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Abstract: In this paper, we investigate the existence of positive periodic solutions of a third-order nonlinear integro-
differential equation with distributed delays, by using the Green function and the Krasnosel’skii fixed point theorem in
cones of Banach spaces, providing new results on this field. Three examples are analyzed to illustrate the effectiveness
of the abstract results.
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1. Introduction
Delay differential equations form an important branch of functional differential equations that take into account
the dependence on their history, which makes it possible to predict the future evolution of the system in a more
reliable and efficient way. Such processes take place in the theories of optimal control, population dynamics,
economics, mathematical ecological models, and other biotechnological systems, but they are characterized by
specific properties which make their study difficult in both concepts and techniques. Note that many results
concerning the theory of delay functional differential equations can be found in the monographs by Hale and
Meyer [16], Hale and Lunel [17], Kuang [19]amongst others.

Third-order differential equations with and without delay have been studied by many authors, since they
describe several models derived from natural phenomena, such as wave propagation in thermally relaxing viscous
fluids or flexible space structures with internal damping, for example, a thin uniform rectangular panel and a
spaceship with flexible attachments, and many others (see, e.g., [5]- [7], [12], [14], [15], [26], [27]). This means
that it is interesting and meaningful to study the properties of the solutions of the differential equations of the
third order with and without delay.

Recently, intensive scientific work has been carried out in various dynamical aspects of third-order delay
differential equations, functional delay differential equations, and many results have been reported in the
literature. For instance, uniqueness of periodic solutions and some other fundamental properties of solutions
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of certain delay differential equations have been discussed in ([1]- [4], [10], [11], [18], [20]- [25], [29], [32], [33]).
Some classical tools have been used to study delay differential equation in the literature, including the fixed
point index theorem [25], Krasnoselskii’s fixed point theorem ([2], [3]), the fixed point theorem in cones ([23],
[24], [29], [33]), fixed point theorem of Leray-Schauder type [11], Mawhin’s continuous theorem [4], and the
continuation theorem of coincidence degree theory [1].

As far as we know, the existence of positive periodic solutions for third-order integro-differential equations
with distributed delay that are considered in the present paper have not been investigated yet. For this reason,
in this paper, we make a first attempt to fill this gap and obtain new sufficient conditions for the existence of one
positive periodic solution thanks to the use of a fixed point theorem on cones. We are particularly motivated
and inspired by the papers [2], [22], [23], [24], [25], [33] and the references therein.

In [28], the following third-order nonlinear delay differential equation with periodic coefficients is consid-
ered:

y′′′(t) + p(t)y′′ (t) + q(t)y′ (t) + r(t)y (t) = f(t, y (t)). (1.1)

By applying a fixed point theorem index, the authors derived some verifiable sufficient conditions for the
existence of a positive periodic solution to (1.1) .

Very recently, Ardjouni and Djoudi [2] considered the following third-order nonlinear delay differential
equation with periodic coefficients:

y′′′(t) + p(t)y′′ (t) + q(t)y′ (t) + r(t)y (t) = f(t, y (t− τ (t))) +
d

dt
g(t, y (t− τ (t))). (1.2)

Thanks to the Green function and the Krasnoselskii fixed point theorem, they obtained a set of easily verifiable
sufficient conditions for the existence of positive periodic solutions to equation (1.2) .

In 2006, Li and Wang [22] studied the existence of positive periodic solutions of the following two kinds
of nonlinear neutral differential equations

d

dt
(y (t)− cy (t− τ (t))) = −a(t)y (t) + g(t, y (t− τ (t)) , (1.3)

and
d

dt

(
y (t)− c

∫ 0

−∞
K (r) y (t+ r) dr

)
= −a(t)y (t) + b (t)

∫ 0

−∞
K (r) g (t, y (t+ r)) dr. (1.4)

By using the theory of fixed point index in cones, sufficient conditions are presented for the existence of positive
periodic solutions of two kinds of neutral differential equations with periodic coefficients.

In [33], the authors analyzed the following impulsive equations

y′ (t) = −a(t)y(t) +
∫ 0

−∞ K (r) g (t, y (t+ r)) dr, t ̸= tk,

y(t+k ) = y(t−k ) + Ik (y(tk)) , t = tk, k ∈ Z,
(1.5)

y′ (t) = a(t)y(t)−
∫ 0

−∞ K (r) g (t, y (t+ r)) dr, t ̸= tk,

y(t+k ) = y(t−k ) + Ik (y(tk)) , t = tk, k ∈ Z,
(1.6)

where y(t+k ) and y(t−k ) represent the right and the left limit of y(tk), a ∈ C (R,R+) , g ∈ C (R× R+,R+) , Ik ∈
C (R+,R+) , a and g (t, y) are ω−periodic functions, where ω is a positive constant. Moreover, K ∈ C (R−,R+)
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with
∫ 0

−∞ K (r) dr = 1 . There exists an integer q > 0 such that tk+q = tk + ω, I(k+q) (y (tk+q)) = Ik (y (tk)) ,

k ∈ Z, where 0 < t1 < t2 < ... < tq < ω .
By using the theory of fixed point index in cones, existence theory for single and multiple positive periodic

solutions to a kind of nonautonomous Volterra integro-differential equations with impulse effects (1.5) , (1.6)

has been investigated.
Motivated by the above statements, in this paper we study a third-order nonlinear integro-differential

equations with distributed delays of the following form, by using a fixed point on a cone:

y′′′(t) + p(t)y′′ (t) + q(t)y′ (t) + r(t)y (t) (1.7)

=
d

dt

∫ 0

−∞
K (r) c (t) y (t+ r) dr

+d (t)

∫ 0

−∞
K (r) f (t, y (t+ r)) dr,

where d ∈ C (R,R+ \ {0}) , c, p, q, r ∈ C (R,R+) . The function f : R × R+ → R+ is continuous. Moreover, K

is a continuous and integrable function on ]−∞, 0] with
∫ 0

−∞ K (r) dr = 1 .

In order to prove our main results in the next section, we need the following definition and theorem.

Definition 1.1. (see [30]) Let X be a Banach space and let K be a closed, nonempty subset of X . K is said
to be a cone if

i) αx+ βy ∈ K for all x, y ∈ K and all α, β ≥ 0;

ii) y,−y ∈ K imply y = 0.

We now state the Krasnosel’skii fixed point theorem.

Theorem 1.1. (see [14], Theorem 2.3.3 on p. 93 ). Let X be a Banach space, and let K ⊂ X be a cone in X.

Assume that Ω1 and Ω2 are open subsets of X with 0 ∈ Ω1 , Ω1 ⊂ Ω2 and let

Φ : K ∩
(
Ω2 \ Ω1

)
→ K,

be a completely continuous operator such that either
a) ∥Φy∥ ≤ ∥y∥ for y ∈ K ∩ ∂Ω1 and ∥Φy∥ ≥ ∥y∥ for y ∈ K ∩ ∂Ω2; or
b) ∥Φy∥ ≥ ∥y∥ for y ∈ K ∩ ∂Ω1 and ∥Φy∥ ≤ ∥y∥ for y ∈ K ∩ ∂Ω2.

Then Φ has a fixed point in K ∩
(
Ω2 \ Ω1

)
.

