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Abstract: Using the Brzde�k fixed point theorem, we establish the Hyers–Ulam stability problem of Drygas functional
equations

δ(x+ y − z) + δ(x− y) + δ(−y − z) + δ(y) = δ(x− y − z) + δ(y − z) + δ(x+ y) + δ(−y)

for all x, y, z ∈ A .
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1. Introduction
The stability theory of functional equations started with the talk of Ulam held at the Wisconsin University in
1940 (see [21]).

Hyers [12] was the first to introduce the result concerning the stability of functional equations. Indeed,
he obtained a famous theorem on the stability of the additive functional equation while he was trying to answer
the question of Ulam.

The method provided by Hyers [12] which produces the additive function will be called a direct method.
This method is the most important and powerful tool concerning the stability of different functional equations.
That is, the exact solution of the functional equation is explicitly constructed as a limit of a sequence, starting
from the given approximate solution [2, 8, 20].

Isac and Rassias [13] were the first to provide applications of stability problem of functional equations
for the proof of new fixed point theorems with applications in 1996. Using fixed point methods, the stability
problems of several functional equations have been discussed (among others) in the following papers: (see
[15, 18]).

During the last years, a number of results concerning the stability have been obtained by different ways
[3, 5–7, 17, 19] and applied to a number of functional equations, functional inequalities, and differential equation.

Also, many mathematicians studied the stabilities Pexiderized additive-Drygas equation, additive-quadratic
equation, and the Drygas’ equation (see [11], [10], and [14]).

Throughout the paper, we suppose that A is a normed space and B is a Banach space. We recall some
basic definitions.
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A mapping δ : A → B is said to be additive if it satisfies

δ(x+ y) = δ(x) + δ(y)

for all x, y ∈ A . A mapping δ : A → B is called quadratic if δ satisfies the functional equation

δ(x+ y) + δ(x− y) = 2δ(x) + 2δ(y)

for all x, y ∈ A .
Various studies on stability of the quadratic functional equation can be found in [4, 16].
We say a mapping δ : A → B satisfies the Drygas functional equation if

δ(x+ y) + δ(x− y) = 2δ(x) + δ(y) + δ(−y)

for all x, y ∈ A . This functional equation was considered by Drygas [1] to characterize quasiinner product
spaces. The general solution of this functional equation was given by Ebanks et al. [9] as

δ(x) = Q(x) +K(x)

for allx ∈ A , where Q : A → B is a quadratic mapping and K : A → B is an additive mapping.
In this note, using the Brzde�k fixed point method, we find the stability results of the functional equation

δ(x+ y − z) + δ(x− y) + δ(−y − z) + δ(y) = δ(x− y − z) + δ(y − z) + δ(x+ y) + δ(−y) (1)

for all x, y, z ∈ A .
In 2011, Brzde�k et al. [1] gave a simple fixed point theorem. Before stating Brzde�k fixed point theorem,

let us introduce some hypothesis, which we will use in the sequel.
(H1) A is a nonempty set and B is a Banach space.
(H2) δ1, . . . , δk : A → A and λ1, . . . , λk : A → R+ are given maps.
(H3) J : BA → BA is an operator satisfying the inequality

∥J g(x)− J h(x)∥ ≤
k∑

i=1

λi(x)∥g (δi(x))− h (δi(x)) ∥

for all g, h : A → B and x ∈ A .
(H4) Λ : RA

+ → RA
+ is a linear operator defined by

ΛF(x) :=

k∑
i=1

λi(x)F (δi(x))

for F : A → R+ and x ∈ A .

Theorem 1.1 [1] Suppose that hypotheses (H1)–(H4) are satisfied. Assume that there are functions η : A →
R+ and φ : A → B such that, for all x ∈ A ,

∥Jφ(x)− φ(x)∥ ≤ η(x)
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and

η∗(x) :=

∞∑
n=0

Λnη(x) < ∞

hold. Then, for all x ∈ A the limit
T (x) := lim

n→∞
J nφ(x)

exists and the function T : A → B so defined is a unique fixed point of J with

∥φ(x)− T (x)∥ ≤ η∗(x)

for all x ∈ A .

