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Abstract: Kondo-Tanaka proved that if a rotationally symmetric plane Mm is von Mangoldt or Cartan-Hadamard
outside a compact set and has finite total curvature, then it has a sector with no pair of cut points. We show that the
condition of finite total curvature can be removed.
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1. Introduction
Let (M,p) denote a complete, noncompact Riemannian manifold M with arbitrarily chosen basepoint p . Let
(Mm, o) denote a rotationally symmetric plane Mm together with its origin o , where Mm equals R2 equipped
with a smooth, complete Riemannian metric gm := dr2+m2(r)dθ2 with m(0) = 0 and m′(0) = 1 . Given Mm ,
define a sector of angular measure δ , V (δ) , as V (δ) := {q ∈ Mm|0 < θ(q) < δ} . It is assumed that always
0 < δ ≤ π .

Global Riemannian geometry seeks to relate geometric data to topological data. It is often of particular
interest if we can show that a certain set of traits imply that a noncompact manifold M is topologically finite,
i.e. that it is homeomorphic to the interior of a compact set with boundary. The Toponogov comparison
theorem was extended in [3] to open complete manifolds with radial sectional curvature bounded below by the
curvature of a rotationally symmetric plane, Mm , with finite total curvature and a sector with no pair of cut
points. Kondo-Tanaka used this extended version to prove the following important result:

Theorem 1.1 (Main Theorem of [3]) Let (M,p) be a complete open Riemannian n-manifold whose radial
curvature at basepoint p is bounded below by that of a noncompact rotationally symmetric plane Mm with finite
total curvature and a sector with no pair of cut points. Then M is of finite topological type.

It is natural to wonder what types of rotationally symmetric planes satisfy the condition of Theorem
1.1 requiring a sector with no pair of cut points. A von Mangoldt or Cartan-Hadamard plane contains V (π)

free of any pair of cut points; recall that in a von Mangoldt plane , Gm (the sectional curvature function) is
nonincreasing in r ; in a Cartan -Hadamard plane , Gm ≤ 0 for all r . In [4], Kondo-Tanaka show that the
cut-point-free sector requirement for Mm can be dropped if the total curvature is strictly less than 2π . But
the requirement stands when the total curvature is equal to 2π .
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Apart from applications such as in Theorem 1.1, the behavior of geodesics and their cut points in
rotationally symmetric planes is a substantive area of study in its own right; see for example [5], chapter
7. All things considered, the Sector Theorem , a result in [3], is of interest:

Theorem 1.2 (Sector Theorem) Let Mm be a noncompact rotationally symmetric plane that is von Mangoldt
or Cartan-Hadamard outside a compact set. If Mm admits finite total curvature, then there exists a sector that
has no pair of cut points.

In the above theorem, Mm being von Mangoldt or Cartan-Hadamard outside a compact set means
respectively that Gm is nonincreasing or Gm ≤ 0 on [R,∞) for some R ∈ (0,∞) . Equivalently, we can say
that Mm is von Mangoldt or Cartan-Hadamard outside BR(o) to denote the above. In the main result of
this paper, we remove the requirement of finite total curvature in Theorem 1.2:

Theorem 1.3 (Main result) Let Mm be a noncompact rotationally symmetric plane that is von Mangoldt or
Cartan-Hadamard outside a compact set. Then there exists a sector that has no pair of cut points.

2. Notations, conventions, and definitions

Theorem 1.1 uses the notion of the radial sectional curvature of M being bounded below by that of Mm . We
here define this notion:

Definition 2.1 Let G be the sectional curvature function for M , and for any meridian µ(t) emanating from
o = µ(0) , define the radial sectional curvature function of Mm as Gm ◦ µ : [0,∞) → R . We say
that (M,p) has radial sectional curvature bounded below by that of (Mm, o) if, along every unit-speed
minimal geodesic γ : [0, a) → M emanating from p = γ(0) , we have G(σt) ≥ Gm(µ(t)) for all t ∈ [0, a) and
all 2-dimensional subspaces σt spanned by γ′(t) and an element of Tγ(t)M .