This paper is devoted to studying the existence of positive periodic solutions of Equation (1.7) by using the
Krasnosel’skii fixed point theorem and some mathematical analysis techniques. Equation (1.7) is a nonneutral
third-order nonlinear differential equation, including the existing classical third-order differential equations,
as well as the equations considered in ([27, 28]). Therefore, the results of this paper are more general and
better applicable. The research method of this paper is different from the existing research methods (see,
e.g., [2, 25, 28]). For more results about third-order differential equation with and without delays, see, e.g,
([1, 4, 8, 10, 25–27, 31]) and cited references.
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The organization of this paper is as follows. In Section 2, we present the inversion of equation and state
some preliminary results needed in later sections. We also describe the Green function of Eq. (1.7) , which
plays an important role in this paper. In Section 3, we establish our main results ensuring the existence of
positive periodic solutions by applying the fixed point theorem in cones established previously. In Section 4,
three examples are exhibited to illustrate that our results are feasible and more general than previous ones in
the literature.

2. Green’s function and periodicity

In this section, we state and define the Green function for periodic solutions of third-order nonlinear integro-
differential equations with distributed delays (1.7) .

Let
Cω = {y ∈ C (R,R) , y(t+ ω) = y(t) for t ∈ R} ,

with the norm
∥y∥ = max

t∈[0,ω]
|y(t)| .

It is easy to verify that (Cω, ∥.∥) is a Banach space .
In this paper, we give the assumptions as follows that will be used in the main results.

(A1) There exist differentiable ω–periodic functions a1, a2 ∈ C (R,R+) and a positive real constant ρ such
that  a1 (t) + ρ = p (t) ,

a′1 (t) + a2 (t) + ρa1 (t) = q (t) ,
a′2 (t) + ρa2 (t) = r (t) .

(A2) p, q, r ∈ C (R,R+) are ω–periodic functions and

∫ ω

0

q (u) du > 0,

∫ ω

0

p (u) du > ρω.

(A3) The function f ∈ C (R× R+,R+) is a ω−periodic in t , and c ∈ C (R,R+) , d ∈ C (R,R+ \ {0}) are
ω−periodic. For all y ∈ R+,

f (t, y) ≥ ρ
c (t)

d (t)
y, ∀t ∈ [0, ω] .

We consider
y′′′(t) + p(t)y′′ (t) + q(t)y′ (t) + r(t)y (t) = h (t) , (2.1)

where h ∈ Cω . Obviously, by condition (A1), Eq. (2.1) can be transformed into

{
z′ (t) + ρz (t) = h (t) ,
y′′ (t) + a1(t)y

′ (t) + a2(t)y (t) = z (t) .

Lemma 2.1 (see [3]). If z, h ∈ Cω, then z is a solution of equation

z′ (t) + ρz (t) = h (t) ,
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if and only if

z (t) =

∫ t+ω

t

G1 (t, s)h (s) ds, (2.2)

where

G1 (t, s) =
exp (ρ (s− t))

exp (ρω)− 1
. (2.3)

Corollary 2.1 (see [21]). Green function G1 satisfies the following properties

G1 (t+ ω, s+ ω) = G1 (t, s) , G1 (t, t+ ω) = G1 (t, t) exp (ρω) ,

G1 (t+ ω, s) = G1 (t, s) exp (−ρω) , G1 (t, s+ ω) = G1 (t, s) exp (ρω) ,

∂

∂t
G1 (t, s) = −ρG1 (t, s) ,

∂

∂s
G1 (t, s) = ρG1 (t, s) ,

and
m1 ≤ G1 (t, s) ≤ M1, (2.4)

where

M1 =
1

exp (ρω)− 1
, m1 =

exp (ρω)

exp (ρω)− 1
. (2.5)

Lemma 2.2 (see [32]). Suppose that (A1) and (A2) hold and

R1

[
exp

(∫ ω

0
a1 (u) du

)
− 1
]

Q1ω
≥ 1, (2.6)

where

R1 = max
t∈[0,ω]

∣∣∣∣∣
∫ t+ω

t

exp
(∫ ω

0
a1 (u) du

)
exp

(∫ ω

0
a1 (u) du

)
− 1

a2 (s) ds

∣∣∣∣∣ ,
Q1 =

(
1 + exp

(∫ ω

0

a1 (u) du

))2

R
2

1.

Then there are continuous ω− periodic functions a and b such that

b (t) > 0,

∫ ω

0

a (u) du > 0,

and
a (t) + b (t) = a1 (t) , b′ (t) + a (t) b (t) = a2 (t) , for t ∈ R.

Lemma 2.3 (see [21]). Suppose the conditions of Lemma 2.2 hold and y ∈ Cω. Then, the equation

y′′ (t) + a1 (t) y
′ (t) + a1 (t) y (t) = h (t) ,
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possesses an ω− periodic solution. Moreover, the periodic solution can be expressed by

y (t) =

∫ t+T

t

G2 (t, s)h (t) ds, (2.7)

where

G2 (t, s) =

∫ s

t
exp

[∫ u

t
b (v) dv +

∫ s

u
a (v) dv

]
du[

exp
(∫ ω

0
a (u) du

)
− 1
] [
exp

(∫ ω

0
b (u) du

)
− 1
]

+

∫ t+ω

s
exp

[∫ u

t
b (v) dv +

∫ s+ω

u
a (v) dv

]
du[

exp
(∫ ω

0
a (u) du

)
− 1
] [

exp
(∫ ω

0
b (u) du

)
− 1
] . (2.8)

Corollary 2.2 (see [32]). The Green function G2 satisfies the following properties:

G2 (t+ ω, s+ ω) = G2 (t, s) , G2 (t, t+ ω) = G2 (t, t) ,

G2 (t+ ω, s) = exp

(
−
∫ ω

0

b (v) dv

)

×
[
G2 (t, s) +

∫ t+ω

t

E (t, u)F (u, s) du

]
,

∂

∂s
G2 (t, s) = a (s)G2 (t, s)−

exp
(∫ s

t
b (v) dv

)
exp

(∫ ω

0
b (v) dv

)
− 1

,

∂

∂t
G2 (t, s) = −b (t)G2 (t, s) +

exp
(∫ s

t
a (v) dv

)
exp

(∫ ω

0
a (v) dv

)
− 1

,

where

E (t, s) =
exp

(∫ s

t
b (v) dv

)
exp

(∫ ω

0
b (v) dv

)
− 1

, F (t, s) =
exp

(∫ s

t
a (v) dv

)
exp

(∫ ω

0
a (v) dv

)
− 1

. (2.9)

Lemma 2.4 (see [21]). Let A =
∫ ω

0
a1(u)du and B = ω2 exp

(
1

ω

∫ ω

0
ln (a2 (u)) du

)
. If

A2 ≥ 4B, (2.10)

then

min

{∫ ω

0

a(u)du,

∫ ω

0

b(u)du

}
≥ l,

max

{∫ ω

0

a(u)du,

∫ ω

0

b(u)du

}
≤ L,

where

l =
1

2

(
A−

√
A2 − 4B

)
, L =

1

2

(
A+

√
A2 − 4B

)
. (2.11)
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Corollary 2.3 (see [32]). Functions G2, E , and F satisfy

m2 ≤ G2 (t, s) ≤ M2, (2.12)

E (t, s) ≤ eL

el − 1
, (2.13)

F (t, s) ≤ eL, (2.14)

where

m2 =
ω

(exp (L)− 1)
2 , M2 =

ω
(
exp

∫ ω

0
a1(u)du

)
(exp (l)− 1)

2 , (2.15)

and
exp (L) ̸= 1, exp (l) ̸= 1.