Throughout the paper, N0 denotes the set of all nonnegative integers.

2. Stability of functional equation (1): via fixed point method

In this section, using the Brzde�k fixed point method, we find the stability results of the functional equation (1).

Lemma 2.1 Suppose that a function δ : A → B satisfying δ(0) = 0 and

δ(x+ y − z) + δ(x− y) + δ(−y − z) + δ(y) = δ(x− y − z) + δ(y − z) + δ(x+ y) + δ(−y) (2)

for all x, y, z ∈ A . Then the function δ satisfies the Drygas equation on A .

Proof Letting z = y in (2) yields

δ(x) + δ(x− y) + δ(−2y) + δ(y) = δ(x− 2y) + δ(x+ y) + δ(−y) (3)

for all x, y ∈ A . Replace y by −y in (3) to get

δ(x) + δ(x+ y) + δ(2y) + δ(−y) = δ(x+ 2y) + δ(x− y) + δ(y) (4)

for all x, y ∈ A .
Adding (3) and (4) side by side, we obtain

2δ(x) + δ(2y) + δ(−2y) = δ(x+ 2y) + δ(x− 2y)

i.e.
δ(x+ y) + δ(x− y) = 2δ(x) + δ(y) + δ(−y)

for all x, y ∈ A . 2

Theorem 2.2 Let A be a normed space and B be a Banach space. Suppose that a function δ : A → B

satisfying and

∥δ(x+ y− z) + δ(x− y) + δ(−y− z) + δ(y)− δ(x− y− z)− δ(x+ y)− δ(y− z)− δ(−y)∥ ≤ θ∥x∥p∥y∥q∥z∥r (5)
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for some θ ≥ 0 , p, q, r > 0 and all x, y, z ∈ A . Then there exists a unique function D : A → B satisfying the
Drygas equation on A such that

∥δ(x)−D(x)− δ(0)∥ ≤



2θ
21+q+r−2p+2q+2r ∥x∥p+q+r 0 < p+ q + r < 1(

2θ
2p+2q+2r−21+q+r + 2θ

22+q+r−2p+2q+2r

)
∥x∥p+q+r 1 < p+ q + r < 2

2θ
2p+2q+2r−2q+r+2 ∥x∥p+q+r p+ q + r > 2

for all x ∈ A .

Proof Define a new function δ̂ : A → B by δ̂(x) = δ(x) − δ(0) for all x ∈ A . So, δ̂(0) = 0 and by (5) the

function δ̂ satisfying

∥δ̂(x+ y− z) + δ̂(x− y) + δ̂(−y− z) + δ̂(y)− δ̂(x− y− z)− δ̂(x+ y)− δ̂(y− z)− δ̂(−y)∥ ≤ θ∥x∥p∥y∥q∥z∥r (6)

for all x, y, z ∈ A .
First, we consider the case p+ q + r > 2 .
Setting z = y in (6) yields

∥δ̂(x) + δ̂(x− y) + δ̂(−2y) + δ̂(y)− δ̂(x− 2y)− δ̂(x+ y)− δ̂(−y)∥ ≤ θ∥x∥p∥y∥q+r (7)

for all x, y ∈ A . Replace y by −y in (7) to gain

∥δ̂(x) + δ̂(x+ y) + δ̂(2y) + δ̂(−y)− δ̂(x+ 2y)− δ̂(x− y)− δ̂(y)∥ ≤ θ∥x∥p∥y∥q+r (8)

for all x, y ∈ A .
It follows from (7) and (8) that

∥δ̂(x+ 2y) + δ̂(x− 2y)− 2δ̂(x)− δ̂(2y)− δ̂(−2y)∥ ≤ 2θ∥x∥p∥y∥q+r (9)

