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Abstract: From the algebraic solution of xm − x + t = 0 for m = 2, 3, 4 and the corresponding solution in terms
of hypergeometric functions, we obtain a set of reduction formulas for hypergeometric functions. By differentiation
and integration of these results, and applying other known reduction formulas of hypergeometric functions, we derive
new reduction formulas of special functions as well as the calculation of some definite integrals in terms of elementary
functions.
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1. Introduction and Preliminaries
In existing literature, we found a large body of papers dealing with the trinomial equation (see [25] and the
references therein). In fact, there are different versions of this kind of equation [2], [13, Chap.3 Sect.8], [19]. In
this paper, we are interested in the following form of the trinomial equation:

xm − x+ t = 0. (1.1)

Equation (1.1) was first solved by Lambert in 1758 as a series development for x in powers of t [16].
Euler’s version of Lambert series [9] is connected to the tree function and the Lambert W function [6]. More
recently, Glasser calculated the roots of (1.1) as a finite sum of generalized hypergeometric functions [11]. In
many cases, one of the roots can be expressed as a single hypergeometric function. However, in 1770, Lagrange
[15] applied his inversion formula [1, Appendix E] to derive a root xm (t) of the equation (1.1) as an expansion
in powers of t . In modern notation, Lagrange’s solution is written as:

xm (t) = tmFm−1

(
1
m , . . . , m

m
2

m−1 , . . . ,
m

m−1

∣∣∣∣m( mt

m− 1

)m−1
)
. (1.2)

where the generalized hypergeometric series is defined as:
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Definition 1.1 (Generalized hypergeometric series)

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ z) =

∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
. (1.3)

If none of the parameters b1, . . . bq are non-positive integers and p ≤ q , the series (1.3) converges for all finite
values of z and defines an entire function∗.

Note that, for m = 2, 3, 4 , (1.2) is reduced to (see also [22]):

x2 (t) = t 2F1

(
1
2 , 1
2

∣∣∣∣ 4t) , (1.4)

x3 (t) = t 2F1

(
1
3 ,

2
3

3
2

∣∣∣∣ 3(3t

2

)2
)
, (1.5)

x4 (t) = t 3F2

(
1
4 ,

1
2 ,

3
4

2
3 ,

4
3

∣∣∣∣ 4(4t

3

)3
)
. (1.6)

Note as well that the roots of the trinomial equation (1.1) for m = 2, 3, 4 are expressible in terms of
elementary functions. Therefore, we can compare these well-known elementary solutions to the ones given in
(1.4)-(1.6). The main goal of this paper is just to derive some new reduction formulas and definite integrals from
this comparison. For this purpose, we present below some preliminary results. First, we will use the following
differentiation formulas, that can be easily proved by induction:

dn

dtn

(
1

t

)
=

(−1)
n
n!

tn+1
, (1.7)

dn

dtn
(√

1− t
)

=

(
−1

2

)
n

(1− t)
1/2−n

. (1.8)

Taking n = 1 in (1.8), and knowing that [20, Eqn. 18:5:7]

(x)n+1 = x (x+ 1)n , (1.9)

we also have
dn

dtn

(
1√
1− t

)
=

(
1

2

)
n

(1− t)
−1/2−n

. (1.10)

In addition, we will use Leibniz’s differentiation formula [21, Eqn. 1.4.2] (for the historical origin of this
formula, see [4, p. 143]),

dn

dtn
[f (t) g (t)] =

n∑
k=0

(
n

k

)
f (k) (t) g(n−k) (t) , (1.11)

Gauss summation formula [21, Eqn. 15.4.20] (for the original work of Gauss, see [10]),

2F1

(
a, b
c

∣∣∣∣ 1) =
Γ (c) Γ (c− a− b)

Γ (c− a) Γ (c− b)
, (1.12)

Re (c− a− b) > 0,

∗For the different cases of convergence of the generalized hypergeometric series see [21, Sect. 16.2].
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and Whipple’s sum [21, Eqn. 16.4.7],

3F2

(
a, 1− a, c

d, 2c− d+ 1

∣∣∣∣ 1) (1.13)

=
π 21−2c Γ (d) Γ (2c− d+ 1)

Γ
(
c+ a−d+1

2

)
Γ
(
c+ 1− a+d

2

)
Γ
(
a+d
2

)
Γ
(
d−a+1

2

) ,
Re (c) > 0 or a ∈ Z.

Finally, for the calculation of the definite integrals, we will use the following result [1, Ch. 2. Ex. 11]:

∫ ∞

0

e−sttα−1
pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣xt) dt =
Γ (α)

sα
p+1Fq

(
a1, . . . , ap, α
b1, . . . , bq

∣∣∣∣ xs
)
, (1.14)

p ≤ q, Re s > 0, Reα > 0.

This paper is organized as follows. Section 2 equates the solution of (1.1) for m = 2 to the expression of
x2 (t) given in (1.4). From this result, and using some differentiation formulas of the 2F1 function, we obtain
a set of reduction formulas of some hypergeometric functions in terms of elementary functions. Whenever
possible, we obtain alternative elementary representations of these hypergeometric functions by using known
formulas in existing literature. As an application of these results, we calculate other reduction formulas of some
special functions (i.e. incomplete beta function, Legendre function, and hypergeometric function) in terms of
elementary functions, as well as the calculation of two definite integrals involving the lower incomplete gamma
function. Section 3 equates the solution of (1.1) for m = 3 to be expression of x3 (t) given in (1.5). From
this comparison, we derive a new reduction formula of a 2F1 hypergeometric function in terms of elementary
functions, as well as an equivalent elementary representation in terms of a double finite sum by using a result
found in the literature. As an application of the latter, we calculate a definite integral involving the parabolic
cylinder function. In Section 4 , we derive a reduction formula of a 3F2 hypergeometric function in terms of
elementary functions, equating the solution of (1.1) for m = 4 to the expression of x4 (t) given in (1.6). From
the latter reduction formula, we obtain an identity involving the product of two Legendre functions. Finally,
Section 5 collects our conclusions. In the Appendices, we present the solution of the cubic and the quartic
equations, which will be used throughout Sections 3 and 4 respectively; as well as the derivation of two finite
sums that will be useful to us in Section 2 .