Lemma 2.4 (see [8]). Suppose the conditions of Lemma 2.2 hold and h ∈ Cω. Then, the equation

y′′′(t) + p(t)y′′ (t) + q(t)y′ (t) + r(t)y (t) = h (t) ,

possesses an ω -periodic solution. Moreover, the periodic solution can be expressed by

y (t) =

∫ t+ω

t

G (t, s)h (s) ds, (2.16)

where

G (t, s) =

∫ t+ω

t

G2 (t, σ)G1 (σ, s) dσ. (2.17)

Corollary 2.4 (see [25]). The Green function G satisfies the following properties

G (t+ ω, s+ ω) = G (t, s) , G (t, t+ ω) = G (t, t) exp (ρω) ,

∂

∂t
G (t, s) = (exp (−ρω)− 1)G1 (t, s)G2 (t, s)

−b (t)G (t, s) +

∫ t+ω

t

F (t, σ)G1 (σ, s) dσ,

∂

∂s
G (t, s) = ρG (t, s) ,

and
m ≤ G (t, s) ≤ M, (2.18)

where

m =
ω2

(exp (l)− 1)
2
(exp (ρω)− 1)

, M =
ω2 exp

(
ρω +

∫ ω

0
a(u)du

)
(exp (l)− 1)

2
(exp (ρω)− 1)

, (2.19)

and
exp (ρω) ̸= 1, exp (l) ̸= 1.
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Before stating the main result of this paper, we establish the equivalent integral formulation for the solution of
equation (1.7) .

Lemma 2.5. Assume that (A1)-(A3) and (2.6) hold. The function y (·) is an ω−periodic solution of equation
(1.7) if and only if y (·) is an ω−periodic solution of the following equation

y (t) =

∫ t+ω

t

G (t, s)

[
d (s)

∫ 0

−∞
K (r) f (s, y (s+ r)) dr

− ρ

∫ 0

−∞
K (r) c (s) y (s+ r) dr

]
ds

+(exp (ρω)− 1)G (t, t)

∫ 0

−∞
K (r) c (s) y (s+ r) dr. (2.20)

Proof Let y ∈ Cω be a solution of (1.7) . From Lemma 2.4, we have

y (t) =

∫ t+ω

t

G (t, s)

[
d (s)

∫ 0

−∞
K (r) f (s, y (s+ r)) dr

+
∂

∂s

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)]
ds

=

∫ t+ω

t

G (t, s)

(
d (s)

∫ 0

−∞
K (r) f (s, y (s+ r)) dr

)
ds

+

∫ t+ω

t

G (t, s)
∂

∂s

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)
ds. (2.21)

Performing an integration by parts, we obtain

∫ t+ω

t

G (t, s)
∂

∂s

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)

= G (t, s)

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)∣∣∣∣t+ω

t

−
∫ t+ω

t

[
∂

∂s
G (t, s)

](∫ 0

−∞
K (r) c (s) y (s+ r))dr

)
ds

= G (t, t+ ω)

∫ 0

−∞
K (r) c (t+ ω) y (t+ ω + r))dr

−G (t, t)

∫ 0

−∞
K (r) c (t) y (t+ r))dr −

∫ t+ω

t

[
∂

∂s
G (t, s)

] ∫ 0

−∞
K (r) c (s) y (s+ r) drds

= (G (t, t) exp (ρω))

∫ 0

−∞
K (r) c (t) y (t+ r) dr −G (t, t)

∫ 0

−∞
K (r) c (t) y (t+ r) dr

−ρ

∫ t+ω

t

G (t, s)

∫ 0

−∞
K (r) c (s) y (s+ r) drds
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= (exp (ρω)− 1)G (t, t)

∫ 0

−∞
K (r) g(t, y (t+ r))dr

−ρ

∫ t+ω

t

G (t, s)

∫ 0

−∞
K (r) c (s) y (s+ r) drds. (2.22)

We obtain (2.20) by replacing (2.21) into (2.22) . 2

3. Existence of positive periodic solutions
This section is devoted to establish three theorems and two corollaries, which are the main results of our paper.
In the analysis we will carry out, we use the idea and concept of Green’s function for third-order periodic
solutions and transform equation (1.7) into an equivalent integral one. Then, by means of the Krasnosel’skii
fixed theorem in cones of Banach spaces, we show the existence of at least one positive periodic solution of Eq.
(1.7) in three different theorems. Some new and interesting sufficient conditions are obtained to guarantee the
existence of such positive periodic solutions to (1.7).

Since Eq. (2.20) is equivalent to Eq. (1.7), we just have to study the existence of positive periodic
solutions to (2.20). To this end, we will use Theorem 1.1 where we consider (X, ∥.∥) = (Cω, ∥.∥).

Now, let

δ =
m

M
=

1

exp
(
ρω +

∫ ω

0
a(u)du

) ∈ (0, 1) ,

and define K as a cone in Cω by

K = {y(·) ∈ Cω : y(t) ≥ 0, and y(t) ≥ δ ∥y∥ , t ∈ [0, ω]} ,

where m,M are given by (2.19) . It is not difficult to check that K is a cone in Cω .
Thanks to (2.20) , we define operator Φ : Cω → Cω by:

(Φy) (t) =

∫ t+ω

t

G (t, s)

[(
d (s)

∫ 0

−∞
K (r) f (s, y (s+ r)) dr

)

− ρ

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)]
ds

+(exp (ρω)− 1)G (t, t)

(∫ 0

−∞
K (r) c (t) y (t+ r) dr

)
. (3.1)

To simplify our description, we introduce the following constants

π∗ = exp (L) , d∗ = max
t∈[0,ω]

|d(t)| , c∗ = max
t∈[0,ω]

|c(t)| , b∗ = max
t∈[0,ω]

|b(t)| ,

d̂ = min
t∈[0,ω]

|d(t)| , ĉ = min
t∈[0,ω]

|c(t)| , θ̃ = exp (ρω)− 1. (3.2)

Thus, the existence of a positive periodic solution of equation (1.7) is equivalent to finding a fixed point of
operator Φ .
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Lemma 3.1. Assume (A1)-(A3) hold. Then Φ: K → K is well defined .

Proof From (3.1) , it is easy to verify that (Φy) (t) is continuous in t . Moreover, for any y ∈ K,

(Φy) (t+ ω)

=

∫ t+2ω

t+ω

G (t+ ω, s)

[
d (s)

(∫ 0

−∞
K (r) f (s, y (s+ r)) dr

)

− ρ

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)]
ds

+(exp (ρω)− 1)G (t+ ω, t+ ω)×

×
(∫ 0

−∞
K (r) c (t+ ω) y (t+ ω + r) dr

)

=

∫ t+ω

t

G (t+ ω, s+ ω)

[
d (s+ ω)

(∫ 0

−∞
K (r) f (s+ ω, y (s+ ω + r)) dr

)

−ρ

(∫ 0

−∞
K (r) c(s+ ω)y (s+ ω + r))dr

)
ds

]

+(exp (ρω)− 1)G (t+ ω, t+ ω)

(∫ 0

−∞
K (r) c(t+ ω)y (t+ ω + r))dr

)

=

∫ t+ω

t

G (t, s)

[
d (s)

(∫ 0

−∞
K (r) f (s, y (s+ r)) dr

)

− ρ

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)]
ds

+(exp (ρω)− 1)G (t, t)

(∫ 0

−∞
K (r) c(t)y (t+ r))dr

)
= (Φy) (t) .

Therefore, (Φy) ∈ Cω . By condition (A3), we have

(Φy) (t) ≥ 0, for all y ∈ K.