for all x, y ∈ A .
Replacing x and y by x

2 and x
4 in (9), respectively, we gain

∥∥∥δ̂(x)− 3δ̂
(x
2

)
− δ̂

(
−x

2

)∥∥∥ ≤ 2θ

2p+2q+2r
∥x∥p+q+r (10)

for all x ∈ A . Let J : BA → BA and η : A → R+ be defined by

J g(x) = 3g
(x
2

)
+ g

(
−x

2

)
, g ∈ BA

and

η(x) =
2θ

2p+2q+2r
∥x∥p+q+r

for all x ∈ A . So, inequality (10) becomes as follows

∥J δ̂(x)− δ̂(x)∥ ≤ η(x)
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for all x ∈ A . For all g, h ∈ BA and x ∈ A

∥J g(x)− J h(x)∥ ≤ 3
∥∥∥g (x

2

)
− h

(x
2

)∥∥∥+
∥∥∥g (−x

2

)
− h

(
−x

2

)∥∥∥ ;
thus, J : BA → BA satisfies the condition (H3) with λ1(x) = 3, λ2(x) = 1, δ1(x) =

x
2 and δ2(x) = −x

2 . By
(H4), the operator Λ : RA

+ → RA
+ is defined by:

ΛF(x) = 3F
(x
2

)
+ F

(
−x

2

)
, F ∈ RA

+

for all x ∈ A . Hence,

Λη(x) = 3η
(x
2

)
+ η

(
−x

2

)
= 4η

(x
2

)
=

4

2p+q+r
η(x), η ∈ RA

+

for all x ∈ A . By linearity Λ and induction on n , we can prove

Λnη(x) =

(
4

2p+q+r

)n

η(x), n ∈ N0

for all x ∈ A .
Now, if p + q + r > 2 , then 4

2p+q+r < 1 . Therefore, the series
∑∞

n=0 Λ
nη(x) is convergent for all x ∈ A

and

η∗(x) =

∞∑
n=0

Λnη(x) =

∞∑
n=0

(
4

2p+q+r

)n

η(x) =
2p+q+r

2p+q+r − 4
η(x) =

2θ

2p+2q+2r − 2q+r+2
∥x∥p+q+r

for all x ∈ A . By Theorem 1.1, there exists a function D : A → B such

D(x) = lim
n→∞

J nδ̂(x), D(x) = 3D
(x
2

)
+D

(
−x

2

)

and

∥δ̂(x)−D(x)∥ ≤ 2θ

2p+2q+2r − 2q+r+2
∥x∥p+q+r

i.e.

∥δ(x)−D(x)− δ(0)∥ ≤ 2θ

2p+2q+2r − 2q+r+2
∥x∥p+q+r

for all x ∈ A .
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Next, we show that D satisfies the Drygas equation. It follows from (6) that

∥J δ̂(x+ y − z) + J δ̂(x− y) + J δ̂(−y − z) + J δ̂(y)− J δ̂(x− y − z)− J δ̂(x+ y)− J δ̂(y − z)− J δ̂(−y)∥