2. Case m = 2

In this case, the algebraic solution of (1.1) is

x2 (t) =
1±

√
1− 4t

2
, (2.1)

hence, selecting the proper root of (2.1), we can equate it to (1.4), to obtain

2F1

(
1
2 , 1
2

∣∣∣∣ t) =
2

t

(
1−

√
1− t

)
, (2.2)
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which agrees with the result reported in the literature [24, Eqn. 7.3.2(84)]. Notice that (2.2) can be derived
from the binomial theorem [20, Eqn. 6.14.1]. Indeed,

√
1− t =

∞∑
k=0

(
−1

2

)
k

tk

k!
= 1 +

∞∑
k=1

(
−1

2

)
k

tk

k!
,

hence, applying (1.9), we have

√
1− t− 1

t
=

∞∑
k=1

(
−1

2

)
k

tk−1

k!
= −1

2

∞∑
k=1

(
1

2

)
k−1

(1)k−1 tk−1

(2)k−1 (k − 1)!
,

and the result follows. From (2.2), we obtain next a set of results using the formulas stated in the Introduction.

2.1. First differentiation formula
Theorem 2.1 For n = 0, 1, 2, . . . and t ∈ C , the following reduction formula holds true:

2F1

(
1
2 + n, 1 + n

2 + n

∣∣∣∣ t) (2.3)

=


2 (−1)

n
(n+ 1)!(

1
2

)
n
tn+1

[
1−

√
1− t

n∑
k=0

(
− 1

2

)
k

k!

(
t

t− 1

)k
]
, t ̸= 0, 1,

1, t = 0,
2, t = 1, n = 0,
∞, t = 1, n ≥ 1.

Proof For t ̸= 0, 1 , apply the following differentiation formula for the Gauss hypergeometric function [21,
Eqn. 15.5.2]:

dn

dtn

[
2F1

(
a, b
c

∣∣∣∣ t)] = (a)n (b)n
(c)n

2F1

(
a+ n, b+ n

c+ n

∣∣∣∣ t) . (2.4)

n = 0, 1, 2, . . .

Therefore, taking a = 1
2 , b = 1 and c = 2 in (2.4) and using (2.2), we have

dn

dtn

[
2F1

(
1
2 , 1
2

∣∣∣∣ t)] = 2

[
dn

dtn

(
1

t

)
− dn

dtn

(√
1− t

t

)]
.

Applying (1.7)-(1.8) and (1.11), after some algebra, we arrive at (2.3) for t ̸= 0, 1 . For t = 0 , apply the
definition of the hypergeometric series (1.3). For t = 1 , apply the Gauss summation formula (1.12). This
completes the proof. 2

2.1.1. Other elementary representations

It is worth noting that we can derive different elementary representations of 2F1

(
1
2 + n, 1 + n; 2 + n; t

)
by using

known formulas given in existing literature.
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Theorem 2.2 For n = 0, 1, 2, . . . and t ∈ C , the following reduction formula holds true:

2F1

(
1
2 + n, 1 + n

2 + n

∣∣∣∣ t) (2.5)

=


2 (−1)

n
(n+ 1)!(

1
2

)
n
tn+1

[
1− (1− t)

1/2−n
n∑

k=0

(
1
2 − n

)
k

k!
tk

]
, t ̸= 0, 1,

1, t = 0,
2, t = 1, n = 0,
∞, t = 1, n ≥ 1.

Proof First we prove (2.5) for t ̸= 0, 1 . Apply Euler’s transformation formula [21, Eqn. 15.8.1]:

2F1

(
α, β
γ

∣∣∣∣ z) = (1− z)
γ−α−β

2F1

(
γ − α, γ − β

γ

∣∣∣∣ z) , (2.6)

to obtain

2F1

(
1
2 + n, 1 + n

2 + n

∣∣∣∣ t) = (1− t)
1/2−n

2F1

(
3
2 , 1
2 + n

∣∣∣∣ t) . (2.7)

We found in [24, Eqn. 7.3.1(123)] for m = 1, 2, . . . , and m− b ̸= 1, 2, . . . , the formula:

2F1

(
1, b
m

∣∣∣∣ z) =
(m− 1)! (−z)

1−m

(1− b)m−1

[
(1− z)

m−b−1 −
m−2∑
k=0

(b−m+ 1)k
k!

zk

]
. (2.8)

Therefore, apply (2.8) to (2.7) with m = n + 2 and b = 3
2 , taking into account (1.9) for x = − 1

2 , to arrive
at (2.5) for t ̸= 0, 1 . Straightforward from (2.5) for t ̸= 0, 1 , we have a divergent result for t = 1 , except for
n = 0 . For t = 0 , we have an indeterminate expression on the RHS of (2.5), but the LHS of (2.5) is just 1 .
Nevertheless, if we calculate the limit t → 0 of the RHS of (2.5) taking into account (2.12), we obtain also 1 .
Indeed,

2 (−1)
n
(n+ 1)!(

1
2

)
n

lim
t→0

(1− t)
1/2−n

tn+1

[
1

(1− t)
1/2−n

−
n∑

k=0

(
1
2 − n

)
k

k!
tk

]

=
2 (−1)

n
(n+ 1)!(

1
2

)
n

lim
t→0

1

tn+1

∞∑
k=n+1

(
1
2 − n

)
k

k!
tk

=
2 (−1)

n ( 1
2 − n

)
n+1(

1
2

)
n

= 1,

where we have applied the property Γ (z) Γ (1− z) = π
sinπz [17, Eqn. 1.2.2]. 2
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Theorem 2.3 For n = 0, 1, 2, . . . and t ∈ C , the following reduction formula holds true:

2F1

(
n+ 1

2 , n+ 1
n+ 2

∣∣∣∣ t) (2.9)

=


22n+1n (n+ 1)

tn
(
1 +

√
1− t

) n−1∑
k=0

(
n−1
k

)
(n+ 1 + k) (n+ k)

(
1−

√
1− t

2
√
1− t

)n+k

, t ̸= 0, 1,

1, t = 0,
2, t = 1, n = 0,
∞, t = 1, n ≥ 1.

.

Proof We need to prove (2.9) for t ̸= 0, 1 . For this purpose, take a = 2n+ 1 , k = n , and z = 1− t in (C.5)
to arrive at the desired result. 2

2.1.2. Applications: Quadratic transformation, incomplete beta function, and definite integral

Next, we derive some results from the elementary representation of 2F1

(
1
2 + n, 1 + n; 2 + n; t

)
given in (2.3).

Theorem 2.4 For n = 0, 1, 2, . . . and t ∈ C , the following reduction formula holds true:

2F1

(
1 + 2n, 3

2 + n
3 + 2n

∣∣∣∣ t) (2.10)

=


(−1)

n
(n+ 1)!(
1
2

)
n

(
2

t

)2(n+1)
[
2− t− 2

√
1− t

n∑
k=0

(
− 1

2

)
k

k!

(
t

2
√
t− 1

)2k
]
, t ̸= 0, 1

1, t = 0,
4, t = 1, n = 0,
∞, t = 1, n ≥ 1.

