Turkish Journal of Mathematics Turk J Math

(2023) 47: 1761 — 1777

© TUBITAK

T U B | TAK Research Article doi:10.55730/1300-0098.3461

http://journals.tubitak.gov.tr/math/

Existence results for impulsive dynamic singular nonlinear Sturm—Liouville
equations on infinite intervals

Bilender PASAOGLU ALLAHVERDIEV'®, Hiiseyin TUNA?*({®, Hamlet ABDULLAOGLU ISAYEV?
!Department of Mathematics, School of Science and Engineering, Khazar University,
Baku, Azerbaijan, and Research Center of Econophysics, UNEC-Azerbaijan State University of Economics,
Baku, Azerbaijan
2Department of Mathematics, Faculty of Arts and Sciences, Mehmet Akif Ersoy University,

Burdur, Turkiye

3Department of Mathematics, School of Science and Engineering, Khazar University,
Baku, Azerbaijan

Received: 05.06.2023 . Accepted/Published Online: 28.07.2023 . Final Version: 25.09.2023

Abstract: The purpose of this study is to investigate an impulsive dynamic singular nonlinear Sturm-Liouville problem
on infinite intervals. The existence and uniqueness of the solutions of such problem will be investigated by considering

Weyl’s limit-circle case.
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1. Introduction

The Sturm—Liouville problems that arise while trying to solve the partial differential equations encountered in
various branches of science with the method of separating the variables have been attracting the attention of
researchers for a long time. Such equations are extensively investigated under many states and various boundary
conditions. Impulsive boundary conditions are one of the mentioned boundary conditions. The emergence of
equations containing such boundary conditions in some physical problems has made the subject interesting
(see [14-16]). In [2, 3, 17, 18], Sturm-Liouville problems are studied under impulsive boundary conditions. In
[10-12], impulsive g-Sturm-Liouville problems were investigated.

In the 1990s, Hilger introduced the concept of time scale to the literature. With the help of this concept,
it is aimed to examine differential equations and difference equations under a single structure. Thus, it has
become necessary to investigate all the cases considered in the classical derivative case on the time scale (see [4]).
Equations with impulsive boundary conditions have started to be investigated on the time scale (see [5, 8, 9, 19—
22]). Recently, in [1], the authors investigated some spectral properties of impulsive dynamic Sturm-Liouville
problems.

In this study, the impulsive singular nonlinear Sturm-Liouville problem is studied on a time scale. Some

existence and uniqueness theorems are proved by considering such an equation in Weyl’s limit-circle case over
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the interval (—oo,00). Some existence theorems for second-order impulsive time scale boundary value problems
are given in [8, 9, 19-22]. However, none of these studies have addressed the singular nonlinear Sturm-Liouville
problem in Weyl’s limit-circle case. As it is known, for the Sturm-Liouville problems in the singular case,
Weyl’s limit circle/limit point situations occur. Investigating these situations is crucial for the spectral theory
of Sturm-Liouville problems. In this study, the problems investigated for classical Sturm-Liouville problems
are investigated on the time scale. Thus, under impulsive conditions, the Sturm-Lioville equation and the

Sturm-Liouville difference equation will be examined under a single roof.

2. The fundamental problem

We shall consider the dynamic equation:

v
Lu:=—[p(m)u® )] +qmu(m)=T(nu), neJCT, (2.1)
where J := J; U Jy, Jy = (—o00,d), Jz:=(d,00), d >0, T is a time scale and v = u(n) is a sought solution.
We work in the Hilbert space H = L2 (.J;) + L2 (J5) (of the real-valued functions) endowed with the
inner product

d 00
(T,Z)H::/ T<1>z(1>vn+a/ T xR vy,
d

— 0o

and norm

1
2

d (e’
1) = (/ (XD )2V + a / (T(2>(77))2Vn> ,

— 00

where

YH(n), nehy W), nen
T(n) a { T(Q)(n)’ ne J2, 2( ) N { Z(2)(7]), ne Jo.