Also, for y ∈ K , by using (2.19) and (3.1) , we deduce

|(Φy)| ≤ M

∫ ω

0

[(
d (s)

∫ 0

−∞
K (r) f (s, y (s+ r)) dr

)

−ρ

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)]
ds

+ (exp (ρω)− 1)

(∫ 0

−∞
K (r) c(t)y (t+ r))dr

)]
.
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Noticing that

G (t, s)

[
d (t)

∫ 0

−∞
K (r) f (t, y (t+ r)) dr − ρ

∫ 0

−∞
K (r) c(t)y (t+ r))dr

]
≥ 0,

we obtain

(Φy) (t) ≥ m

∫ ω

0

[(
d (s)

∫ 0

−∞
K (r) f (s, y (s+ r)) dr

)

−ρ

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)]
ds

+ (exp (ρω)− 1)

(∫ 0

−∞
K (r) c(t)y (t+ r))dr

)]
≥ m

M
∥Φy∥ ≥ δ ∥Φy∥ .

That is, ΦK is contained in K. The proof of Lemma 3.1 is complete. 2

Lemma 3.2. Assume that (A1)-(A3), (2.6) , (2.10) hold. Then Φ : K → K is completely continuous.

Proof Now we have to show that Φ is continuous. Let yn, (n = 1, 2, ...) be a sequence in K such that

lim
n→∞

∥yn − y0∥ = 0.

Since K is closed, we have y0 ∈ K. Since y, f (t, y) are ω -periodic and continuous functions, f (s, yn (s+ r)) →
f (s, y0 (s+ r)) uniformly, for s ∈ [0, ω] .

|(Φyn) (t)− (Φy0) (t)|

≤
∫ t+ω

t

|G (t, s)| |d∗|
∣∣∣∣∫ 0

−∞
K (r) |f (t, yn (t+ r))− f (t, y0 (t+ r))| dr

∣∣∣∣ ds
+ρ

∫ t+ω

t

|G (t, s)|
∫ 0

−∞
K (r) |f (t, yn (t+ r)) dr − f (t, y0 (t+ r))| dr

+θ̃c∗M

∫ 0

−∞
K (r) |yn (t+ r)− y0 (t+ r)|)dr.

By Lebesgue dominated convergence theorem and (3.1) , we obtain

∥(Φyn)− (Φy0)∥ → 0.

This shows that Φ is a continuous on K .
Next, we show that Φ is completely continuous. Let λ be any positive constant and

Sλ = {y ∈ K : ∥y∥ ≤ λ} ,
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be a bounded set in K . Then for y ∈ K,

|(Φy) (t)| ≤ M

[∫ ω

0

|d (s)|
∣∣∣∣∫ 0

−∞
K (r) f (s, y (s+ r)) dr

∣∣∣∣
+ρ

(∫ 0

−∞
K (r) |c (s)| |y (s+ r)| dr

)
ds

+ (exp (ρω)− 1)

∫ 0

−∞
K (r) |c(t)| |y (t+ r))| dr

]

≤ Md∗
∫ ω

0

∫ 0

−∞
K (r) drds max

s∈[0,ω],∥y∥≤λ
|f (s, y)|

+ρMc∗
∫ ω

0

∫ 0

−∞
K (r) drds max

s∈[0,ω]
|y (s)|

+Mθ̃c∗
∫ 0

−∞
K (r) dr max

s∈[0,ω]
|y (s)|

≤ Mωd∗ max
s∈[0,ω],∥y∥≤λ

|f (s, y)|+ ρωMc∗λ+Mλθ̃c∗

= U.

Therefore, for any y ∈ Sλ,

∥Φu∥ ≤ U,

which implies that Φ(Sλ) is a uniformly bounded set. By taking the derivative in (3.1) ,

d (Φy) (t)

dt

=

∫ t+ω

t

[(exp (−ρω)− 1)G1 (t, t)G2 (t, s)− b (t)G (t, s)

+

∫ t+ω

t

F (t, µ)G1 (t, µ) dµ

]
×

×
[
d (s)

∫ s

−∞
K (r) f (s, y (s+ r)) dr − ρ

∫ 0

−∞
K (r) c(s)y (s+ r))dr

]
ds.
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Consequently, by invoking (2.5) , (2.14) , (2.15) , (2.19) , (3.2) , we have∣∣∣∣d (Φy) (t)dt

∣∣∣∣ =

∫ t+ω

t

[|(exp (−ρω)− 1)G1 (t, t)G2 (t, s)− b (t)G (t, s)|

+

∫ t+ω

t

|F (t, µ)G1 (t, µ)| dµ
]
×

×
[∣∣∣∣d (s) ∫ 0

−∞
K (r) f (s, y (s+ r)) dr

∣∣∣∣
+ρ

∣∣∣∣∫ 0

−∞
K (r) c(s)y (s+ r))dr

∣∣∣∣] ds
≤ [ω (exp (−ρω)− 1)M1M2 + ωb⋆M + ωM1π

∗]

×
[
d∗ max

s∈[0,ω],∥y∥≤λ
|f (s, y)|+ ρλ

]
= Q,

which implies that d (Φy) (t)

dt
is also uniformly bounded, for any y ∈ Sλ . Hence, {Φy : y ∈ K, ∥y∥ ≤ λ} is a

family of uniformly bounded and equicontinuous functions on [0, ω] . In view of the Arzelà-Ascoli Theorem (see,
Royden [30]), operator Φ is completely continuous. The proof of Lemma 3.2 is complete. 2

We can now state and prove our main results.

Theorem 3.1. In addition to conditions (A1)-(A3),(2.6) , (2.10) , let us further assume that the following
assumptions hold:
(A4)

lim inf
y→0

f (t, y)

y
= α (t) , and lim sup

y→∞

f (t, y)

y
= β (t) , (3.3)

where α, β are continuous ω–periodic functions on R.
(A5) ∫ ω

0

d (s)α (s) ds ≥ ρ

∫ ω

0

c (s) ds+
1

mδ
− θ̃ĉ, (3.4)

and ∫ ω

0

d (s)β (s) ds ≤ ρ

∫ ω

0

c (s) ds+
1

M

(
1− θ̃c∗

)
. (3.5)

Then, equation (1.7) possesses at least one positive ω− periodic solution.

Proof We first construct two sets Ω1 and Ω2 in order to apply Theorem 1.1. Since lim inf
y→0

f (t, y)

y
= α (t) ,

there exists R1 > 0 such that
f (t, y) ≥ α (t) y, for 0 < y ≤ R1.

Define now the open subset
Ω1 = {y(·) ∈ Cω : ∥y∥ < R1} .
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Then, ∂Ω1 = {y(·) ∈ Cω : ∥y∥ = R1} , while y ∈ K ∩ ∂Ω1, that is δ ∥y∥ ≤ y ≤ ∥y∥ = R1. Noticing that

G (t, s)

(
d (s)

∫ 0

−∞
K (r) f (s, y (s+ r)) dr − ρ

(∫ 0

−∞
K (r) c(s)y (s+ r))dr

))
≥ 0,

by noticing inequality (3.4) and the definition of Φ , we obtain

(Φy) (t) ≥ m

∫ t+ω

t

[
d (s)

∫ 0

−∞
K (r) f (s, y (s+ r)) dr − ρ

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)]
ds

+mθ̃

∫ 0

−∞
K (r) c(t)y (t+ r))dr (3.6)

≥ m

∫ ω

0

[d (s)α (s)− ρc (s)] y (s) ds+mθ̃c (t) y (t)

≥ mδR1

∫ ω

0

[d (s)α (s)− ρc (s)] ds+mδR1θ̃ĉ

≥ mδR1

mδ
−mδR1θ̃ĉ+mδR1θ̃ĉ

> R1 = ∥y∥ .