Proof Apply the quadratic transformation [1, Eqn. 3.1.7]:

2F1

(
α, β
2β

∣∣∣∣x) =
(
1− x

2

)−α

2F1

(
α
2 ,

α+1
2

β + 1
2

∣∣∣∣ ( x

2− x

)2
)
,

taking α = 2n+ 1 , β = n+ 3
2 , and x = 2

√
z

1+
√
z

to arrive at:

2F1

(
1 + 2n, 3

2 + n
3 + 2n

∣∣∣∣ 2
√
z

1 +
√
z

)
=
(
1 +

√
z
)2n+1

2F1

(
1
2 + n, 1 + n

2 + n

∣∣∣∣ z) . (2.11)

In order to obtain the desired result for t ̸= 0, 1 , substitute (2.3) in (2.11) and perform the change of variables

t = 2
√
z

1+
√
z

. According to this last result, the cases given in (2.10) for t = 1 are straightforward. However, for

t = 0 , we have an indeterminate expression on the RHS of (2.10), but the LHS of (2.10) is 1 . Nevertheless, if
we calculate the limit t → 0 of the RHS of (2.10), taking into account the formula [20, Eqn. 18:3:4],

1

(1− t)
ν =

∞∑
k=0

(ν)k
tk

k!
, (2.12)

1804



GONZÁLEZ-SANTANDER/Turk J Math

we obtain also 1 ,

(−1)
n
(n+ 1)!(
1
2

)
n

lim
t→0

(
2

t

)2(n+1)

{
2− t− 2

√
1− t

[ ∞∑
k=0

(
− 1

2

)
k

k!

(
t2

4 (t− 1)

)k

−
∞∑

k=n+1

(
− 1

2

)
k

k!

(
t2

4 (t− 1)

)k
]}

=
(−1)

n
(n+ 1)!(
1
2

)
n

lim
t→0

(
2

t

)2(n+1)

{
2− t− 2

√
1− t

[
2− t

2
√
1− t

−
∞∑

k=n+1

(
− 1

2

)
k

k!

(
t2

4 (t− 1)

)k
]}

= −
2
(
− 1

2

)
n+1(

1
2

)
n

= 1,

where we have applied (1.9) for x = − 1
2 . 2

Theorem 2.5 For n = 0, 1, 2, . . . and t ∈ C , the following reduction formula holds true:

B

(
1 + n,

1

2
− n, t

)
(2.13)

=


2(−1)nn!(

1
2

)
n

[
1−

√
1− t

n∑
k=0

(
− 1

2

)
k

k!

(
t

t− 1

)k
]
, t ̸= 0, 1,

2(−1)nn!

( 1
2 )n

, t = 1,

0, t = 0.

where B (ν, µ, z) denotes the incomplete beta function [20, Chap. 58].

Proof For t ̸= 0, 1 , in [24, Eqn. 7.3.1(28)], we found:

2F1

(
a, b
b+ 1

∣∣∣∣ t) = b t−b B (b, 1− a, t) , (2.14)

Therefore, take a = 1
2 + n and b = 1 + n in (2.14) and apply (2.3) to obtain (2.13). For t = 1 , apply the

properties of the incomplete beta function [20, Eqns. 58:3:1&58:1:1]

B (ν, µ, 1) = B (ν, µ) =
Γ (ν) Γ (µ)

Γ (ν + µ)
,

and the formula of the gamma function [20, Eqn. 43:4:4]

Γ

(
1

2
− n

)
=

(−1)
n(

1
2

)
n

√
π,

1805
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to obtain the desired result. For t = 0 , apply the definition of the incomplete beta function [20, Eqn.58:3:1],
and calculate the limit t → 0 for n ≥ 0 , to obtain:

lim
t→0

B (1 + n, µ, t) = lim
t→0

∫ t

0

xn (1− x)
µ−1

dx = 0.

2

Theorem 2.6 For n = 0, 1, 2, . . . and Re (s+ x) > 0 , we have∫ ∞

0

e−st

t3/2
γ (n+ 1, xt) dt (2.15)

= −2
√
π n!

[
√
s−

√
s+ x

n∑
k=0

(
− 1

2

)
k

k!

(
x

x+ s

)k
]
,

where γ (ν, z) denotes the lower incomplete gamma function [20, Chap. 45].

Proof Indeed, take a1 = 1 + n , α = 1
2 + n and b1 = 2 + n in (1.14), consider the result (2.3), as well as [20,

Eqn. 43:4:3]

Γ

(
n+

1

2

)
=

(
1

2

)
n

√
π,

to obtain ∫ ∞

0

e−sttn−1/2
1F1

(
1 + n
2 + n

∣∣∣∣xt) dt (2.16)

=
2
√
π (−1)

n
(n+ 1)!

xn+1

[
√
s−

√
s− x

n∑
k=0

(
− 1

2

)
k

k!

(
x

x− s

)k
]
.

However, according to [24, Eqn. 7.11.1(13)], we have

1F1

(
n

1 + n

∣∣∣∣ z) =
(−1)

n
n!

zn

[
1− e−z

n−1∑
k=0

(−1)
k
zk

k!

]
, (2.17)

and [20, Eqns. 45:4:2&26:12:2], we have as well

Γ (n, z) = (n− 1)! e−zen−1 (z) = (n− 1)! e−z
n−1∑
k=0

zk

k!
, (2.18)

where Γ (ν, z) denotes the upper incomplete gamma function and en (z) is the exponential polynomial. Therefore,
from (2.17) and (2.18), and taking into account that the lower incomplete gamma function satisfies [20, Eqn.
45:0:1]

γ (ν, z) = Γ (ν)− Γ (ν, z) ,

we conclude that

1F1

(
n

1 + n

∣∣∣∣ z) = n (−z)
−n

γ (n,−z) , (2.19)

hence, inserting (2.19) in (2.16), we arrive at (2.15), as we wanted to prove. 2

1806



GONZÁLEZ-SANTANDER/Turk J Math

Remark 2.7 It is worth noting that we can obtain also (2.15) from [23, Eqn. 2.10.3(2)] and (2.3).

2.2. Second differentiation formula
Definition 2.8 (Regularized hypergeometric function)

pF̃q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ z) =

∞∑
k=0

(a1)k · · · (ap)k
Γ (b1 + k) · · ·Γ (bq + k)

zk

k!
. (2.20)

When p ≤ q + 1 and z is fixed and not a branch point, (2.20) is an entire function of each of the parameters
a1, . . . , ap, b1, . . . , bq (see [21, Eqn. 15.2.2]).

