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Abstract: The onset of magnetoconvection (known as Rayleigh-Bénard-Chandrasekhar convection) in two relaxation
time viscoelastic liquids is studied here without seeking explicit recourse to a normal stress formulation as is usually
done in these studies. Magnetoconvection refers to the flow of fluid in the presence of both thermal gradients (Rayleigh-
Bénard convection) and a magnetic field. When these two effects are combined, they can lead to interesting and complex
patterns of fluid motion. Understanding magnetoconvection in viscoelastic liquids is crucial for various industrial and
scientific applications. The hyperbolic-type of linear momentum equation is decomposed into two first-order equations
in time by cleverly separating the viscoelastic effect from the other effects in a clever manner as reported in a recent
paper. The results of Maxwell, Rivlin-Ericksen, Walters’ liquid B, and Newtonian liquids are obtained as limiting cases
of the present study. This research contributes to the understanding of magnetoconvection in viscoelastic liquids by
using a novel approach that decouples the viscoelastic effect from other influences. The results obtained shed light on
the behaviour of various types of viscoelastic materials and provide valuable insights for practical applications in fields
such as materials science, engineering, and geophysics.
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1. Introduction
Rayleigh-Bénard convection problems in electrically conducting Newtonian liquids have received widespread
attention because of their implications in heat transfer, in the control of convection, and in other engineering
applications (see Chandrasekhar [4], Weiss [18, 19], Platten and Legros [9], Siddheshwar [14] and references
therein). It is now a well-known fact that viscoelastic liquids are practically realisable and a good discussion on
these is available in Bird et al. [3] and Joseph [7]. There are numerous papers dealing with the onset of convection
in viscoelastic liquids (see Sekhar and Jayalatha [11, 12], Siddheshwar et al. [15, 16] and references therein). In
the presence of suitable additives that render liquids electrically conductive are present then viscoelastic liquids
respond to electromagnetic fields. This can be exploited to control convection using an external magnetic field.
Such a problem is called magnetoconvection. Few authors have considered magnetoconvection in viscoelastic
liquids. Bhatia and Steiner [1] have investigated the problem of overstability in a layer of a Maxwellian liquid
heated from below when a uniform magnetic field is present, acting in a direction parallel to that of gravity, is
present and when the liquid is confined between two free boundaries. The magnetic field was shown to have a
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stabilising effect on the oscillatory mode of convection. Bhatia and Steiner [2] have studied overstability in a
layer of Maxwell’s liquid confined between two rigid boundaries. Sharma [13] has investigated the stability of
a layer of Oldroyd-B liquid heated from below and subjected to a magnetic field. The magnetic field is found
to have a stabilising effect. The analytical condition for the absence of overstability is given. Eltayeb [6] has
studied thermal instability in a Maxwell liquid layer in hydromagnetics using an asymptotic technique which
is effective only for large values of the Chandrasekhar number. Ciancio [5] has also carried out research which,
by using a procedure of classical irreversible thermodynamics with internal variables, some possible interactions
between heat conduction and heat conduction and viscous-elastic flows for rheological media. From the literature
review reported above, the following facts emerge, (i) There is a reported work on linear stability analysis of
magnetoconvection in Oldroyd-B liquid, a viscoelastic liquid with two relaxation times, but a detailed discussion
on direct and Hopf bifurcations for this problem is not available. (ii) There is very little literature available
on magnetoconvection in viscoelastic liquids with a single relaxation time of the Maxwell type and no reported
work on magnetoconvection in Rivlin-Ericksen liquid. A detailed analysis is also lacking in the reported works.
All the works on linear stability of viscoelastic fluid convection, both single and double relaxation time ones,
make use of the hyperbolic type of linear momentum equation to obtain the critical Rayleigh number. Recently,
Siddheshwar et al. [15] proposed a novel approach to study convection in viscoelastic liquids. In this paper we
incorporate the idea of Siddheshwar et al. [15] and study the onset of magnetoconvection in viscoelastic liquids
with two relaxation times. In the second section part of this article, the normal mode solution was used, and in
section 3, the results were plotted based on the critical Rayleigh number ( Rc ) and the critical wave number(
kc ) for (Chandrasekhar number) Q=0 and Q=10.