Let

u is A-locally absolutely continuous and pu®

is V-locally absolutely continuous functions

on J, one-sided limits u (d+) and (pu®) (d+) ’
exist and finite, U (d+) = IIU (d—) and Lu € H

Dmax = u€ H:

where

Uln) = ( p(nl)titﬁ) (n) ) ’

IT is the 2 x 2 real matrix with detIl = 1/a > 0. Then the mazimal operator Lyax on Diax is defined by

Laxt = Lu. For ui, us € Dpax, wWe have

| @)t — )z ) Vo

— 00

= [u1, uz] (00) — [ur, ug] (d+) + [ur, us] (d—) — [u1, us] (—00), (2.2)
where

[ur, ua] (1) := Wa (w1, uz) () = p (1) {wa (n)u () — ut (n)uz(n) } -
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and the limits [uq, ug] (£00) = lim, 100 [u1, us] (1) exist and are finite.

We shall use the following assumptions.

(H1) p is a nabla differentiable function on .J, ¢ is a real-valued continuous function on J, pV s

continuous on J and p (t) # 0 forall t € J. d € T is a regular point for L and one-sided limits ¢ (d+), p

exist. Furthermore, Weyl’s limit-circle case holds for L.

(H2) T'(n,u) is real-valued and continuous in (n,¢) € J x R, and

T (n,w)] <3 (n) + K [(]

for all (n,¢) in J x R, where X (n) >0, ¥ € H, and k is a positive constant.
Denote by

p(n):{ p(l) (n)’ 77€J1

{ 0(1) (77)7 776']1
p(2) (77)’ n S J2

o (), ne s
the solutions of the equation Lu = 0 satisfying
A
P (0) =0, p(0) V" (0) =1, ¢V (0) = =1, p(0) oV (0) =0,

and impulsive conditions

where

0= (ot ) == (o R )

v (d£)

(2.3)

(2.4)

(2.5)

If we set WX) i=Wa (p9,0W) (n € J;, i =1,2), then we have Wg) = (l/a)Wf). Let Wa = g) =

(1/04)Wé2). Since Wa (p™V,0M) =1, p and o form a fundamental system of solutions of Eq. (2.1). From

(H1), we see that p, 0 € H and p, 0 € Dyax. Thus, for every u € Dpax, [U, pl4oo and [u, o)1 exist and are

finite.
From conditions (2.4)-(2.5), we get the following relations

0

1, ] oo = 14 (0) / p (1) (Lu) (n) V1.
f1,0] o = p (0) 1 (0) — / o (n) (L) () Vi,

, ploo = u (0) + / " o () (L) () Vi,

wole =00 0)+ [ " o () (Lu) () V.
0

(2.6)
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Now, we will consider the following problem

Lu=T (n,u), n€J, (2.7)

(11, ] 00 COSY + [t 0] oo SIN Y = 1,
(2.8)

1, e 08 B+ [1, 0] i B = 5,
U (d+) = TIU (d—), (2.9)

where ¢1,5,7,8 € R, U = ( pZA ), detII=1/a > 0, and

(H3) w = cosysin 8 — cos Bsiny # 0.

For T =R case, the problem (2.7) - (2.9) has been addressed by Guseinov and Yaslan without impulsive

boundary conditions [6].

3. The corresponding Green function

In this section, the Green function corresponding to the problem will be set up.

Consider the problem

—lpmu® )] +amum) =hn), heH, (3.1)
[t ] o0 Oy + [, 0] _og siny = 0,
U (d+) =TIU (d—), , (3.2)

[t ploo €OS B + [U, 0loo sin B =0

where 7,8 € R, and n € J.
Let us define

O (n) = p(n)cosy+a(n)siny, Z(n) = p(n)cos B+ o (n)sin b, (3.3)

where Wa (0,Z) = w. It is obvious that © and = are solutions of the equation Lu = 0 and ©, Z € H.

Moreover, we infer that
[0, ly = ©(0) = —siny, [0,0], =p(0) O (0) = cosy, n € Ji, (3.4)
[E,ply = 2(0) = —sin B, [E,0], =p(0)E2(0) = cos 8, n € Ji, (3.5)

[@7p]*oo = —sin~, [@aa]*oo = €087,

[, plc = —(1/a)sin B, [E,0]o = (1/a) cos b, (3.6)
B (d+) = 1 (d—), B(y) == ( p(n%@ . ) (3.7)
¥ () =10 (@), v = (SO ). 53
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Green’s function of (3.1)-(3.2) is given by the formula