Theorem 2.9 For n = 0, 1, 2, . . . and t ∈ C\ {1} ,

2F̃1

(
1
2 , 1
1− n

∣∣∣∣ t) =

(
1
2

)
n√

1− t

(
t

1− t

)n

. (2.21)

Proof In [21, Eqn. 15.5.4], we found the differentiation formula:

dn

dtn

[
tc−1

2F1

(
a, b
c

∣∣∣∣ t)] = (c− n)n tc−n−1
2F1

(
a, b
c− n

∣∣∣∣ t) , (2.22)

n = 0, 1, 2, . . .

thus taking a = 1
2 , b = 1 and c = 2 in (2.22) and considering (2.2), we have

2
dn+1

dtn+1

[
1−

√
1− t

]
=

1

Γ (1− n) tn
2F1

(
1
2 , 1
1− n

∣∣∣∣ t) . (2.23)

Apply (1.8)-(1.9), and the definition of the regularized hypergeometric function given in (2.20) in order to rewrite
(2.23) as (2.21), as we wanted to prove. 2

Remark 2.10 According to (1.12), note that for t = 1 , both sides of (2.21) are divergent.

Remark 2.11 We can also derive (2.21) taking a = 1 , k = n+ 1 , and z = 1− t in (C.5), as well as applying
the formula [20, 2:12:3].

(2n)! = 4n n! (1/2)n. (2.24)

2.3. Third differentiation formula
Theorem 2.12 For n = 0, 1, 2, . . . and t ∈ C , the following reduction formula holds true:

2F1

(
1
2 , 1
2 + n

∣∣∣∣ t) (2.25)

=


2 (n+ 1)!(
3
2

)
n

√
1− t

(
t− 1

t

)n+1
[
1− 1√

1− t

n∑
k=0

(
1
2

)
k

k!

(
t

t− 1

)k
]
, t ̸= 0, 1,

2 (n+ 1)

2n+ 1
, t = 1,

1, t = 0.
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Proof For the case t ̸= 0, 1 , set a = 1
2 , b = 1 and c = 2 in the differentiation formula [21, Eqn. 15.5.6],

dn

dtn

[
(1− t)

a+b−c
2F1

(
a, b
c

∣∣∣∣ t)] (2.26)

=
(c− a)n (c− b)n

(c)n
(1− t)

a+b−c−n
2F1

(
a, b
c+ n

∣∣∣∣ t) ,

n = 0, 1, 2, . . .

and use the result (2.2) to arrive at

2
dn

dtn

[
1

t

1√
1− t

− 1

t

]
=

(
3
2

)
n

(n+ 1) (1− t)
n+1/2 2F1

(
1
2 , 1
2 + n

∣∣∣∣ t) .

Apply now Leibniz’s differentiation formula (1.11) and the differentiation formulas (1.7) and (1.10). After some
algebra, we obtain (2.25), as we wanted to prove. For t = 1 , apply Gauss summation formula (1.12), to obtain

2F1

(
1
2 , 1
2 + n

∣∣∣∣ 1) =
2 (n+ 1)

2n+ 1
, (2.27)

where (2.27) only converges for Re
(
1
2 + n

)
> 0 , i.e. for n = 0, 1, . . . , as we wanted to prove. Finally, according

to (1.3), we obtain the value of 1 for t = 0 . 2

2.3.1. Other elementary representations

It is worth noting that we can provide other elementary representations for 2F1 (1/2, 1; 2 + n; t) by using known
formulas given in existing literature.

Theorem 2.13 For n = 0, 1, 2, . . . and t ∈ C , the following reduction formula holds true:

2F1

(
1
2 , 1
2 + n

∣∣∣∣ t) (2.28)

=



2 (n+ 1)!(
3
2

)
n[

2√
1− t

(
t− 1

t

)n+1

+
1

1−
√
1− t

n∑
k=0

(n+ 1)k
k! 2k+n

(
1− 1√

1− t

)k−n
]
,

t ̸= 0, 1,

2 (n+ 1)

2n+ 1
, t = 1,

1, t = 0.

Proof We need to prove (2.28) for t ̸= 0, 1 . In [26], we found

2F1

(
α
2 ,

α+1
2

α+ n+ 1

∣∣∣∣ t) =

(
1 +

√
1− t

2

)−α

2F1

(
−n, α

α+ n+ 1

∣∣∣∣ 1−√
1− t

1 +
√
1− t

)
,

hence for α = 1 , we obtain

2F1

(
1
2 , 1
2 + n

∣∣∣∣ t) =
2

1 +
√
1− t

2F1

(
−n, 1
2 + n

∣∣∣∣ 1−√
1− t

1 +
√
1− t

)
.
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Now apply [24, Eqn. 7.3.1(179)]

2F1

(
−n, 1
m

∣∣∣∣ z) =
−n!

(m)n z

(
z − 1

z

)m−2
[
(1− z)

n+1 −
m−2∑
k=0

(n+ 1)k
k!

(
z

z − 1

)k
]
,

taking m = n+2 and z = 1−
√
1−t

1+
√
1−t

. Knowing that (n+ 2)n = 22n

n+1

(
3
2

)
n

, after some algebra, we arrive at (2.28)

for t ̸= 0, 1 , as we wanted to prove. 2

Theorem 2.14 For n = 0, 1, 2, . . . and t ∈ C , the following reduction formula holds true:

2F1

(
1
2 , 1
2 + n

∣∣∣∣ t) (2.29)

=


2 (n+ 1)!(

3
2

)
n
(−t)

n+1

[
(1− t)

n+1/2 −
n∑

k=0

(
−n− 1

2

)
k

k!
tk

]
, t ̸= 0, 1,

2 (n+ 1)

2n+ 1
, t = 1,

1, t = 0.

Proof We need to prove (2.29) for t ̸= 0, 1 . For this purpose, apply (2.8) taking m = n+ 2 and b = 1
2 and

use (1.9) for x = 1
2 . 2

Theorem 2.15 For n = 0, 1, 2, . . . and t ∈ C , the following reduction formula holds true:

2F1

(
1
2 , 1
n+ 2

∣∣∣∣ t) (2.30)

=


22n+1 (n+ 1)!

1 +
√
1− t

(
1− t

t

)n n∑
k=0

1

k! (n− k)! (n+ 1 + k)

(
1−

√
1− t

2
√
1− t

)n+k

, t ̸= 0, 1,

2 (n+ 1)

2n+ 1
, t = 1,

1, t = 0.

Proof We need to prove (2.30) for t ̸= 0, 1 . For this purpose, take a = 1 , k = n , and z = 1 − t in (C.2) to
arrive at the desired result. 2

2.3.2. Applications: Legendre function and definite integral

Next, we derive some results from the elementary representation of 2F1 (1/2, 1; 2 + n; t) given in (2.25).

Theorem 2.16 For n = 1, 2, . . . and t ∈ C\ {1} , we have

P−n
−n

(
1√
1− t

)
(2.31)

=


1

2n
(
1
2

)
n

(
t− 1

t

)n/2
[
1− 1√

1− t

n−1∑
k=0

(
1
2

)
k

k!