2. Mathematical formulation and solution
The physical configuration considered in this paper is shown in Figure 1. It consists of a weakly electrically
conducting Oldroyd-B liquid layer of infinite horizontal extent heated from below and cooled from above, to
which a uniform magnetic field H0 is applied in the vertical direction. The layer has thickness d and is
bounded by two free isothermal planes. The upper and lower planes are at constant temperatures T0 and
T0 +∆T respectively. We consider two-dimensional longitudinal rolls and therefore assume that all quantities
are independent of y. For a weakly electrically conducting Boussinesq-Oldroyd-B liquid, the governing equations
are:
Continuity equation:

qi,j = 0. (2.1)

Conservation of linear momentum for a weakly electrically conducting fluid:

ρ0[
∂qi
∂t

+ qj
∂qi
∂xj

] = − ∂p

∂xi
+
∂τ

′

ij

∂xi
+ ρ.gi − µ2

mσH
2
0qi (2.2)

Constitutive relationship:

(1 + λ1
∂

∂t
)τ

′

ij = (1 + λ2
∂

∂t
)[µ(

∂qi
∂xj

+
∂qi
∂xi

)]. (2.3)

Conservation of energy:
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∂T

∂t
+ qj

∂T

∂xj
= κ

∂2T

∂xj∂xj
(2.4)

Density equation of state:

ρ = ρ0[1− α(T − T0)] (2.5)

where qi = (u, v, w) are the components of the velocity of the liquid, ρ(T ) is the density at temperature
T, ρ0 = ρ(T0) , Hi are the components of the applied magnetic field, p is the pressure, µm the magnetic
permeability, gi = (0, 0,−g) are the gravitational acceleration components, σ is the electrical conductivity, µ
is the viscosity, λ1 is the stress relaxation coefficient, λ2 is the strain retardation coefficient, κ is the thermal
diffusivity and α is the thermal expansion coefficient.

Figure 1: Schematic of the problem.

The basic state is quiescent. When we perturb the basic state and introduce the stream function ψ(x, z)

as follows:

u = −∂ψ
∂z

,w =
∂ψ

∂x
(2.6)

and then make the equations (2.1) to (2.5) dimensionless, we get the equations governing finite amplitude per-
turbations in the form:

Pr−1

(
1 + Λ1

∂

∂t

)
∂

∂t

(
∇2ψ

)
=

(
1 + Λ1

∂

∂t

)[
R
∂T

∂x
−Q∇2ψ

]
+

(
1 + Λ2

∂

∂t

)
∇4ψ (2.7)

∂T

∂t
=
∂ψ

∂x
+
∂ψ

∂z

∂T

∂x
− ∂ψ

∂x

∂T

∂z
+∇2T (2.8)

To arrive at equation (2.7), we have eliminated p and ρ between these four equations, one of which is a vector
equation, by following the classical procedure used in all convection problems. The dimensionless parameters
appearing in equations (2.7) and (2.8) are the following:

1850



MUTİ/Turk J Math

Pr = µ0

ρ0κ
(Prandtl number),

R = αρ0gd
3∆T

µ0κ
(Rayleigh number),

Q =
µ2
mH2

0d
2σm

µ0
(Chandrasekhar number),

Λ1 = λ1
κ
d2 (Scaled stress-relaxation parameter or Deborah number),

and
Λ2 = λ2

κ
d2 (Scaled strain-retardation parameter).

We now follow the Siddheshwar-decomposition method [16] and rearrange the equation (2.7) as two first-order
equations in time as follows:

Λ1
∂M

∂t
= −M + (1− Λ)∇4ψ (2.9)

where M is such that

Pr−1 ∂

∂t

(
∇2ψ

)
= R

∂T

∂x
+ Λ∇4ψ +M −Q∇2ψ (2.10)

subject to the boundary condition:

ψ = ∇2ψ = T = M = 0 at z = 0, 1 (2.11)

We represent the stream function, the temperature distribution, and M in the form:

ψ = Aeiωτ sin (kcx) sin (πz) , (2.12)

T = Beiωτcos (kcx) sin (πz) (2.13)

M = Ceiωτ sin (kcx) cos (πz) (2.14)

where kc is the critical wave number. Substituting the normal mode solution (2.12)- (2.14) into the equations
(2.8)- (2.10) we get the following algebraic system:

 iω + Pr (Λ +Q′) − Pr (1 +Q′) Pr (1− Λ)
R′ − (iω + 1) 0

1 0 − (iωΓ + 1)

 X
Y
N

 =

 0
0
0

 (2.15)

where the scaled amplitudes and other scaled quantities are given by:

X = Akcπ√
2δ2

, Y = BπR′
√
2
, N = Ckcπ√

2(1−Λ)δ6
, R′ =

k2
cR

δ4(δ2+Q) .