OmEE) e
G(n,¢) = @(5‘)”:(77)’ %f o <nSE <00, nd 7 d, (3.9)
%a lf*00<€§77<00a77?éd»€7éd
G (n,€) is a Hilbert—Schmidt kernel, i.e.
/ / |G (n,§)* VnVE < o0, (3.10)
since ©, Z € H.
Theorem 3.1 The unique solution of (3.1)-(3.2) is given by
u(n) =(G(n,.),h()), (3.11)
where n € J.
Proof By the method of variation of constants, we see that
u(n) = k1O (n) + kaEW (1) (3.12)
=) n
+= 0 [ o g (6 ve
om d_
+E 0 =0 @ nigve ne
w n
and
u () = k0@ () + kaE® () (3.13)

+2 =5 ) / o) (¢)h(¢) Ve

where k; (i =1,2,3,4) is arbitrary.
From (3.12) and (3.13), it may be concluded that

p () u® (1) = kip () ©V () + kap () EV” (1)
+M /17 o (5) h (5) \Y/3

p() 0N ()

d
i [ = ©n©ve e,

n

and
p(m)u® (1) = kap (1) 0@ () + kap () E@” ()
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(6% (A n
+2p=D* ) [ 0@ (€ h(e)ve

+2pm 0D () [ =W ©h(©)VE ne

n

Moreover, we have

[u, ply = p(n) {u(n)p™(n) —u™(n)p(n)}

= k[0, gl k2 [0 ()]

=m0 [ e @neve

nJ—-oco

IS

and

= k1 [0W, 0], + Ky [E(l) () ,0}
n

=m0 /_ ’; oW (¢)h(¢) Ve
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ISR

d
= —kysiny — kosin 3 — %sin’y/ =2 (&) h (&) VE

(U, 0] o = k1[0, 0] o + k2 [E(l) (), U}

— 00

+Levme] [ =0 @neve

IS

1 d
= ky cosy + kg cos B + ;cosw/ =M (&) h () VE.

— 00

From (3.14), (3.15), and (3.2), we have k3 = 0.

Likewise, we find

and

[uap]oo = k3[®(2)’p]00 + k4[E(2),P]oo

d
:—ﬁsinv—@sinﬂ—ﬁ-ismﬁ/ 2N (€ h (&) VE
« a wa e

[ua O'}OO = k3[®(2)70]00 + k4[E(2)70]0°

(3.14)

(3.15)

(3.16)

(3.17)
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From (3.2), we obtain k3 = 0.

Similarly, we find

_ u (d+) _ ka2 (d+)
u <d+>—<p<d+>uA <d+>) <k4p<5+> =@ (d+ >>

20@ (d+) [;° ””()h(é)
+(;-5p<d+>@ >(dh) [ =0 ooy )

- 2@ (d+)
= ha ( p(d+)E®* (d+) >

a [ 0® (d+)
+a/d =@ (f)h(f) vé( p(d+) @(2)A (d+) )

«

= kq U (d+) + { /doo 22 (&) h(€) dqf} ® (d+)

and

Vi) = ( p(d—)u® (d-) ) - ( k1p (kcf)g(ﬁA)(d—) )

L e @i ve
%Lm e (&) h () V¢

- ( p(d@;gfﬁ )<d ) )

d =) (d—
e /_oo OB @ hie) Ve ( p(d-) = )<d—> >

d
— k@ (d-) + {i [ ev@ne dqs} W (d-).

It follows from (3.2) that

K (d4) + {0‘ JRERIGIG vg} @ (d+)

w

oot f ).
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Using (3.6) and (3.8), we obtain

Therefore, we find

(p(d—E;I;((gz)(d—) p(df))(l(;((gz)(d—) > ( —k‘il >

_( =) (d-) o (d-) )
“\ p(d)E® (@) p(d-)0M* (d-)
S A RIGUIGN Y
—2 [FE@ (O h () VE
Then we conclude that

« 1

0o d
ki = 7/(1 E@ (R (E)VE, ky = 5/_ W (&) h(6) VE,

w
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due to
=W (d-) oW (d-) B
p(d=)EM? (d-) p(d-)OM™ (d-) ‘ Ao
Hence
uin =0 [T=2©neve
=(1) n
+= 0 [ o g (e ve
(1)
+E0 [0 n (g Ve, ne
and
d
u == ) [ eV (©h(e Ve

250 ["6® @ h (o) ve

oo

5000 [ = @n©ve ne

Theorem 3.2 The unique solution of (3.1), (2.8), (2.9) is given by

u(n) =wmn) +(G @), h(),

where

Proof From (3.4)-(3.8), we deduce that w (n) is a unique solution of equation Lu = 0 satisfying (2.8)-(2.9).