(
t

t− 1

)k
]
, t ̸= 0,

0, t = 0.

where Pµ
ν (z) denotes the Legendre function [7, Chap. III].
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Proof For t ̸= 0, 1 , we found, in [24, Eqn. 7.3.1(101)],

2F1

(
a, a+ 1

2
c

∣∣∣∣ t) = 2c−1Γ (c) (−t)
(1−c)/2

(1− t)
(c−1)/2−a

P 1−c
2a−c

(
1√
1− t

)
. (2.32)

Therefore, taking a = 1
2 and c = 2 + n in (2.32), and considering (2.25) and (1.9), we eventually arrive at

(2.31), as we wanted to prove. For t = 0 , apply the hypergeometric representation of the Legendre function
[21, Eqn. 14.3.15]

P−µ
ν (x) = 2−µ

(
x2 − 1

)µ/2
2F1

(
µ− ν, µ+ ν + 1

µ+ 1

∣∣∣∣ 1− x

2

)
,

to conclude that P−n
−n (1) = 0 , for n = 1, 2, . . . 2

Theorem 2.17 For n = 1, 2, . . . and x, p ∈ C , we have∫ ∞

0

e−pt

t1/2+n
γ (n, xt) dt (2.33)

=


−
√
π (n− 1)! (−p)

n−1(
1
2

)
n

[
√
p−

√
p+ x

n−1∑
k=0

(
1
2

)
k

k!

(
−x

p

)k
]
, p ̸= 0,

2
√
π xn−1/2

2n− 1
, p = 0.

Proof For p ̸= 0 , take a1 = 1 , α = 1
2 and b1 = 1+n in (1.14), consider the reduction formula of the Kummer

function [24, Eqn. 7.11.1(14)], i.e.

1F1

(
1

1 + n

∣∣∣∣xt) =
n ext

(xt)
n γ (n, xt) ,

and apply the result given in (2.25) and the property (1.9), to arrive after some algebra at (2.33), as we wanted
to prove. For p = 0 , rewrite the result obtained above as∫ ∞

0

e−pt

t1/2+n
γ (n, xt) dt

=

√
π (n− 1)! (−1)

n(
1
2

)
n

{
pn−1/2 −

√
p+ x

[
n−2∑
k=0

(
1
2

)
k

k!
(−x)

k
pn−1−k +

(
1
2

)
n−1

(n− 1)!
(−x)

k

]}
,

and take p = 0 , to obtain the desired result. 2

Remark 2.18 It is worth noting that we can obtain (2.33) from [23, Eqn. 2.10.3(2)] and (2.25).

2.4. Fourth differentiation formula
Theorem 2.19 For n = 1, 2, . . . and t ∈ C , we have

2F̃1

(
1
2 − n, 1− n

2− n

∣∣∣∣ t) =

 2

(
1

2

)
n

tn−1, n ≥ 1,

1, n = 1.
, (2.34)

1810



GONZÁLEZ-SANTANDER/Turk J Math

Proof Set a = 1
2 , b = 1 and c = 2 in the differentiation formula [21, Eqn. 15.5.9],

dn

dtn

[
tc−1 (1− t)

a+b−c
2F1

(
a, b
c

∣∣∣∣ t)] (2.35)

= (c− n)n tc−n−1 (1− t)
a+b−c−n

2F1

(
a− n, b− n

c− n

∣∣∣∣ t) ,

n = 0, 1, 2, . . .

and apply the result given in (2.2), to obtain

2
dn

dtn

(
1√
1− t

− 1

)
=

t1−n (1− t)
−1/2−n

Γ (2− n)
2F1

(
1
2 − n, 1− n

2− n

∣∣∣∣ t) .

According to (1.10) for n ≥ 1 and the definition of the regularized generalized hypergeometric function given in
(2.20), we finally get (2.34). For t = 0 and n = 1 , we obtain an indeterminate expression. However, according
to (1.3), we have that

2F1

(
a, 0
b

∣∣∣∣ t) = 1,

thus we obtain the desired result for n = 1 . 2

Remark 2.20 We can also derive (2.34) taking a = 1 − 2n , k = n , and z = 1 − t in (C.2), and applying
(2.24).

2.4.1. Application: Legendre function

Theorem 2.21 The following identity holds true for n = 1, 2, . . . and t ∈ C ,

Pn−1
n (t) = − (−2)

n

(
1

2

)
n

t
(
1− t2

)(n−1)/2
. (2.36)

Proof Set a = 1
2 − n and c = 2− n in (2.32), and take into account (2.34), to obtain

Pn−1
−n−1

(
1√
1− t

)
= −

(−2)
n ( 1

2

)
n√

1− t

(
t

t− 1

)(n−1)/2

,

which, according to the property [7, Eqn. 3.3.1(1)]:

Pµ
−ν−1 (z) = Pµ

ν (z) , (2.37)

is equivalent to (2.36). 2

3. Case m = 3

In this case, (1.1) becomes
x3 − x+ t = 0. (3.1)
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In order to solve (3.1), we apply the solution of the cubic equation given in Appendix A , considering in
(A.1) the negative sign ‘− ’, m = 1

3 and n = t
2 , i.e.

x3 (t) =
1√
3

{
cosh

(
1
3 cosh

−1 √z
)
− i

√
3 sinh

(
1
3 cosh

−1 √z
)
, z ≥ 1,

cos
(
1
3 cos

−1
√
z
)
−

√
3 sin

(
1
3 cos

−1
√
z
)
, z ≤ 1.

(3.2)

where z = 3
(
3t
2

)2 . Therefore, from (1.5) and (3.2) we have

2F1

(
1
3 ,

2
3

3
2

∣∣∣∣ z) (3.3)

=
3

2
√
z

{
cosh

(
1
3 cosh

−1 √z
)
− i

√
3 sinh

(
1
3 cosh

−1 √z
)
, z ≥ 1,

cos
(
1
3 cos

−1
√
z
)
−

√
3 sin

(
1
3 cos

−1
√
z
)
, z ≤ 1.

Note that we can simplify (3.3) considering that

3√
z
sin

(
1

3
sin−1 √z

)
=

3√
z
sin

(
π/2− cos−1

√
z

3

)

=
3

2
√
z

{
cos

(
cos−1

√
z

3

)
−

√
3 sin

(
cos−1

√
z

3

)}
.

