a, b, c, d} ,
{a, b, e} , {a, b, c, e} , {a, b, d, e} , {a, b, c, d, e} , {a, b, c, d, e, f} , {a, b, g} {a, b, c, g} , {a, b, d, g} , {a, b, c, d, g} ,
{a, b, e, g} , {a, b, c, e, g} , {a, b, d, e, g} , {a, b, c, d, e, g} and S (total 22).

The quasi-ideals of (S, ◦,≤) are the ideals of S plus the sets {a, e} , {a, c, e} , {a, d, e} , {a, c, d, e} , {a, f} ,
{a, b, f} , {a, c, f} , {a, b, c, f} , {a, d, f} , {a, b, d, f} , {a, c, d, f} , {a, b, c, d, f} , {a, e, f} , {a, b, e, f} , {a, c, e, f} ,
{a, b, c, e, f} , {a, d, e, f} , {a, b, d, e, f} , {a, c, d, e, f} , {a, g} , {a, c, g} , {a, d, g} , {a, c, d, g} , {a, b, f, g} , {a, b, c, f, g} ,
{a, b, d, f, g} , {a, b, c, d, f, g} , {a, b, e, f, g} , {a, b, c, e, f, g} , {a, b, d, e, f, g} (total 52).

The bi-ideals of (S, ◦,≤) are the quasi-ideals of S plus the sets {a, e, g} , {a, c, e, g} , {a, d, e, g} ,
{a, c, d, e, g} (total 56).
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