From Theorem 3.1 that (G (n,.),h(.)) is a unique solution of Eq. (3.1) satisfying (3.2).

O

It follows from Theorem 3.2 that the problem (2.1), (2.8), (2.9) in H is equivalent to the following

equation
u(n) =w(n)+(Gm,.),I(ul)),

where n € J.
Now, we shall consider Eq. (3.18).
Let T : H — H be an operator defined as

(Tw) (n) = w(n) + (G (,.), T (ul))),

where n € J, and w,w € H. By (3.18), we find v = Tu.
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4. The existence theorem

In this section, the existence and uniqueness of the solutions will be proved.

Theorem 4.1 Assume the hypotheses (H1)-(H38) hold. In addition, let there exist a number K > 0 such that

/d ‘r(l) (T],ugl) (W)) _rm (W,uél)( ))‘2%7

ta /d h ]F@) (77, ) (n)) -T® (n,u(f) (n))’gvn

d 2 o) 2
e (/ ’ugm (n) — uld) (n)‘ Vn—l—oz/d ‘uf) () — ud” (77)‘ Vn)

= K [lur — us® (4.1)

for all uy,us € H. If

(// nEIVnVﬁJra// n&lvnvg>1/2<1, (4.2)

then the boundary-value problem (2.1), (2.8), (2.9) has a unique solution in H.

Proof Let uy,us € H. Then we have

|(Twr) () = (Tus) ()|
=G (n,), [T (s () =T (ua ()
<G ()P IT (ua () = T Cou ()

2 2
< K2|IG (0, I Jluy = ual”, m € .

Thus we find
[Tuy = Tuz| < 0 [Jur —us|,
where
1/2
(/ / Gorvivera [ [T n5|VnV§) .
Since 6 < 1, we conclude that T is a contraction operator. O
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Theorem 4.2 Assume the hypotheses (H1)-(H3) hold. In addition, let there exist numbers M, K > 0 such
that
d 2
[ e (e ) =1 (.08 )| 9

o /d °° ‘p@) (nﬂf) (n)) —T® (n,u§2)( ))( Vi

d 2 0 2
< K ( | o= ] oo [l -l ) w)

= K [|uy —us]?, (4.3)

where uy,ug € Sy ={u€ H :||ul| < M} and K may depend on M. If

d 9 o 9 1/2
{/OO ‘w(” (n)’ Vn+a/d ’w@) (77)‘ Vn}
(/ / G (n,6)P Van>l/2

fiioo ‘I‘(l) (§7u§1) (f)) 7 (fﬂtél) (f)) ‘2V§ 1/2
X suSp 2
wESar o [T ‘1‘(2) (€7u§2) (5)) ENE) (§,u52) (5))‘ Ve
=M (4.4)

and

(// 77§|VnV§+a// nflvnvg>l/z<1, (4.5)

then the boundary-value problem (2.1), (2.8), (2.9) has a unique solution with

d 2 s 2
[ ] vnra [ ) v <o
o d
Proof Let u € Sy;. Then we see that

[Tull = lw+ (G (1,.), T (u (N < wlf + (G (0,.), T (u ()

<||w+<// (,€ \Van+a// vws)m

1772



PASAOGLU ALLAHVERDIEV et al./Turk J Math

S0 (e ) ~ 1O (£ (©)[ ve -

X sup : "
e ta [ ’F(Q) (5, uf® (f)) —re (£’ué2) (£)> '2 ve

Therefore, we deduce that T : Sy — Sur.
As in the proof of Theorem 4.1, we infer that

||Tu1 — TUQH <46 ||U1 — UQH , U, U € S

By the Banach fixed point theorem, we get the desired result. O

5. The existence theorem without the uniqueness

In this section, the existence theorem of solutions without the uniqueness condition will be proved.

Theorem 5.1 Under conditions (H1)-(H3), T is a completely continuous operator.