Since

cos−1 x =

{
i cosh−1 x, x ≥ 1,

−i cosh−1 x, x ≤ 1,

and cos (ix) = coshx , and sin (ix) = i sinhx , we conclude that ∀z ∈ C ,

2F1

(
1
3 ,

2
3

3
2

∣∣∣∣ z) =
3√
z
sin

(
1

3
sin−1 √z

)
. (3.4)

The result given (3.4) can be obtained from [7, Eqn. 2.8(12)]:

2F1

(
1+a
2 , 1−a

3
3
2

∣∣∣∣ sin2 z) =
sin a z

a sin z
,

taking a = 1
3 . Nonetheless, by differentiation, we obtain from (3.4) the following interesting identity.

Theorem 3.1 For n = 1, 2, . . . and z ∈ C\ {0, 1} , we have:

2F̃1

(
1
3 ,

2
3

3
2 − n

∣∣∣∣ z) (3.5)

=
6 zn−1/2

√
π

dn

dzn

[
sin

(
1

3
sin−1 √z

)]
(3.6)

=
6 zn−1/2

√
π

n∑
k=1

sin

(
sin−1 √z

3
+

πk

2

)
Bn,k (h1 (z) , . . . , hn−k+1 (z)) , (3.7)
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where Bn,k (x1, . . . , xn−k+1) denotes the Bell polynomial [5, p. 133]. Also, we have defined

hs (z) =
(−i )

s−1
(s− 1)!

6 [z (1− z)]
s/2

Ps−1

(
1− 2z

2
√
z (z − 1)

)
,

where Pn (x) is a Legendre polynomial.

Proof Set a = 1
3 , b = 2

3 , and c = 3
2 in (2.22) to obtain

1

3

dn

dzn

[√
z 2F1

(
1
3 ,

2
3

3
2

∣∣∣∣ z)] = √
π z1/2−n

6
2F̃1

(
1
3 ,

2
3

3
2 − n

∣∣∣∣ z) , (3.8)

and substitute (3.4) in (3.8), to get

2F̃1

(
1
3 ,

2
3

3
2 − n

∣∣∣∣ z) =
6 zn−1/2

√
π

dn

dzn

[
sin

(
1

3
sin−1 √z

)]
. (3.9)

In order to calculate the n -th derivative given in (3.9), we apply Faà di Bruno’s formula [5, p. 137]:

dn

dzn
f [g (z)] =

n∑
k=1

f (k) [g (z)] Bn,k

(
g′ (z) , g′′ (z) , . . . , g(n−k+1) (z)

)
, (3.10)

Set f (z) = sin z and g (z) = 1
3 sin

−1 √z in (3.10) and take into account the differentiation formula [3, Eqn.
1.1.7(7)]:

dn

dzn
sin−1

(
a
√
z
)
=

(−i)
n−1

2
(n− 1)!an

(
z − a2z2

)−n/2
Pn−1

(
1− 2a2z

2a
√
a2z2 − z

)
,

n ≥ 1,

to arrive at (3.5), as we wanted to prove. 2

Remark 3.2 On the one hand, according to the Gauss summation formula (1.12), the regularized hyperge-
ometric function is given in (3.5) is divergent for z = 1 and n = 1, 2, . . . On the other hand, for z = 0 ,
(3.6) and (3.7) yield indeterminate expressions. However, according to (1.3), 2F1 (1/2, 2/3; 3/2− n; 0) = 1 for
n = 1, 2, . . .

Next, we provide the elementary representations of (3.5) for n = 1, 2 :

2F1

(
1
3 ,

2
3

1
2

∣∣∣∣ z) =
cos
(
1
3 sin

−1 √z
)

√
1− z

,

and

2F1

(
1
3 ,

2
3

− 1
2

∣∣∣∣ z)

=
(3− 6z) cos

(
1
3 sin

−1 √z
)
+
√
z (1− z) sin

(
1
3 sin

−1 √z
)

3 (1− z)
3/2

.
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3.1. Other elementary representations

Theorem 3.3 For n = 1, 2, . . . and t ∈ C \ {0, 1} , the following elementary representation holds true:

2F1

(
1
3 ,

2
3

3
2 − n

∣∣∣∣ z) (3.11)

=

(
1
2

)
n−1(

5
3 − n

)
n−1

n−1∑
p=0

n−1∑
q=0

2p+q (1− n)p (1− n)q
(
7
3 − 2n

)
p+q

(2− 2n)p (2− 2n)q p!q!

zp/2 (1− z)
(q+1)/2−n

cos

((
7

3
− 2n+ p+ q

)
sin−1 √z − π

2
p

)
.

Proof Take a = 7
3 − 2n , k = n− 1 , ℓ = n− 1 , and z = sin2 x in [26, Theorem 6.1],(

a+1
2

)
ℓ(

1
2

)
ℓ

2F1

(
a
2 ,−

a
2 − k − ℓ
1
2 − k

∣∣∣∣ sin2 x)

=

k∑
p=0

ℓ∑
q=0

2p+q (−k)p (−ℓ)q (a)p+q

(−2k)p (−2ℓ)q p!q!
sinp x cosq x cos

(
ax+ (p+ q)x− π

2
p
)
,

to arrive at (
5
3 − n

)
n−1(

1
2

)
n−1

2F1

(
7
6 − n, 5

6 − n
3
2 − n

∣∣∣∣ z)

=

n−1∑
p=0

n−1∑
q=0

2p+q (1− n)p (1− n)q
(
7
3 − 2n

)
p+q

(2− 2n)p (2− 2n)q p!q!

zp/2 (1− z)
q/2

cos

((
7

3
− 2n+ p+ q

)
sin−1 √z − π

2
p

)
.

Finally, apply Euler transformation formula (2.6), to obtain (3.11), as we wanted to prove. 2

3.2. Application: Definite integral

Theorem 3.4 For Re (2p− x) > 0 , the following infinite integral holds true:∫ ∞

0

e−pt

t5/6
D1/3

(
−
√
2xt
)
dt (3.12)

=
2Γ
(
1
3

)
(2p+ x)

1/6

[
cos

(
1

3
cos−1

√
2x

2p+ x

)
− sin

(
1

3
sin−1

√
2x

2p+ x

)]
,

where Dν (z) denotes the parabolic cylinder function [8, Chap. VIII].