Two theorems foundational to Theorem 1.1 are the Isotopy Lemma and the extended Toponogov com-
parison theorem. The Isotopy Lemma, given as Theorem 2.1 below, is a part of the critical point theory of
distance functions by Grove-Shiohama [2]; recall that given (M,p) , a point q ∈ M is a critical point of d(·, p)
(the distance function to p) if, given any v ∈ TqM , there exists a minimal geodesic γ emanating from q to p

such that ∡(γ̇(0), v) ≤ π
2 :

Theorem 2.1 (Isotopy Lemma) Given (M, p), suppose that for R1, R2 with 0 < R1 < R2 ≤ ∞ , BR2
(p) \

BR1(p) has no critical point of d(·, p) . Then BR2(p) \BR1(p) is homeomorphic to ∂BR1(p)× [R1, R2] .

The extended Toponogov comparison theorem is developed in [3]. It enables us to compare triangles in
M and Mm and draw conclusions on corresponding angle inequalities. Its application requires the existence of
a cut-point-free sector in Mm , and hence the requirement in Theorem 1.1. Theorem 1.1 works by showing that
if its conditions are satisfied, then the critical points of d(·, p) are confined to BR(p) , R < ∞ .

All geodesics are parametrized by arclength. The term segments refers to minimizing geodesics. Let ∂r ,
∂θ denote the vector fields dual to dr , dθ on R2 . Given q ̸= o , denote its polar coordinates by θq , rq . Let
µq , ηq denote the geodesics defined on [0,∞) that start at q in the direction of ∂r , −∂r , respectively. Set
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κγ(t) := ∠(γ̇(t), ∂r) . For all geodesic segments γ : [0, ℓ] → Mm , assume rγ(ℓ) ≥ rγ(0) . We write ṙ , θ̇ , and γ̇ for

the derivatives of rγ(t) , θγ(t) , and γ(t) by t , while m′ denotes dm
dr , and proceed similarly for higher derivatives.

The total curvature of Mm , c(Mm) , takes on the usual definition:

c(Mm) :=

∫
Mm

GmdM (2.2)

We state below an important result (by Alexis Clairaut), which gives rise to the terms Clairaut constant
and Clairaut relation, used in this paper:

Theorem 2.3 Let γ be a geodesic in a rotationally symmetric plane Mm such that γ does not intersect the
origin. Then there exists a constant c such that m(r) sinκγ(s) = c for all s.

A useful consequence of the above result is that since 0 ≤ sinκγ(s) ≤ 1 for all s , 0 ≤ c ≤ m(rγ(s)) , where
c = m(rγ(s)) only at points where γ is tangent to a parallel and c = 0 when γ is tangent to a meridian.

Definition 2.2 In the setting of Theorem 2.3, the constant c is called the Clairaut constant of geodesic γ ;
the equation m(r) sinκγ(s) = c is called the Clairaut relation.

3. Proof of Theorem 1.3

Remark 3.1 We acknowledge that our proof is a modification of the proof in [3]; much of the relevant original
content in [3] remains the same, so we hereby give due credit and respect to Kondo-Tanaka.

Broadly speaking, Lemmas 3.1, 3.2, 3.4, 3.5, and 3.6 are technical lemmas used to prove Lemma 3.8.
Lemmas 3.7, 3.8, and 3.9 are used to prove Lemma 3.10. The culminating proof at the end of this section uses
Lemmas 3.10, 3.11, and 3.12.

Lemma 3.1 below states a useful relationship between Clairaut constants and their corresponding geodesic
segments in an important limiting process that will be used later.