Therefore, we conclude that

∥Φy∥ > ∥y∥ for y ∈ K ∩ ∂Ω1. (3.7)

Next we construct the set Ω2. Since lim sup
y→∞

f (t, y)

y
= β (t) , there exists N such that

g (t, y) ≤ β (t) y, for y ≥ N.

Let

R2 > max

{
Mθ

1− c∗2θ̃ −M
∫ ω

0
(d (s)β (s)− ρc1 (s)) ds

,N

}
> R1,

where

θ = ω (d∗m̃ (f) + ρc∗2N) , m̃ (f) = max
(t,u)∈[0,ω]×[0,N ]

f (t, y) .

Define now the open set Ω2 = {y(·) ∈ Cω : ∥y∥ < R2} , E1 = {y(·) ∈ Cω : ∥y∥ < N} , E2 = {y(·) ∈ Cω : ∥y∥ > N} ,
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obviously Ω1 ⊂ Ω2. If y ∈ K ∩ ∂Ω2, by (3.1) , (3.5) , (2.19) , and (A3) , we have

(Φy) (t) ≤ M

∫ ω

0

[
d (s)

(∫ 0

−∞
K (r) f (s, y (s+ r)) dr

)

− ρ

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)]
ds

+M (exp (ρω)− 1)

∫ 0

−∞
K (r) c(s)y (s+ r) dr

≤ M

∫
E1

[
d (s)

(∫ 0

−∞
K (r) f (s, y (s+ r)) dr

)

− ρ

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)]
ds

+M

∫
E2

[
d (s)

(∫ 0

−∞
K (r) f (s, y (s+ r)) dr

)
(3.8)

− ρ

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)]
ds+Mθ̃

∫ 0

−∞
K (r) c(s)y (s+ r) dr

≤ Mωd∗ max
(s,u)∈[0,ω]×[0,N ]

f (s, y (s+ r)) +Mωρc∗N

+M

∫
E2

[
d (s)

∫ 0

−∞
K (r) f (s, y (s+ r)) dr − ρ

∫ 0

−∞
K (r) c(s)y (s+ r) dr

]
ds

+Mθ̃c∗R2

≤ Mω (d∗m̃ (f) + ρc∗N) +MR2

∫ ω

0

[d (s)β (s)− ρc (s)] ds+Mθ̃c∗R2

≤ Mθ +MR2

∫ ω

0

[d (s)β (s)− ρc (s)] ds+Mθ̃c∗R2

< R2,

and therefore
∥Φy∥ > ∥y∥ , ∀y ∈ K ∩ ∂Ω2. (3.9)

By Lemma 3.2, Φ is a completely continuous operator; from (3.7) and (3.9) , condition (i) of Theorem 1.1 is
fulfilled. Thus, Φ has at least one fixed point y ∈ K ∩

(
Ω2 \ Ω1

)
. By Theorem 1.1, we can conclude that Φ has

a fixed point y ∈ K ∩
(
Ω2 \ Ω1

)
and with R1 ≤ ∥y∥ ≤ R2, and y ≥ δ ∥y∥ ≥ δR1 > 0. In other words, equation

(1.7) has at least one positive periodic solution. 2

Theorem 3.2. Suppose that (A1)-(A3),(2.6) , (2.10) hold, and the following conditions are fulfilled,

A0 = lim
∥y∥→0

max
t∈[0,ω]

f (t, y)− ρ c(t)
d(t)y

∥y∥
= 0, (3.10)

A∞ = lim
y∈K,∥y∥→∞

min
t∈[0,ω]

f (t, y)− ρ c(t)
d(t)y

∥y∥
= ∞. (3.11)
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Then equation (1.7) has at least one positive ω–periodic solution.

Proof i) In view of (3.10) , there exist ε > 0 and corresponding R1 > 0 , such that

0 < ε <
1− θ̃Mc∗

Md∗
, (0 ≤ θ̃Mc∗ < 1),

and

f (t, y)− ρ
c (t)

d (t)
y ≤ ε ∥y∥ , for ∥y∥ ≤ R1, t ∈ [0, ω] .

Define the open subset Ω1 = {y(·) ∈ Cω : ∥y∥ < R1} , while y ∈ K ∩ ∂Ω1, that is δ ∥y∥ ≤ y ≤ ∥y∥ = R1, we
can have

(Φy) (t) =

∫ t+ω

t

G (t, s)

[(
d (s)

∫ 0

−∞
K (r) f (s, y (s+ r)) dr

)

− ρ

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)]
ds

+(exp (ρω)− 1)G (t, t)

(∫ 0

−∞
K (r) c (t) y (t+ r) dr

)

≤ M

∫ t+ω

t

d (s)

∫ 0

−∞
K (r)

[
f (s, y (s+ r))− ρ

c (s)

d (s)
y (s+ r) dr

]
drds

+θ̃M

(∫ 0

−∞
K (r) c (t) y (t+ r) dr

)
≤ Md∗ε ∥y∥+ θ̃Mc∗ ∥y∥

≤ ∥y∥ .

Hence,

∥Φy∥ ≤ ∥y∥ ,

namely

∥Φy∥ ≤ ∥y∥ , for each y ∈ K ∩ ∂Ω1. (3.12)

ii) In view of (3.11) , there exist D and corresponding R2 > R1 (δ)
−1 such that

δDmd̂+ δmĉθ̃ ≥ 1, f (t, y)− ρ
c (t)

d (t)
y ≥ D ∥y∥ , for y ≥ δ ∥y∥ , and ∥y∥ ≥ δR2.
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Define Ω2 = {y(·) ∈ Cω : ∥y∥ < R2} , obviously, Ω1 ⊂ Ω2. For y ∈ K ∩ ∂Ω2, we can have

(Φy) (t) =

∫ t+ω

t

G (t, s)

[(
d (s)

∫ 0

−∞
K (r) f (s, y (s+ r)) dr

)

− ρ

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)]
ds

+(exp (ρω)− 1)G (t, t)

(∫ 0

−∞
K (r) c (t) y (t+ r) dr

)

≥ m

∫ t+ω

t

d (s)

∫ 0

−∞
K (r)

[
f (s, y (s+ r))− ρ

c (s)

d (s)
y (s+ r) dr

]
drds

+mθ̃

(∫ 0

−∞
K (r) c (t) y (t+ r) dr

)
≥ md̂δDR2 +mĉθ̃δR2

≥
(
md̂Dδ +mĉθ̃δ

)
R2

≥ R2 = ∥y∥ ,

which leads to
(Φy) (t) ≥ ∥y∥ , for each y ∈ K ∩ ∂Ω2. (3.13)

By Lemma 3.2, Φ is a completely continuous operator; from (3.12) and (3.13) , condition (i) of Theorem 1.1 is
fulfilled. Thus, Φ has at least one fixed point y ∈ K ∩

(
Ω2 \ Ω1

)
, and y ≥ δ ∥y∥ ≥ δR1 > 0 which means y (·)

is a ω–periodic positive solution of (1.7) . This completes the proof. 2

For convenience and simplicity in the following discussion, we use the following notations:

F 0
R

2
= inf

y∈K∩δΩ2

min
t∈[0,ω]

(
f (t, y)

y
− ρ

c (t)

d (t)

)
, (3.14)

F∞
R1

= sup
y∈K∩δΩ1

max
t∈[0,ω]

(
f (t, y)

y
− ρ

c (t)

d (t)

)
. (3.15)

Theorem 3.3. Suppose that (A1)-(A3), (2.6) , (2.10) hold, and there are positive constants R1, R2 with R1 < R2

such that:

M
(
d∗F∞

R1
+ θ̃c∗

)
≤ 1, (3.16)

and

m
(
d̂F 0

R
2
+ θ̃ĉ

)
≥ 1. (3.17)

Then, there exists an ω–periodic solution which is a fixed point of Φ and satisfies R1 ≤ ∥y∥ ≤ R2 .
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Proof Define two open sets Ω1 and Ω2 with R1 < R2. Let Ω1 = {y(·) ∈ Cω : ∥y∥ < R1} . Then for any
y ∈ K ∩ ∂Ω1, we have δ ∥y∥ ≤ y ≤ ∥y∥ = R1. From this, the definition of Φ and F∞

R1
, it follows that

(Φy) (t) =

∫ t+ω

t

G (t, s)

[(
d (s)

∫ 0

−∞
K (r) f (s, y (s+ r)) dr

)

− ρ

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)]
ds

+(exp (ρω)− 1)G (t, t)

(∫ 0

−∞
K (r) c (t) y (t+ r) dr

)

≤ M

∫ t+ω

t

d (s)

∫ 0

−∞
K (r)

[
f (s, y (s+ r))− ρ

c (s)

d (s)
y (s+ r) dr

]
drds

+θ̃M

(∫ 0

−∞
K (r) c (t) y (t+ r) dr

)
≤

(
Md∗F∞

R1
+ θ̃Mc∗

)
∥y∥ . (3.18)

Hence, in view of (3.16) and (3.18) , we obtain

∥Φy∥ ≤ ∥y∥ , for each y ∈ K ∩ ∂Ω2. (3.19)

On the other hand, let Ω
2
= {y(·) ∈ Cω: ∥y∥ < R

2
} , obviously, Ω1 ⊂ Ω2. For y ∈ K ∩ ∂Ω

2
, then δ ∥y∥ ≤ y ≤

∥y∥ = R2 . From this, the definition of Φ and F 0
R2

, it follows that

(Φy) (t) =

∫ t+ω

t

G (t, s)

[(
d (s)

∫ 0

−∞
K (r) f (s, y (s+ r)) dr

)

− ρ

(∫ 0

−∞
K (r) c (s) y (s+ r) dr

)]
ds

+(exp (ρω)− 1)G (t, t)

(∫ 0

−∞
K (r) c (t) y (t+ r) dr

)

≥ m

∫ t+ω

t

d (s)

∫ 0

−∞
K (r)

[
f (s, y (s+ r))− ρ

c (s)

d (s)
y (s+ r)

]
drds

+mθ̃

(∫ 0

−∞
K (r) c (t) y (t+ r) dr

)
≥

(
md̂F 0

R1
+mĉθ̃

)
∥y∥ . (3.20)

Hence, from (3.17) and (3.20) , we obtain

(Φy) (t) ≥ ∥y∥ , for each y ∈ K ∩ ∂Ω1. (3.21)

By Lemma 3.2, Φ is a completely continuous operator, from (3.19) and (3.21) , condition (i) of Theorem 1.1 is
fulfilled. Thus, Φ has at least one fixed point y ∈ K ∩

(
Ω2 \ Ω1

)
. It follows that y (·) is an ω–periodic positive

solution of (1.7) and y ≥ δ ∥y∥ ≥ δR1 > 0 . This completes the proof. 2
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As consequence of Theorem 3.3, we state a corollary whose proof is similar to the proof of Theorem 3.3
and hence we omit it.

Corollary 3.1. Suppose that (A1)-(A3),(2.6) , (2.10) hold, and there are positive constants R1, R2 with R1 < R2

such that:
M
(
d∗F 0

R
2
+ θ̃c∗

)
≤ 1, (3.22)

and
m
(
d̂F∞

R1
+ θ̃ĉ

)
≥ 1. (3.23)

Then, there exists an ω – periodic solution which is a fixed point of Φ and satisfies R1 ≤ ∥y∥ ≤ R2 .

As a consequence of Theorem 3.3, we have the next Corollary.

Corollary 3.2. Suppose that (A1)-(A3),(2.6) , (2.10) hold, and there are positive constants R1, R2, ..., Rn+1

with R1 < R2 < ... < Rn+1 such that:

M
(
d∗F∞

R2
+ θ̃c∗

)
≤ 1,

m
(
d̂F 0

R1
+ ĉθ̃

)
≥ 1,

M
(
d∗F∞

R4
+ θ̃c∗

)
≤ 1,

m
(
d̂F 0

R3
+ ĉθ̃

)
≥ 1,

...........................

M
(
d∗F∞

Rn+1
+ θ̃c∗

)
≤ 1,

m
(
d̂F 0

Rn
+ ĉθ̃

)
≥ 1.

Then, Eq. (1.7) has n positive ω−periodic solutions y1, y2, ..., yn with ∥y1∥ ≤ ∥y2∥ ≤ ... ≤ ∥yn∥ .

Remark 3.1. In our main results, condition (A3) is very important to guarantee that operator Φ maps K

into itself.

4. Examples
Let us discuss three examples to illustrate our abstract theory.

Example 4.1. Let us consider the following third-order nonlinear integro-differential delay equation:

y′′′(t) + p(t)y′′ (t) + q(t)y′ (t) + r(t)y (t)

=
d

dt

∫ 0

−∞
K (r) c (t) y (t+ r))dr (4.1)

+d (t)

∫ 0

−∞
K (r) f (t, y (t+ r)) dr.
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Corresponding to equation (1.7), we let

p(t) = 31× 10−2, q(t) = 23× 10−3, ω = 2π,

c(t) = 1 + 0.1 |sin t| , r(t) = 2× 10−4.

Also assume that

f (t, y) =
0.4

d(t)

y

1 + y
+ ρ

c(t)

d(t)
y,

where d ∈ C (R,R+ \ {0}) is an arbitrary 2π−periodic function.
Moreover, K ∈ C (R−,R+) is an arbitrary function satisfying∫ 0

−∞
K (r) dr = 1.

Thanks to direct computations, we obtain

a(t) = 0.2, b(t) = 0.01, δ =
m

M
≃ 0.151,

a1(t) = 21× 10−2, a2(t) = 2× 10−3, ρ = 0.1,

c∗ = 1.1, ĉ = 1.

It is clear that, ∀y ∈ R+, t ∈ [0, 2π] , we have

f (t, y)− ρ
c (t)

d (t)
y =

0.4

d(t)

y

1 + y
≥ 0.

Again by straightforward computations, we have

lim inf
y→0

f (t, y)

y
=

0.4

d(t)
+ ρ

c(t)

d(t)
= α (t) ,

and

lim sup
y→∞

f (t, y)

y
= ρ

c(t)

d(t)
= β (t) .

It is easy to check α, β are continuous 2π −periodic functions on R .
From the above parameters, it follows that∫ ω

0

d (s)α (s) ds−
∫ ω

0

ρc (s) ds− 1

mδ
+ (exp (ρω)− 1) ĉ

= 0.4ω − 1

mδ
+ (exp (ρω)− 1) ĉ

≃ 2.6 ≥ 0.

and ∫ ω

0

d (s)β (s) ds− ρ

∫ ω

0

c (s) ds− 1

M
(1− (exp (ρω)− 1) c∗)

= − 1

M
(1− (exp (ρω)− 1) c∗)

≃ −54× 10−8 ≤ 0.
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Consequently, all conditions of Theorem 3.1 are fulfilled. Hence, we conclude that Equation (4.1) possesses at
least one positive 2π−periodic solution y ∈ K ∩

(
Ω2 \ Ω1

)
.