Proof Let ug € H. Then, we obtain

|(Tu) () = (Tuo) (m)?
=[G (1), [0 (u () =T (uo (DD < NIG ()]

I [P (6 u® @) - 10 (6.0 (©))] v

Fa 77T (6 u® (@) - T (6.0 ()] ve
which implies that

| Tu — Tugl?

S|P (6 u® @) - O (60 )] v
<K , (5.1)

a3 T (60 () - @ (e.uf? )] ve

K= / / (n,€)? V77V£+a/ / 6> VpVve.

Let F be an operator defined as Fu(n) =T (n,u(n)). By (H2), this operator is continuous in H ([13]).
Then, for any € > 0, we can find a 6 > 0 such that

where

S|P (6 u® @) - 1O (60 ()] ve 2

K
a7 [T (6 u® (€) -1 (.0 (©)| Ve
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when ||u — ug|| < d. Therefore, by (5.1),
||TU, — TUQH < €,

which implies that 7' is continuous.

Let U ={ue H :|ul|| < s}. By (4.4), we find

d 1/2

K[ PO (€ ut ()] Ve

[Tull < [lwl| + ,
+aK [ 0@ (&,u® (€)]" Ve

for all u € U. Moreover, by (2.3), we conclude that

/_io ‘p(l) (E,u(l) (5)) ‘2 Ve + a/doo ‘F(2) (,57”(2) (5)) ‘2 A3

< /_doo (20 @ + 5 [u @] ve

2

+ a/doo {2(2) &) +k ‘u@) (§)H \%4

< 2/d {(z“)f (€) + 2 [ul® <§>ﬂ ve

— 00

+2a /doo [(2(”)2 (&) + 2 [ul® (é)ﬂ Y3

=2 (IS0 + w2 ull®) <2 (IZI° + 52 .
Consequently, we have, for every u € U,
1/2
ITull < Jlwll + [25 (IS)7 +522) ]|

Furthermore, for all u € U, we see that

[ | 61— @) wf o

—0o0

ra [T @u®) o - @) )

= {[G (n+h,.) = G (0, )], T (Lu (D)
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[2 I G (n+ hy€) — G (n,6) Ve

IN

o [ [FNG (i +h€) — G (n, € VivE
SO P® (.0 (€)]” Ve
+a [T (6,u® (€)) [ Ve

IS |G (n+ €)= G ()] Ve

2 (Ilgll” + 52¢2)

By (3.10), for any € > 0 and every u € U, we can find a § > 0 such that

+a [ [21G (n+ h,€) — G (n,6)F VpVE

2
o

d
/ (Tu“) (n+h) — Tul (n)
oo 2
+a/ ’Tu(z) (n+h) — Tu® (77)‘ Vn < €,
d

where h < 6.
Moreover, for every u € U, we deduce that

/_N ‘Tu(l) (77)‘2 Vn + a/oo ‘Tu@) (n)‘2 Vn
—c0 N

< /_N (w(” (n)‘2vn+ a/: ‘w(z) (n)’QVn

— 00

—N 00
+2(||Z)* + %57 (/ HG(n,-)HQVnJra/N ||G(n7~)||2V77> :

— 0o

It follows from (3.10) that for given € > 0 there exists a N > 0, depending only on € such that

/N ’Tu(Q) (77)‘2 Vn + a/oo ‘TU(Q) (7])‘2 Vi < €2,
—0 N

for all uw € U.
Thus, T is a completely continuous operator. O

Theorem 5.2 Assume that the hypotheses (H1)-(H3) hold. Further, let there exist a number M > 0 such that

([ ol sure [ oof'se)
</ / e ang+a/ / G (0, I VnV5>1/2
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‘2 1/2

Joro (6 ©) — 10 (¢, )] Ve
X sup 2
wesi | +a [2 0@ (60l ©) 1@ (60 (©))| Ve

<M,

where Sy = {u € H : ||u|| < M}. Then the boundary-value problem (2.1), (2.8), (2.9) has a unique solution
with
¢ 1 2 e 2 2
[ [ @] vnra [ | wf o<
—o0 d
Proof Let us consider the operator T' defined as (3.19). By Theorems 4.2 and 5.1, we conclude that T :

Sy — Spr. Using Schauder’s fixed point theorem, the theorem follows because Sy; is bounded, convex, and
closed. O
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