≤ 3

∥∥∥∥δ̂(x+ y − z

2

)
+ δ̂

(
x− y

2

)
+ δ̂

(
−y − z

2

)
+ δ̂

(y
2

)
−δ̂

(
x− y − z

2

)
− δ̂

(
x+ y

2

)
− δ̂

(
y − z

2

)
− δ̂

(
−y

2

)∥∥∥∥
+

∥∥∥∥δ̂(−x+ y − z

2

)
+ δ̂

(
−x− y

2

)
+ δ̂

(
−−y − z

2

)
+ δ̂

(
−y

2

)
−δ̂

(
−x− y − z

2

)
− δ̂

(
−x+ y

2

)
− δ̂

(
−y − z

2

)
− δ̂

(y
2

)∥∥∥∥
≤ 3θ

∥∥∥x
2

∥∥∥p ∥∥∥y
2

∥∥∥q ∥∥∥z
2

∥∥∥r + θ
∥∥∥x
2

∥∥∥p ∥∥∥y
2

∥∥∥q ∥∥∥z
2

∥∥∥r =

(
4θ

2p+q+r

)
∥x∥p∥y∥q∥z∥r

for all x, y, z ∈ A . By induction on n , we gain

∥J nδ̂(x+ y − z) + J nδ̂(x− y) + J nδ̂(−y − z) + J nδ̂(y)

−J nδ̂(x− y − z)− J nδ̂(x+ y)− J nδ̂(y − z)− J nδ̂(−y)∥

≤ θ

(
4

2p+q+r

)n

∥x∥p∥y∥q∥z∥r

for all x, y, z ∈ A and n ∈ N0 . By letting n → ∞ , we arrive at

D(x+ y − z) +D(x− y) +D(−y − z) +D(y) = D(x− y − z) +D(x+ y) +D(y − z) +D(−y)

for all x, y, z ∈ A . Thus, by Lemma 2.1, the function D satisfies the Drygas equation.
Let us now consider the case 0 < p + q + r < 1 . The proof runs in the similar way as before; thus, we

only give a sketch.
Taking y = x

2 in (9), we get

∥1
3
δ̂(2x)− 1

3
δ̂(−x)− δ̂(x)∥ ≤ 1

3
· 2θ

2q+r
∥x∥p+q+r (11)

for all x ∈ A . Define the functions J : BA → BA and η : A → R+ by

J g(x) =
1

3
g(2x)− 1

3
g(−x), g ∈ BA

and

η(x) =
1

3
· 2θ

2q+r
∥x∥p+q+r

for all x ∈ A . Hence, the Inequality (11) is as follows:

∥J δ̂(x)− δ̂(x)∥ ≤ η(x)
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for all x ∈ A . It is clear that J satisfies (H3) with λ1(x) = λ2(x) = 1
3 , δ1(x) = 2x and δ2(x) = −x for all

x ∈ A . Now, we define a function Λ : RA
+ → RA

+ by

ΛF(x) =
1

3
F(2x) +

1

3
F(−x), F ∈ RA

+

for all x ∈ A . Hence,

Λη(x) =
1

3
η(2x) +

1

3
η(−x) =

2p+q+r + 1

3
η(x)

for all x ∈ A . By induction on n ∈ N0 , we arrive at

Λnη(x) =

(
2p+q+r + 1

3

)n

η(x)

for all x ∈ A . If p + q + r < 1 , then 2p+q+r+1
3 < 1 ; thus, the serie

∑∞
n=0 Λ

nη(x) is convergent for all x ∈ A .
Also,

η∗(x) =

∞∑
n=0

Λnη(x) =

∞∑
n=0

(
2p+q+r + 1

3

)n

η(x) =
3

2− 2p+q+r
η(x) =

2θ

21+q+r − 2p+2q+2r
∥x∥p+q+r

for all x ∈ A . By Theorem 1.1, there exists a function D : A → B that

D(x) = lim
n→∞

J nδ̂(x), D(x) =
1

3
D(2x)− 1

3
D(−x)

and

∥δ̂(x)−D(x)∥ ≤ 2θ

21+q+r − 2p+2q+2r
∥x∥p+q+r

which implies

∥δ(x)−D(x)− δ(0)∥ ≤ 2θ

21+q+r − 2p+2q+2r
∥x∥p+q+r

for all x ∈ A .
From the inequality (6), we gain

∥J δ̂(x+ y − z) + J δ̂(x− y) + J δ̂(−y − z) + J δ̂(y)− J δ̂(x− y − z)− J δ̂(x+ y)− J δ̂(y − z)− J δ̂(−y)∥