Example 4.2. Let us consider the following third-order nonlinear integro-differential delay equation:

y′′′(t) + p(t)y′′ (t) + q(t)y′ (t) + r(t)y (t)

=
d

dt

∫ 0

−∞
K (r) c (t) y (t+ r))dr (4.2)

+d (t)

∫ 0

−∞
K (r) f (t, y (t+ r)) dr.

Corresponding to equation (1.7), we let

p(t) = 31× 10−2, q(t) = 23× 10−3, ω = 2π,

c(t) = 4 |cos t|+ 2, r(t) = 2× 10−4, d(t) = 0.2 |cos t|+ 0.1.

Also assume that
f (t, y) = 0.4y2 + 2y.

Moreover, K ∈ C (R−,R+) is an arbitrary function satisfying∫ 0

−∞
K (r) dr = 1.

Thanks to direct computations, we obtain

a(t) = 0.2, b(t) = 0.01, δ =
m

M
≃ 0.151,

a1(t) = 21× 10−2, a2(t) = 2× 10−3, ρ = 0.1,

c∗ = 6, ĉ = 2.

It is clear that, ∀y ∈ R+, t ∈ [0, 2π] , we have

f (t, y)− ρ
c (t)

d (t)
y = 0.4y2 ≥ 0.

It is easy to verify that

A0 = lim
∥y∥→0

max
t∈[0,ω]

f (t, y)− ρ c(t)
d(t)y

∥y∥

= lim
∥y∥→0

max
t∈[0,ω]

0.4y2

∥y∥
= 0,

and

A∞ = lim
y∈K,∥y∥→∞

min
t∈[0,ω]

f (t, y)− ρ c(t)
d(t)y

∥y∥

= lim
y∈K,∥y∥→∞

min
t∈[0,ω]

0.4y2

∥y∥
= ∞.
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It is straightforward to show that all conditions of Theorem 3.2 are fulfilled. Hence, we conclude that equation
(4.2) possesses at least one positive 2π−periodic solution y ∈ K ∩

(
Ω2 \ Ω1

)
.

Example 4.3. Let us consider the following equation:

y′′′(t) + p(t)y′′ (t) + q(t)y′ (t) + r(t)y (t)

=
d

dt

∫ 0

−∞
K (r) c (t) y (t+ r))dr (4.3)

+d (t)

∫ 0

−∞
K (r) f (t, y (t+ r)) dr.

Corresponding to equation (1.7), we let

p(t) = 31× 10−2, q(t) = 23× 10−3, r(t) = 2× 10−4, ω = 2π,

d(t) = 10−4 (0.2 + 0.2 |sin t|) , c(t) = 10−5 (1 + 0.5 |cos t|) .

Also assume that

f (t, y) =
0.1
(
1 + 102 × 0.1512 |sin t|

)
0.001 + y2

y +
1

100
× 1 + 0.5 |cos t|

0.2 + 0.2 |sin t|
y,

and K ∈ C (R−,R+) satisfying ∫ 0

−∞
K (r) dr = 1.

Then we can check that

a(t) = 0.2, b(t) = 0.01, ρ = 0.1,

a1(t) = 21× 10−2, a2(t) = 2× 10−3,

m ≃ 10735.730, M ≃ 70706.185,

δ =
m

M
≃ 0.151.

It is clear that, ∀y ∈ R+, t ∈ [0, 2π] , we have

f (t, y)− ρ
c (t)

d (t)
y =

0.1
(
1 + 102 × 0.1512 |sin t|

)
y

0.001 + y2
≥ 0.

There are positive constants R1 = 0.02, R2 = 10, such that

F 0
R1

= inf
y∈K∩δΩ1

min
t∈[0,ω]

(
f (t, y)

y
− ρ

c (t)

d (t)

)

= inf
y∈K∩δΩ1

min
t∈[0,ω]

(
0.1
(
1 + 102δ2 |sin t|

)
0.001 + y2

)

= inf
y∈K∩δΩ1

(
0.1

0.001 + ∥y∥2

)

=
0.1

0.001 + 0.0004
≃ 71.428.
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F∞
R2

= sup
y∈K∩δΩ2

max
t∈[0,ω]

(
f (t, y)

y
− ρ

c (t)

d (t)

)

= sup
y∈K∩δΩ2

max
t∈[0,ω]

(
0.1
(
1 + 102δ2 |sin t|

)
0.001 + y2

)

= sup
y∈K∩δΩ2

0.1
(
1 + 102δ2

)
0.001 + y2

=
0.1
(
1 + 102δ2

)
0.001 + δ2R2

2

≃ 0.143.

Now, some simple calculations show that ∀ (t, s) ∈ R× R,

10735.730 ≃ m ≤ G (t, s) ≤ M ≃ 70706.185.

For the above parameters, it is easy to verify that

M
(
d∗F∞

R2
+ θ̃c∗

)
≃ 0.713 ≤ 1,

and
m
(
d̂F 0

R1
+ ĉθ̃

)
≃ 15.430 ≥ 1,

where

d∗ = max
t∈[0,ω]

d(t) = 0.4× 10−4, d̂ = min
t∈[0,ω]

d(t) = 0.2× 10−4,

c∗ = max
t∈[0,ω]

c(t) = 0.5× 10−5, ĉ = min
t∈[0,ω]

c(t) = 10−5,

θ̃ = exp (ρω)− 1 ≃ 0.874.

All hypotheses of Theorem 3.3 are fulfilled and, therefore, Eq. (4.3) has at least one positive 2π–periodic
solution y ∈ K ∩

(
Ω2 \ Ω1

)
satisfying

0.2 = R1 ≤ ∥y∥ ≤ R2 = 10.

Remark. 4.2. Observe that Example 4.1 and Example 4.2 cannot be analyzed by applying Theorem 3.1 in
[25] (see also Theorem 3.1 in [2]). Indeed, in order to apply Theorem 3.1 in [2] or [25], we need to construct
two mappings Φ1 and Φ2 , Φ1 is a contraction and Φ2 is compact. Therefore, we express (4.1) or (4.2) as

(Φx) (t) = (Φ1x) (t) + (Φ2x) (t) ,

where Φ1,Φ2 : Cω → Cω are given by

(Φ1x) (t) = (exp (ρω)− 1)G (t, t)

∫ 0

−∞
K (r) c (s)x (s+ r) dr,
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(Φ2x) (t) =

∫ t+ω

t

G (t, s)

[
d (s)

∫ 0

−∞
K (r) f (s, x (s+ r)) dr

− ρ

∫ 0

−∞
K (r) c (s)x (s+ r) dr

]
ds.

However, notice that
∃γ > 1, ∀x, y ∈ Cω, ∥Φ1x− Φ1y∥ ≤ γ ∥x− y∥ ,

where
γ = M (exp (ρω)− 1) c∗.

This implies that Φ1 is not contraction. Thus, Theorem 3.1 in [2] and [25] cannot be applied to equations (4.1)
and (4.2) . Therefore, the results in [2] and [25] are not applicable. However, the results obtained in our work
are quite significant compared to the ones in the aforementioned papers [2, 25].

Acknowledgments

The research has been partially supported by the Spanish Ministry of Science and Innovation (MCI), State
Investigation Agency (AEI) and European Regional Development Fund (FEDER) under the project PID2021-
122991NB-C21, and by Regional Government of Andalusia (Department of Economy and Knowledge) and
FEDER under project P18-FR-4509.

Conflict of interests
The authors declare that they do not have any conflict of interest.