Lemma 3.1 (Lemma 3.1, [3]) Given Mm , let Vi := V ( 1i ) for each i = 1, 2, ... Assume that there exist a

constant r0 > 0 and a sequence {σi : [0, ℓi] → Vi} of geodesic segments such that σi([0, ℓi])
∩

Br0(o) ̸= ∅ for
each i and that lim infi→∞ r(σi(ℓi)) > r0 . Then, limi→∞ ci = 0 holds, where ci denotes the Clairaut constant
of σi .

Lemmas 3.2 and 3.4 give an important condition needed for a geodesic in Mm to have a conjugate point.

Lemma 3.2 (Propositions 7.2.1, 7.2.2, [5]) Given q ∈ Mm , let γ : [0, s] → Mm , γ(0) = q be a geodesic not
tangent to the parallel or meridian through q . If ṙγ is nonzero on [0, s) , then there exists a Jacobi field X(t)

along γ that can be expressed as

X(t) = sign
(π
2
− κγ

)
ṙ(t)

∫ r(t)

d(o,q)

m(r)√
m2(r)− c2

3 dr

{
−c

∂

∂rγ(t)
+ ṙ(t)

∂

∂θγ(t)

}
(3.3)

on [0, s) , where c is the Clairaut constant of γ .
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Lemma 3.4 Given q ∈ Mm , let γ : [0, s] → Mm , γ(0) = q be a geodesic that is not tangent to the parallel or
meridian through q . If ṙγ is nonzero on [0, s) , then there exists no conjugate point of q along γ|[0,s) .

Proof Each additive term in the expression for X(t) in Lemma 3.2 carries ṙ(t) . Hence, ṙ(t) nonzero on [0, s)

implies that the Jacobi field X(t) is nonzero on [0, s) . 2

Lemma 3.5 states conditions in which a geodesic segment cannot be tangent to a parallel in Mm from
below.

Lemma 3.5 Let Mm be such that lim infr→∞ m(r) > 0 . Let {σi : [0, ℓi] → Mm} be a sequence of minimal
geodesics such that ℓi → ∞ , ci ̸= 0 , and ci → 0 . Then there exists L > 0 such that for all i ≥ L , there does
not exist any value t at which both ṙσi(t) = 0 and r̈σ(t) < 0 hold.

Proof By contradiction; suppose that for any L > 0 , there exists i ≥ L such that ṙσi(ti) = 0 and r̈σi(ti) < 0

for some ti . Choose such a subsequence and denote it {σi} . By reflectional symmetry and uniqueness of
geodesics, rσi

attains its absolute maximum at ti . Since ci = m(rσi(ti)) , ci → 0 , we have m(rσi(ti)) → 0 .
Since lim infr→∞ m(r) > 0 , m(rσ(ti)) → 0 implies rσi(ti) → 0 . But this is impossible, since ℓi → ∞ and σi is
a minimal geodesic.

2

Remark 3.2 Given any q ∈ M , M a complete Riemannian manifold, we define the segment domain of q as

{v ∈ TqM | expq tv : [0, 1] → M is a minimal geodesic}

It is well known that the segment domain of any q ∈ M is star-shaped and closed. The interior of the
segment domain of q , denoted I(q) , is likewise defined as

{v ∈ TqM | expq tv : [0, 1) → M is a minimal geodesic}

Note that expq is one-to-one on I(q) , so if x is in the image of I(q) , denoted I(q)∗ , there exists a unique
minimizing geodesic γ connecting q to x , and there exists ϵ > 0 such that γ minimizes on (0, d(q, x) + ϵ) .
Hence, if x is conjugate to q , x cannot be in I(q)∗ .

Lemma 3.6 Let {σi : [0, ℓi] → Mm} be a sequence of minimal geodesics converging to σ : [0, ℓ] → Mm , where
σ is a subarc of a meridian. For all i large enough, σi(ℓi) is in I(σi(0))

∗ and σi(0) is in I(σi(ℓi))
∗ .