≤ 2p+q+r + 1

3
θ∥x∥p∥y∥q∥z∥r

for all x, y, z ∈ A . By induction on n ∈ N0 , we obtain

∥J nδ̂(x+ y − z) + J nδ̂(x− y) + J nδ̂(−y − z) + J nδ̂(y)

−J nδ̂(x− y − z)− J nδ̂(x+ y)− J nδ̂(y − z)− J nδ̂(−y)∥

≤ θ

(
2p+q+r + 1

3

)n

∥x∥p∥y∥q∥z∥r
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for all x, y, z ∈ A . By letting n → ∞ , we have

D(x+ y − z) +D(x− y) +D(−y − z) +D(y) = D(x− y − z) +D(x+ y) +D(y − z) +D(−y)

for all x, y, z ∈ A . By using Lemma 2.1, the function D satisfies the Drygas equation.
The only remaining case is when 1 < p+ q + r < 2 .

Let δ̂o and δ̂e be the odd and even parts of δ̂ , respectively, i.e. δ̂o = δ̂(x)−δ̂(−x)
2 , δ̂e = δ̂(x)+δ̂(−x)

2 for all

x ∈ A and δ̂ = δ̂o + δ̂e . It is evident that δ̂(0) = δ̂o(0) = δ̂e(0) = 0 . Thus, by (6), we get

∥δ̂o(x+ y − z) + δ̂o(x− y) + δ̂o(−y − z) + δ̂o(y)− δ̂o(x− y − z)− δ̂o(x+ y)− δ̂o(y − z)− δ̂o(−y)∥

≤ 1

2
(∥δ̂(x+ y − z) + δ̂(x− y) + δ̂(−y − z) + δ̂(y)− δ̂(x− y − z)− δ̂(x+ y)− δ̂(y − z)− δ̂(−y)∥

+∥δ̂(−x− y + z) + δ̂(−x+ y) + δ̂(y + z) + δ̂(−y)− δ̂(−x+ y + z)− δ̂(−x− y)− δ̂(−y + z)− δ̂(y)∥)

≤ θ∥x∥p∥y∥q∥z∥r

and similarly

∥δ̂e(x+ y − z) + δ̂e(x− y) + δ̂e(−y − z) + δ̂e(y)− δ̂e(x− y − z)− δ̂e(x+ y)− δ̂e(y − z)− δ̂e(−y)∥

≤ θ∥x∥p∥y∥q∥z∥r

for all x, y, z ∈ A . So, δ̂o and δ̂e satisfy the inequality (6). It follows that

∥δ̂o(x+ 2y) + δ̂o(x− 2y)− 2δ̂o(x)− δ̂o(2y)− δ̂o(−2y)∥ ≤ 2θ∥x∥p∥y∥q+r (12)

and
∥δ̂e(x+ 2y) + δ̂e(x− 2y)− 2δ̂e(x)− δ̂e(2y)− δ̂e(−2y)∥ ≤ 2θ∥x∥p∥y∥q+r (13)

for all x, y ∈ A .

Replacing y by x
2 in (12), and applying the oddness of a function δ̂o gives

∥δ̂o(2x)− 2δ̂o(x)∥ ≤ 2θ

2q+r
∥x∥p+q+r

for all x ∈ A . Substitute x
2 in the place of x in the above inequality, we gain

∥δ̂o(x)− 2δ̂o

(x
2

)
∥ ≤ 2θ

2p+2q+2r
∥x∥p+q+r

for all x ∈ A . Define

J g(x) = 2g
(x
2

)
, g ∈ BA,

ΛF(x) = 2F
(x
2

)
, F ∈ RA

+

and η(x) = 2θ
2p+2q+2r ∥x∥p+q+r for all x ∈ A . Also,

Λη(x) =
2

2p+q+r
η(x)
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for all x ∈ A . Since p+ q + r > 1 , the series
∑∞