Proof Set a1 = 1
3 , b1 = 3

2 , and α = 2
3 in (1.14)†, taking into account (3.4), to obtain∫ ∞

0

e−st

t1/3
1F1

(
1
3
3
2

∣∣∣∣xt) dt =
3Γ
(
2
3

)
s1/6

√
x
sin

(
1

3
sin−1

√
x

s

)
. (3.13)

†It is worth noting that the other choice, i.e. a1 = 2
3

and α = 1
3

, leads to nonconvergent integrals.
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Apply now the following formula with a = 1
3 [24, Eqn. 7.11.1(10)]:

1F1

(
a
3
2

∣∣∣∣ z) =
2a−5/2

√
π z

Γ

(
a− 1

2

)
ez/2

[
D1−2a

(
−
√
2z
)
−D1−2a

(√
2z
)]

,

hence the RHS of (3.13) becomes:

∫ ∞

0

e−st

t1/3
1F1

(
1
3
3
2

∣∣∣∣xt) dt (3.14)

=
2−13/6

√
π x

Γ

(
−1

6

)[∫ ∞

0

e−(s−x/2)t

t5/6
D1/3

(
−
√
2xt
)
dt−

∫ ∞

0

e−(s−x/2)t

t5/6
D1/3

(√
2xt
)
dt

]
.

Consider now the infinite integral [8, Eqn. 8.3(11)]:

∫ ∞

0

e−zt

t1−β/2
D−ν

(
2
√
kt
)
dt =

21−β−ν/2
√
π Γ (β)

Γ
(

ν+β+1
2

)
(z + k)

β/2
2F1

(
ν
2 ,

β
2

ν+β+1
2

∣∣∣∣ z − k

z + k

)
,

Reβ > 0,Re z/k > 0,

and the reduction formula [24, Eqn. 7.3.1(83)]:

2F1

(
a,−a

1
2

∣∣∣∣ z) = cos
(
2a sin−1 √z

)
,

to arrive at ∫ ∞

0

e−(s−x/2)t

t5/6
D1/3

(√
2xt
)
dt =

25/6Γ
(
1
3

)
s1/6

cos

(
1

3
cos−1

√
x

s

)
. (3.15)

Therefore, taking into account (3.13)-(3.15), as well as [17, Eqns. 1.2.1&3]:

Γ
(
2
3

)
Γ
(
− 1

6

)
Γ
(
1
3

) =
−1

6× 21/3
√
π
,

after some algebra, we conclude (3.12), as we wanted to prove. 2

4. Case m = 4

In this case, (1.1) becomes
x4 − x+ t = 0. (4.1)

To solve (4.1), we consider p = 0 , q = −1 and r = t in the solution of the quartic equation given in
Appendix B , i.e. (B.1). Thereby, (B.5) and (B.6) become

γ =
1

2

(
α2 +

1

α

)
, (4.2)

β =
t

γ
. (4.3)
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Therefore, setting ξ = α2 , the resolvent cubic (B.4) is

ξ3 − 4tξ − 1 = 0,

which can be solved taking in (A.1) the ‘− ’ sign, m = 4t
3 and n = − 1

2 . Thereby, according to (A.2) and (A.3),

and defining z = 4
(
4t
3

)3 , we arrive at

ξ (z) =

 −22/3z1/6 cosh
(

1
3 cosh

−1
(

−1√
z

))
, z ≤ 1,

−22/3z1/6 cos
(

1
3 cos

−1
(

−1√
z

))
, z ≥ 1.

(4.4)

Note that both branches in (4.4) are equivalent, if we consider z ∈ C , thus let us define the following
function:

Definition 4.1

g (z) = −z1/6 cosh

(
1

3
cosh−1

(
−1√
z

))
. (4.5)

By inspection, the solution of (1.1) for n = 4 corresponding to (1.6) is just the solution x1 in (B.2), i.e.

x1 =
1

2

(
−α+

√
α2 − 4β

)
. (4.6)

Therefore, from (1.6) on the one hand, and from (4.2)-(4.6) on the other hand, we finally obtain:

Theorem 4.2 For z ∈ C , we have

3F2

(
1
4 ,

1
2 ,

3
4

2
3 ,

4
3

∣∣∣∣ z) =
4

3
z−1/3

[√
g (z) +

3z1/3
√

g (z)

1− 2 [g (z)]
3/2

−
√
g (z)

]
. (4.7)

Remark 4.3 We can calculate the LHS of (4.7) for z = 1 , taking a = 1
4 , c = 1

2 and d = 1
3 in Whipple’s sum

(1.13), and using the gamma values given in [27], to obtain:

3F2

(
1
4 ,

1
2 ,

3
4

2
3 ,

4
3

∣∣∣∣ 1) =
π Γ
(
2
3

)
Γ
(
4
3

)
Γ
(
11
24

)
Γ
(
17
24

)
Γ
(
19
24

)
Γ
(
25
24

) =
4

3
,

which is the result that we obtain on the RHS of (4.7).

4.1. Applications: Quadratic transformation and definite integral

Theorem 4.4 For |z| < 1 , we have

3F2

(
1
2 ,

5
6 ,

1
6

2
3 ,

4
3

∣∣∣∣ z) =
1√
1− z

H

(
−4z

(1− z)
2

)
, (4.8)

where

H (t) =
4

3
t−1/3

[√
g (t) +

3 t1/3
√

g (t)

1− 2 [g (t)]
3/2

−
√

g (t)

]
.
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Proof Take α = 1
4 , λ = 1

3 , and µ = − 1
3 in the the quadratic transformation [14]:

3F2

(
2α, 2α+ λ, 2α+ µ

1− λ, 1− µ

∣∣∣∣x)

= (1− x)
−2α

3F2

(
α, α+ 1

2 , 1− 2α− λ− µ
1− λ, 1− µ

∣∣∣∣ −4x

(1− x)
2

)
,

to obtain,

3F2

(
1
2 ,

5
6 ,

1
6

2
3 ,

4
3

∣∣∣∣x) =
1√
1− x

3F2

(
1
4 ,

3
4 ,

1
2

2
3 ,

4
3

∣∣∣∣ −4x

(1− x)
2

)
. (4.9)

From (4.7) and (4.9), we arrive at (4.8), as we wanted to prove. 2

Remark 4.5 We can calculate the LHS of (4.8) for the branch point z = 1 taking a = 1
6 , c = 1

2 , and d = 2
3

in (1.13), as well as the gamma values found in [27], resulting in

3F2

(
1
2 ,

5
6 ,

1
6

2
3 ,

4
3

∣∣∣∣ 1) =
π Γ
(
2
3

)
Γ
(
4
3

)
Γ
(

5
12

)
Γ2
(
3
4

)
Γ
(
13
12

) = 23/2 3−3/4.

Theorem 4.6 From the result (4.7), we obtain the following identity involving the product of two Legendre
functions:

P
1/3
−1/6

(√
2

1 +
√
1− z

)
P

−1/3
−1/6

(√
2

1 +
√
1− z

)
(4.10)

=

√
6
(
1 +

√
1− z

)
π z1/3

[√
g (z) +

3z1/3
√
g (z)

1− 2 [g (z)]
3/2

−
√
g (z)

]
.