References

[1] Abou-El-Ela AMA, Sadek AI, Mahmoud AM. Periodic solutions for a kind of third-order delay differential equations
with a deviating argument. Journal of Mathematical Sciences, The University of Tokyo. 2011; 18 (1): 35-49.

[2] Ardjouni A, Djoudi A. Existence of positive periodic solutions for third-order nonlinear delay differential equations
with variable coefficients. Mathematica Moravica 2019; 23 (2): 17-28. https://doi.org/10.5937/MatMor1902017A

[3] Ardjouni A, Djoudi A. Existence of positive periodic solutions for a nonlinear neutral differential equations with
variable delay. Applied Mathematics E-Note 2012; 12: 94-101.

[4] Balamuralithran S. Periodic solutions for third-order nonlinear delay equation impulses with Fredholm operator of
index operator zero. Konuralp Journal of Mathematics 2016; 4 (2): 158-168.

[5] Bose SK, Gorain GC. Exact controllability and boundary stabilization of torsional vibrations of an internally
damped flexible space structure. Journal of Optimization Theory and Applications 1998; 99 (2): 423-442.
https://doi.org/10.1023/A:1021778428222

[6] Bose SK, Gorain GC. Exact controllability and boundary stabilization of flexural vibrations of an inter-
nally damped flexible space structure. Applied Mathematics and Computation 2002; 126 (2-3): 341-360.
https://doi.org/10.1016/S0096-3003(00)00112-0

[7] Bose SK, Gorain GC. Uniform stability of damped nonlinear vibrations of an elastic string. In:
Mathematical Sciences-Proceedings of the Indian Academy of Sciences; India; 2003. pp. 443-449.
https://doi.org/10.48550/arXiv.math/0311527

1845



BENHADRI and CARABALLO/Turk J Math

[8] Cheng Z, Ren J. Existence of positive periodic solution for variable coefficient third-order differential
equation with singularity. Mathematical Methods in the Applied Sciences 2014; 37 (15): 2281-2289.
https://doi.org/10.1002/mma.2975

[9] Cheng Z, Xin Y. Multiplicity results for variable-coefficient singular third-order differential equation with a param-
eter. Abstract and Applied Analysis 2014; 2014 (1): 1-10. https://doi.org/10.1155/2014/527162

[10] Cai G, Bu S. Periodic solutions of third-order integro-differential equations in vector-valued functional spaces.
Journal of Evolution Equations 2017; 17 (2): 749-780. https://doi.org/10.1007/s00028-016-0335-5

[11] Cheng Z, Lv L, Liu J. Positive periodic solution of first-order neutral differential equation with infinite distributed
delay and applications. AIMS Mathematics 2020; 5 (6): 7372-7386. https://doi.org/10.3934/math.2020472

[12] Gregus M. Third Order Linear Differential Equations. Series, Mathematics and its applications, Dordrecht, Boston,
Lancaster, Tokyo: Reidel Publishing Company, 1987. https://doi.org/10.1007/978-94-009-3715-4

[13] Guo D, Lakshmikantham V. Nonlinear Problems in Abstract Cones. Academic Press, New York, USA: Elsevier,
1988.

[14] Gorain GC. Exponential energy decay estimate for the solutions of internally damped wave equation
in a bounded domain. Journal of Mathematical Analysis and Applications 1997; 216 (2): 510-520.
https://doi.org/10.1006/jmaa.1997.5678

[15] Gorain GC. Boundary stabilization of nonlinear vibrations of a flexible structure in a bounded domain in Rn . Journal
of Mathematical Analysis and Applications 2006; 319 (2): 635-650. https://doi.org/10.1016/j.jmaa.2005.06.031

[16] Hale JK, Meyer KR. A class of functional equations of neutral type. Memoirs of the American Mathematical Society
1967; 76: 1-65. https://doi.org/http://dx.doi.org/10.1090/memo/0076

[17] Hale JK, Lunel SMV. Introduction to Functional Differential Equations. Applied Mathematical Sciences, New York,
USA: Springer, 1993. https://doi.org/10.1007/978-1-4612-4342-7

[18] Jiang D, Wei J, Zhang B. Positive periodic solutions of functional differential equations and population models.
Electronic Journal of Differential equations 2002; 2002 (71): 1-13.

[19] Kuang Y. Delay Differential Equations with Application in Population Dynamics. Boston, New York, USA: Aca-
demic Press, 1993.

[20] Liu B, Huang L. Existence and uniqueness of periodic solution for a kind of first order neutral func-
tional differential equations. Journal of Mathematical Analysis and Applications 2006; 322 (1): 121-132.
https://doi.org/10.1016/j.jmaa.2005.08.069

[21] Liu Y, Ge W. On the positive periodic solutions of nonlinear Duffing equations with delay and vari-
able coefficients. Tamsui Oxford Journal of Information and Mathematical Sciences 2004; 20 (2): 235-255.
https://doi.org/10.36045/bbms/1093351383

[22] Li Z, Wang X. Existence of positive periodic solutions for neutral functional differential equations. Electronic Journal
of Differential equations 2006; 2006 (34): 1-8.

[23] Li J, Shen J. On positive periodic solutions to impulsive differential equations with delays. Results in Mathematics
2004; 45: 67-78. https://doi.org/10.1007/BF03322998

[24] Meng Q, Yan J. Existence and n - multiplicity of positive periodic solutions for impulsive functional differential
equations with two parameters. Boundary Value Problems 2015; 2015 (212): 1-10. https://doi.org/10.1186/s13661-
015-0478-2

[25] Nouioua F, Ardjouni A, Djoudi A. Periodic solutions for a third-order delay differential Equation. Applied Mathe-
matics E-Notes 2016; 2016 (16): 210-221.

[26] Poblete V, Pozo JC. Periodic solutions of an abstract third-order differential equation. Studia Mathematica 2013;
215 (3): 195-219. http://doi.org/10.4064/sm215-3-1

1846



BENHADRI and CARABALLO/Turk J Math

[27] Padhi S, Pati S. Theory of third-order differential equations. New York Dordrecht London: Springer New Delhi
Heidelberg, 2014. https://doi.org/10.1007/978-81-322-1614-8

[28] Ren J, Siegmund S, Chen Y. Positive periodic solutions for third-order nonlinear differential equations. Electronic
Journal of Differential Equations 2011; 2011 (66): 1-19.

[29] Raffoul YN, Tisdell CC. Positive periodic solutions of functional discrete systems and population models. Advances
in Difference Equations 2005; 2005 (3): 369-380. https://doi.org/10.1155/ADE.2005.369

[30] Royden HL. Real Analysis. Stanford University, New York, USA: MacMillan Publishing Company, 1998.

[31] Tiryaki A, Aktas MF. Oscillation criteria of a certain class of third order nonlinear delay differen-
tial equations with damping. Journal of Mathematical Analysis and Applications 2007; 325 (1): 54-68.
https://doi.org/10.1016/j.jmaa.2006.01.001

[32] Wang Y, Lian H, Ge W. Periodic solutions for a second order nonlinear functional differential equation. Applied
Mathematics Letters 2007; 20 (1): 110-115. https://doi.org/10.1016/j.aml.2006.02.028

[33] Zhang X, Jian D, Li X, Wang K. A new existence theory for single and multiple positive periodic solutions to
integro-differential equations with impulse effects. Computers and Mathematics with Applications 2006; 51 (1):
17-32. https://doi.org/10.1016/j.camwa.2005.09.002

1847


	Introduction
	Green's function and periodicity
	Existence of positive periodic solutions
	Examples