n=0 Λ
nη(x) is convergent for all x ∈ A and

η∗(x) =

∞∑
n=0

Λnη(x) =
2θ

2p+2q+2r − 21+q+r
∥x∥p+q+r

for all x ∈ A . So, by Theorem 1.1, there exists Do : A → B so that

Do(x) = lim
n→∞

J nδ̂o(x), Do(x) = 2Do

(x
2

)
and

∥δ̂o(x)−Do(x)∥ ≤ 2θ

2p+2q+2r − 21+q+r
∥x∥p+q+r

for all x ∈ A . Further,

∥J nδ̂o(x+ y − z) + J nδ̂o(x− y) + J nδ̂o(−y − z) + J nδ̂o(y)

−J nδ̂o(x− y − z)− J nδ̂o(x+ y)− J nδ̂o(y − z)− J nδ̂o(−y)∥

≤ θ

(
2

2p+q+r

)n

∥x∥p∥y∥q∥z∥r

for all n ∈ N0 and x, y, z ∈ A . Therefore, Do satisfies the Drygas equation.

In the similar way, taking y = x
2 in (13), and applying the evenness of a function δ̂e gives

∥δ̂e(x)−
1

4
δ̂e(2x)∥ ≤ θ

21+q+r
∥x∥p+q+r

for all x ∈ A . We consider

J g(x) =
1

4
g(2x), g ∈ BA,

ΛF(x) =
1

4
F(2x), F ∈ RA

+

and η(x) = θ
21+q+r ∥x∥p+q+r for all x ∈ A . Also,

Λη(x) =
2p+q+r

4
η(x)

for all x ∈ A . Since p+ q + r < 2 , the serie
∑∞

n=0 Λ
nη(x) is convergent for all x ∈ A and

η∗(x) =

∞∑
n=0

Λnη(x) =
2θ

22+q+r − 2p+2q+2r
∥x∥p+q+r

for all x ∈ A . So, by Theorem 1.1, there exists De : A → B so that

De(x) = lim
n→∞

J nδ̂o(x), De(x) =
1

4
De(2x)
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and

∥δ̂e(x)−De(x)∥ ≤ 2θ

22+q+r − 2p+2q+2r
∥x∥p+q+r

for all x ∈ A . It is easy to check that

∥J nδ̂e(x+ y − z) + J nδ̂e(x− y) + J nδ̂e(−y − z) + J nδ̂e(y)

−J nδ̂e(x− y − z)− J nδ̂e(x+ y)− J nδ̂e(y − z)− J nδ̂e(−y)∥

≤ θ

(
2p+q+r

4

)n

∥x∥p∥y∥q∥z∥r

for all n ∈ N0 and x, y, z ∈ A . Therefore, De satisfies the Drygas equation.
It follows that D = Do +Do satisfies (2) and

∥δ̂(x)−D(x)∥ ≤
(

2θ

2p+2q+2r − 21+q+r
+

2θ

22+q+r − 2p+2q+2r

)
∥x∥p+q+r

or

∥δ(x)−D(x)− δ(0)∥ ≤
(

2θ

2p+2q+2r − 21+q+r
+

2θ

22+q+r − 2p+2q+2r

)
∥x∥p+q+r

for all x ∈ A .
Finally, we show the uniqueness of D . We prove the case p+ q + r > 2 . Suppose that D1,D2 : A → B