Proof Since any subarc of a meridian is distance-minimizing, σ(ℓ) is in I(σ(0))∗ . Hence for i large enough,
σi(ℓi) is also in I(σ(0))∗ . It follows that σ(0) is in I(σi(ℓi))

∗ , since the above implies that σ(0) is joined to
σi(ℓi) by a unique minimal geodesic and σ(0) cannot be conjugate to σi(ℓi) . So for i large enough, σi(0) is in
I(σi(ℓi))

∗ . It must also follow that σi(ℓi) is in I(σi(0))
∗ . 2

Below we give the original version of Lemma 3.3 in [3], followed by our modified version. Both versions
are key to our proof of Theorem 1.3.

Lemma 3.7 (Lemma 3.3, [3]) Let Mm have finite total curvature. For each r > 0 , there exists a number
δ(r) ∈ (0, π) such that σ([0, ℓ]) ∩ Br(o) = ∅ holds for any minimal geodesic segment σ : [0, ℓ] → V (δ(r)) ⊂ M ,
along which σ(0) is conjugate to σ(ℓ) .
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Lemma 3.8 Let Mm be such that lim infr→∞ m(r) > 0 . For each r > 0 , there exists a number δ(r) ∈ (0, π)

such that σ([0, ℓ]) ∩ Br(o) = ∅ holds for any minimal geodesic segment σ : [0, ℓ] → V (δ(r)) ⊂ M , along which
σ(0) is conjugate to σ(ℓ) .

Proof By contradiction. To establish the existence of δ(r) ∈ (0, π) , all we need to do is show that there
exists δ(r) > 0 , since we have |θ(σ(0)) − θ(σ(ℓ))| < π for any minimal geodesic segment σ : [0, ℓ] → M \ {o} .
Put Vi := V ( 1i ) for each i . Assume that there exists a constant r0 > 0 and a sequence of minimal geodesic

segments {σi : [0, ℓi] → Vi} , with σi(0) conjugate to σi(ℓi) along σi , such that σi([0, ℓi])∩Br0(o) ̸= ∅ for each
i .

We want to establish that the sequence of Clairaut constants, {ci} , converges to 0 as i → ∞ . We do
this by showing that limi→∞ ℓi = ∞ ; indeed, this implies lim infi→∞ rσi(li) > r0 , whereupon by Lemma 3.1
{ci} → 0 .

Suppose limi→∞ ℓi < ∞ or does not exist. Then there exists M < ∞ such that given any N , there exists
i ≥ N such that ℓi ≤ M . Then we have a subsequence of {σi} such that the endpoints {σi(0)} , {σi(ℓi)} are
confined to a compact set. Let {σi} denote this subsequence. Since each σi is a minimal geodesic, {σi} must
lie in a bounded set. By the Arzela-Ascoli theorem, there exists a geodesic σ to which some subsequence {σij}
converges, and by construction σ must be a subarc of a meridian. Let σ(0) be the point to which {σij (0)}
converges and let σ(ℓ) be the point to which {σij (ℓij )} converges. For j large enough, σij (0) is in I(σij (ℓij ))

∗

and σij (ℓij ) is in I(σij (0))
∗ by Lemma 3.6. Remark 3.2 implies that σij (0) cannot be conjugate to σij (ℓij ) , a

contradiction. Hence we establish that lim infi→∞ rσi(ℓi) > r0 .
Since σi(0) and σi(ℓi) are conjugate, there exists a positive parameter value ai at which ṙσi

= 0 by
Lemma 3.4. From our work above, we have ci → 0 and ℓi → ∞ , and by assumption lim infr→∞ m(r) > 0 , so
by Lemma 3.5, there exists J such that for all i > J , we cannot have r̈σi

(ai) < 0 . From this point on, assume
i > J always. Since σi is tangent to a parallel from above, rσi(ai) is the absolute minimum of rσi

, implying
rσi(ai) ∈ Br0(o) .