Proof We found in the literature [24, Eqn. 7.4.1(10)]:

3F2

(
a, 1− a, 1

2
b, 2− b

∣∣∣∣ z)

= 2F1

(
a, 1− a
2− b

∣∣∣∣ 1−√
1− z

2

)
2F1

(
a, 1− a

b

∣∣∣∣ 1−√
1− z

2

)
,

thus, taking a = 1
4 and b = 3

3 , we have

3F2

(
1
4 ,

1
2 ,

3
4

2
3 ,

4
3

∣∣∣∣ z) (4.11)

= 2F1

(
1
4 ,

3
4

4
3

∣∣∣∣ 1−√
1− z

2

)
2F1

(
1
4 ,

3
4

2
3

∣∣∣∣ 1−√
1− z

2

)
.
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Also, setting a = 1
4 and c = 2

3 ,
4
3 in (2.32), we have

2F1

(
1
4 ,

3
4

2
3

∣∣∣∣ z) = 2−1/3Γ

(
2

3

)
z1/6 (1− z)

−5/12
P

1/3
−1/6

(
1√
1− z

)
, (4.12)

2F1

(
1
4 ,

3
4

4
3

∣∣∣∣ z) = 21/3Γ

(
4

3

)
z−1/6 (1− z)

−1/12
P

−1/3
−5/6

(
1√
1− z

)
. (4.13)

Therefore, inserting (4.12) and (4.13) in (4.11), taking into account the property (2.37), and knowing, according
to [20, Eqn. 43:4:5], that Γ

(
2
3

)
Γ
(
4
3

)
= 2π

3
√
3

, we obtain (4.10), as we wanted to prove. 2

5. Conclusions
We have considered the solution of xm−x+ t = 0 for m = 2, 3, 4 , both in terms of hypergeometric functions as
well as in terms of elementary functions. Thereby, we have obtained some reduction formulas of hypergeometric
functions. In order to extend the latter results, we have applied the differentiation formulas (2.4), (2.22), (2.26)
and (2.35), as well as the integration formula stated in (1.14). Consequently, we have derived new identities
and infinite integrals involving special functions, i.e. the incomplete beta function, the lower incomplete gamma
function, the parabolic cylinder function, and the Legendre function. Whenever possible, we have derived
other elementary representations of the hypergeometric functions presented throughout the paper by applying
formulas found in the literature, but not explicitly provided in it. All the results have been checked with
MATHEMATICA and are available at https://bit.ly/2PyPz6Y.

A. The solution of the cubic equation

According to [18], in the solution of the depressed cubic equation:

x3 ± 3mx+ 2n = 0, m > 0, (A.1)

we may distinguish the following cases:

Case I Sign ‘+ ’ in (A.1). One real root and two complex roots:

x1 = −2
√
m sinh

(
sinh−1

(
nm−3/2

)
3

)
,

x2,3 =
√
m

[
sinh

(
sinh−1

(
nm−3/2

)
3

)
± i

√
3 cosh

(
sinh−1

(
nm−3/2

)
3

)]
.

Case II Sign ‘− ’ in (A.1) and n2 −m3 > 0 . One real root and two complex roots.

x1 = −2
√
m cosh

(
cosh−1

(
nm−3/2

)
3

)
, (A.2)

x2,3 =
√
m

[
cosh

(
cosh−1

(
nm−3/2

)
3

)
± i

√
3 sinh

(
cosh−1

(
nm−3/2

)
3

)]
.
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Case III Sign ‘− ’ in (A.1) and n2 −m3 < 0 . Three real roots.

x1 = −2
√
m cos

(
cos−1

(
nm−3/2

)
3

)
, (A.3)

x2,3 =
√
m

[
cos

(
cos−1

(
nm−3/2

)
3

)
±

√
3 sin

(
cos−1

(
nm−3/2

)
3

)]
.

B. The solution of the quartic equation

According to Descartes solution of the quartic equation [12], the four solutions of the depressed quartic equation:

x4 + p x2 + q x+ r = 0, (B.1)

are given by:

x1,2 =
1

2

(
−α±

√
α2 − 4β

)
, (B.2)

x3,4 =
1

2

(
α±

√
α2 − 4γ

)
, (B.3)

where α is a solution of the resolvent bicubic equation:

α6 + 2pα4 + (p− 4r)α2 − q2 = 0, (B.4)

and

γ =
1

2

(
p+ α2 +

q

α

)
, (B.5)

β =
r

γ
. (B.6)

Note that the resolvent equation can be solved in α2 with the solution described in Appendix A .

C. Finite sums
According to [26, Eqn. 3.1], we have

2F1

(
a
2 ,

a+1
2 + ℓ

a+ k + ℓ+ 1

∣∣∣∣ 1− z

)
(C.1)

= zk/2
(
1 +

√
z

2

)−a−k−ℓ

F3

(
k + 1, ℓ+ 1;−k,−ℓ

a+ k + ℓ+ 1

∣∣∣∣ √z − 1

2
√
z

,
1−

√
z

2

)
,

where the Apell F3 bivariate function is defined as [21, Eqn. 16.13.3]:

F3

(
a1, a2; b1, b2

c

∣∣∣∣x, y) =

∞∑
p=0

∞∑
q=0

(a1)p (a2)q (b1)p (b2)q
(c)p+q p!q!

xp yq.
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Proposition C.1 For k = 0, 1, 2, . . . we have

2F1

(
a
2 ,

a+1
2

a+ k + 1

∣∣∣∣ 1− z

)
(C.2)

= zk/2
(

2

1 +
√
z

)a+k k∑
p=0

(k + p)!

p! (k − p)! (a+ k + 1)p

(
1−

√
z

2
√
z

)p

.

Proof Take ℓ = 0 in (C.1) recalling that

(0)n =

{
1, n = 0,
0, n ≥ 1,

to obtain

2F1

(
a
2 ,

a+1
2

a+ k + 1

∣∣∣∣ 1− z

)
(C.3)

= zk/2
(

2

1 +
√
z

)a+k ∞∑
p=0

(k + 1)p (−k)p
p! (a+ k + 1)p

(√
z − 1

2
√
z

)p

,

Now, apply the property [20, Eqn. 18:5:1]

(−x)n = (−1)
n
(x− n+ 1)n , (C.4)

to rewrite (C.3) as (C.2), as we wanted to prove. 2

Proposition C.2 For k = 1, 2, . . . we have

2F1

(
a
2 ,

a+1
2

a− k + 1

∣∣∣∣ 1− z

)
(C.5)

= z−k/2

(
2

1 +
√
z

)a−k k−1∑
p=0

(k + p− 1)!

p! (k − p− 1)! (a− k + 1)p

(
1−

√
z

2
√
z

)p

.

Proof Perform the substitution k → −k in (C.3) and apply again (C.4) to complete the proof. 2
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