satisfy the Drygas equation on A and

∥δ(x)−D1(x)− δ(0)∥ ≤ θ1∥x∥p, ∥δ(x)−D2(x)− δ(0)∥ ≤ θ2∥x∥p

for some θ1, θ2 ≥ 0 and for all x ∈ A . Thus,

∥D1(x)−D2(x)∥ ≤ (θ1 + θ2)∥x∥p

for all x ∈ A . Hence,

D1(x) = 3D1

(x
2

)
+D1

(
−x

2

)
, D2(x) = 3D2

(x
2

)
+D2

(
−x

2

)
for all x ∈ A . Therefore,

∥D1(x)−D2(x)∥ ≤ 3
∥∥∥D1

(x
2

)
−D2

(x
2

)∥∥∥+
∥∥∥D1

(
−x

2

)
−D2

(
−x

2

)∥∥∥ ≤ 4

2p+q+r
(θ1 + θ2)∥x∥p

for all x ∈ A . By induction on n ∈ N0 we see that

∥D1(x)−D2(x)∥ ≤
(

4

2p+q+r

)n

(θ1 + θ2)∥x∥p

which tends to 0 as n → ∞ for all x ∈ A . This implies

D1(x) = D2(x)

for all x ∈ A . The proofs of the cases 0 < p+ q + r < 1 and 1 < p+ q + r < 2 runs as before. 2
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Theorem 2.3 Let A be a normed space and B be a Banach space. Suppose that a function δ : A → B

satisfying δ(0) = 0 and

∥δ(x+ y − z) + δ(x− y) + δ(−y − z) + δ(y)− δ(x− y − z)− δ(x+ y)− δ(y − z)− δ(−y)∥ ≤ θ (14)

for some θ ≥ 0 and all x, y, z ∈ A . Then there exists a unique function D : A → B satisfying the Drygas
equation on A such that

∥δ(x)−D(x)∥ ≤ 5

3
θ ≤ 2θ

for all x ∈ A .

Proof Putting z = y in (14) yields

∥δ(x) + δ(x− y) + δ(−2y) + δ(y)− δ(x− 2y)− δ(x+ y)− δ(−y)∥ ≤ θ (15)

for all x, y ∈ A . Replace y by −y in (15) to have

∥δ(x) + δ(x+ y) + δ(2y) + δ(−y)− δ(x+ 2y)− δ(x− y)− δ(y)∥ ≤ θ (16)

for all x, y ∈ A .
It then follows from (15) and (16) that

∥δ(x+ 2y) + δ(x− 2y)− 2δ(x)− δ(2y)− δ(−2y)∥ ≤ 2θ (17)

for all x, y ∈ A .
Replace (x, y) by (2x, x

2 ) , next by (x, x) , (−x,−x) and (x, x
2 ) in (17), respectively, we obtain

∥δ(3x)− 2δ(2x)− δ(−x)∥ ≤ 2θ,

∥δ(3x) + δ(−x)− 2δ(x)− δ(2x)− δ(−2x)∥ ≤ 2θ,

∥ − δ(−3x)− δ(x) + 2δ(−x) + δ(−2x) + δ(2x)∥ ≤ 2θ,

∥δ(2x)− 3δ(x)− δ(−x)∥ ≤ 2θ

for all x ∈ A . Hence, applying the triangle inequality and above the inequalities, we get

∥9δ(x)− 2δ(3x) + δ(−3x)∥ ≤ 10θ,

implying ∥∥∥∥δ(x)− 2

9
δ(3x) +

1

9
δ(−3x)

∥∥∥∥ ≤ 10

9
θ,

for all x ∈ A . Let J : BA → BA and η : A → R+ be defined by

J g(x) =
2

9
g(3x)− 1

9
g(−3x), g ∈ BA

and

η(x) =
10

9
θ
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for all x ∈ A . So, it can be written
∥J δ(x)− δ(x)∥ ≤ η(x)

for all x ∈ A . Consider the function Λ : RA
+ → RA

+ defined by

ΛF(x) =
2

9
F(3x) +

1

9
F(−3x), F ∈ RA

+

for all x ∈ A . Applying Theorem 1.1, we get a function D : A → B such that

D(x) = lim
n→∞

J nδ(x), D(x) =
2

9
D(3x)− 1

9
D(−3x)

and

∥δ(x)−D(x)∥ ≤ 5

3
θ ≤ 2θ

for all x ∈ A . The remainder of the proof is in a similar way to that of Theorem 2.2. 2
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