Let ui ∈ [ai, ℓi] be a parameter value of σi such that rσi(ui) = r0 . Set △i := the triangle oσi(ai)σi(ui) .

This triangle lies in Br0(o)
∩
Vi . The angle at σi(ai) equals π

2 by construction. The angle at o < 1
i , so it tends

to 0 as i → ∞ . This implies that the area of △i tends to 0 as i → ∞ .
Now consider the angle at σ(ui) . On the one hand, since ci → 0 , the angle at σ(ui) must go to 0. On

the other hand, the curvature function Gm(r) attains its maximum and minimum on [0, r0] , so
∫
△i

Gm → 0

as i → ∞ . The Gauss-Bonnet theorem gives { sum of the interior angles } = π +
∫
△i

Gm, so we have { sum

of the interior angles } → π as i → ∞ . This means that the angle at σi(ui) must approach π
2 as i → ∞ , a

contradiction.
2

Lemma 3.9 Suppose Mm is von Mangoldt or Cartan-Hadamard outside a compact set. If lim infr→∞ m(r) = 0 ,
then Mm has finite total curvature.

Proof We prove our claim by showing that limr→∞ m′(r) exists and is finite. Let R > 0 be such that Mm

is von Mangoldt or Cartan-Hadamard on Mm \BR(o) . There exists r0 > R at which m′ < 0 , for if m′(r) ≥ 0

for all r > R , then lim infr→∞ m(r) > 0 . Because m(r) > 0 on r > 0 , we cannot have m′(r) ≤ m′(r0) on
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[r0,∞) . Hence there exists r1 > r0 such that m′(r1) < 0 and m′′(r1) > 0 . Also Gm(r1) < 0 . Since Mm is von
Mangoldt or Cartan-Hadamard on (R,∞) , Gm(r) ≤ 0 on [r1,∞) , implying m′′(r) ≥ 0 on [r1,∞) . We claim
m′ < 0 on [r1,∞) . Indeed, if for some r ≥ r1 m′ ≥ 0 , then m′′[r1,∞) ≥ 0 implies m′ ≥ 0 for all r ≥ r1 ,
implying lim infr→∞ m(r) > 0 . Since m′ is an increasing function on [r1,∞) that is bounded above by 0, it
must converge to a finite number.

2

Lemma 3.10 Let Mm be von Mangoldt or Cartan-Hadamard outside a compact set. Then for each r > 0 ,
there exists a constant number δ(r) ∈ (0, π) such that σ([0, ℓ]) ∩ Br(o) = ∅ holds for any minimal geodesic
segment σ : [0, ℓ] → V (δ(r)) ⊂ M , along which σ(0) is conjugate to σ(ℓ) .

Proof Either lim infr→∞ m(r) > 0 or lim infr→∞ m(r) = 0 . If lim infr→∞ m(r) > 0 , then the claim holds by
Lemma 3.8. If lim infr→∞ m(r) = 0 , then Lemma 3.9 applies, so Mm has finite total curvature. Lemma 3.7
then implies the claim. 2

Lemma 3.11 If q ∈ V (δ) has a cut point in V (δ) , then q must also have a conjugate point in V (δ) .

Proof Suppose q ∈ V (δ) has a cut point x ∈ V (δ) . If x is conjugate to q , we are done, so suppose not.
Then let α, β be minimal geodesics connecting q to x and bounding a region D ; since α, β cannot be tangent
to any meridian, D ⊂ V (δ) . The boundary of D only meets Cq , the set of cut points of q , at x because α, β

are minimal. Since Cq is a tree by Theorem 4.2.1 in [5], the interior of D contains an endpoint of Cq that is
conjugate to q . 2

Lemma 3.12 Let Mm be von Mangoldt or Cartan-Hadamard outside BR1
(o) . Then for any δ ≤ π , there does

not exist a geodesic σ : [0, ℓ] → V (δ) \BR1
(o) containing conjugate points.

Proof (This proof is modeled on the proofs of Theorem 3.4 in [3] and Theorem 7.3.1 in [5]). Let γx be
the minimal geodesic joining q to x . Suppose Mm \ BR1

(o) is Cartan-Hadamard. Then Gm ≤ 0 along γx ,
implying that q cannot be conjugate to x along γx .

Suppose Mm \BR1
(o) is von Mangoldt. By Corollary 4.2.1 in [5] and Lemmas 2.5.19 and 2.5.22 in [1], we

can find a normal cut point y in Cq (see Definition 2.5.12 in [1]) arbitrarily close to x such that d(q, x) < d(q, y)

and θx < θy < π . By Remark 2.5.21 in [1], there exists a minimal geodesic βy connecting q to y such that

∡(β̇y(0), η̇q(0)) < ∡(γ̇x(0), η̇q(0)), (3.13)

and since y can be made arbitrarily close to x , we can ensure that βy does not intersect BR1(o) .
We now show that

ℓ(γx) < ℓ(βy) and rγx(s) > rβy(s) (3.14)

for all s ∈ (0, ℓ(γx)) . For each s ∈ (0, ℓ(γx)) , since θy > θx , there exists a unique value t(s) of βy giving us

θγ(s) = θβy(t(s)). (3.15)
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Since γx, βy cannot intersect in their interiors we have rβy(t(s)) < rγx(s) . Hence for any given s , the set

Ss := {t ∈ (0, ℓ(βy)) | rβy(t) < rγx(s)} (3.16)

is nonempty. Now fix s0 ∈ (0, ℓ(γx)) . Let (a, b) be the connected component of Ss0 containing t(s0) . If we
show that s0 ∈ (a, b) , then we will have rγx(s0) > rβy(s0) . If (0, ℓ(γx)) ⊆ (a, b) then s0 ∈ (a, b) and there is
nothing to prove, so we can assume a > 0 or b < ℓ(γx) . We have

rγx(s0) = rβy(a) = rβy(b), 0 ≤ θβy(a) < θγx(s0) = θβy(t(s0)) < θβy(b) < π (3.17)

so the conditions for Lemma 7.3.2 in [5] are satisfied. It follows that

a = d(q, βy(a)) < s0 = d(q, γx(s0)) < d(q, βy(b)) = b, (3.18)

implying s0 ∈ (a, b) and therefore rβy(s0) < rγx(s0) . Since s0 was arbitrary and Mm \BR1
(o) is von Mangoldt,

we have Gm(rγx(s)) ≤ Gm(rβy(s)) for all s ∈ [0, ℓ(γx)] . Recalling that q is conjugate to x along γx and applying
the Sturm Comparison Theorem, we have that q is conjugate to βy(t) along βy for some t ∈ (0, ℓ(γx)] . But this
is impossible, since βy minimizes the distance from q to y and ℓ(βy) > ℓ(γx) . Hence q cannot be conjugate to
x along γx , and this completes our proof.

2

Proof [Proof of Theorem 1.3] Let Mm be von Mangoldt or Cartan-Hadamard outside BR0
(o) for some

R0 > 0 . Fix any R1 > R0 , and in the setting of Lemma 3.10, let δ(R1) ∈ (0, π) be the number such that if
σ : [0, ℓ] → V (δ(R1)) is a minimal geodesic along which σ(0) is conjugate to σ(ℓ) , then

σ[0, ℓ] ∩BR1
(o) = ∅. (3.19)

Proceeding by contradiction, if q ∈ V (δ(R1)) has a cut point in V (δ(R1)) , then by Lemma 3.11 there
exists a point x ∈ V (δ(R1)) and a geodesic γx such that q is conjugate to x along γx . By Lemma 3.10, γx

does not intersect BR1(o) . But if γx lies entirely in Mm \BR1(o) , then by Lemma 3.12, q cannot be conjugate
to any point along γx . 2
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