δ2 = π2 + k2c , Γ = Λ1δ
2, Λ = Λ2

Λ1
and Q′ = Q

δ2
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For a nontrivial solution of the above homogeneous system, the following condition needs to be satisfied.∣∣∣∣∣∣
iω + Pr (Λ +Q′) − Pr (1 +Q′) Pr (1− Λ)

R′ − (iω + 1) 0
1 0 − (iωΓ + 1)

∣∣∣∣∣∣ = 0. (2.16)

Rearranging equation (2.16) for and separating its expression into real and imaginary parts, we get

Pr (Λ +Q′)
(
1− ω2Γ

)
− ω2 (Γ + 1)− Pr (1 +Q′)R′ + Pr (1− Λ) = 0 (2.17)

(
1− ω2Γ

)
+ (Γ + 1)Pr (Λ +Q′)−R′ Pr (1 +Q′) Γ + Pr (1− Λ) = 0 (2.18)

From (2.17) we get

R′ =
Pr (Λ +Q′)

(
1− ω2Γ

)
− ω2 (Γ + 1) + Pr (1− Λ)

Pr (1 +Q′)
(2.19)

and

R′ =

(
1− ω2Γ

)
+ (Γ + 1)Pr (Λ +Q′) + Pr (1− Λ)

Pr (1 +Q′) Γ
(2.20)

If we use (2.19) and (2.20) we obtain

ω2 =
Pr (1− Λ) (Γ− 1)− Pr (Λ +Q′)

Γ2 (Pr (Λ +Q′) + 1)
(2.21)

If we use Q′ = 0 in (2.21), then

ω2 =
Pr (1− Λ) (Γ− 1)− PrΛ

Γ2 (PrΛ + 1)
(2.22)

From (2.21),

ω2Γ =
Pr (1− Λ) (Γ− 1)− Pr (Λ +Q′) + Γ (PrΛ + 1)− Γ (PrΛ + 1)

Γ (Pr (Λ +Q′) + 1)
(2.23)

1− ω2Γ =
Pr (Λ +Q′) + Γ (PrΛ + 1)− Pr (1− Λ) (Γ− 1)

Γ (PrΛ + 1)
(2.24)

Substituting in equation (2.20), we get

(Pr2Γ2Λ2 + ((2Γ + Γ2) Pr+(2Γ2Q+ ΓQ+ Γ)Pr2)Λ + (ΓQ2 + Γ2Q2 + ΓQ)Pr2 + Γ + (Q+ 2Γ.Q+ 1 + Γ2Q) Pr)

(Γ2(PrΛ + PrQ+ 1)Pr (1 +Q)
2
)

.

(2.25)
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Alternately differentiate (2.20) wrt “Λ to get

∂R′

∂Λ
=

{
∂

∂Λ

(
1− ω2Γ

)
+ ΓPr

}
1

Pr (1 +Q′) Γ
(2.26)

Now consider

∂

∂Λ

(
1− ω2Γ

)
=

PrΓ

Γ2(PrΛ + 1)
2 {Γ (Pr+1)− Pr (Q′ + 1)}

∂
∂Λ

(
1− ω2Γ

)
> 0 provided Γ (Pr+1)− Pr (Q′ + 1) > 0

i.e. Q′ < Γ(Pr+1)−Pr
Pr

i.e. Q′ + 1 < Γ(Pr+1)
Pr

ie..Q′ < Γ(Pr+1)
Pr − 1

Since Q′ > 0 we have the condition
0 < Q′ < Γ(Pr+1)

Pr − 1 and Γ(Pr+1)
Pr > 1

i.e. Γ > Pr
1+Pr

We may thus conclude that ∂R′

∂Λ > 0 provided Γ > Pr
1+Pr and Q′ < Γ(Pr+1)

Pr − 1

i.e. Q < δ2
[
δ2Λ1(Pr+1)

Pr − 1
]

and Λ1 >
Pr

δ2(Pr+1)

3. Results and discussion
Single relaxation time and double relaxation time viscoelastic liquids are physically realisable and are practically
important in many nonisothermal applications (see Bird et al., [3], and Joseph [7] ). It is the elasticity in these
liquids that renders them attractive for investigation. An applied magnetic field is known to induce in an elastic
effect in an electrically conducting liquid. It is therefore interesting to consider the interplay between the natural
elasticity and the elasticity imposed by a magnetic field. As mentioned in the introduction to this paper, the
onset of convection in two-relaxation-time viscoelastic liquids is studied here and is likely to yield interesting
results.

Classical linear stability analysis reveals that the following results are true:

RRivlin−Ericksen
c = RNewtonian

c > ROldroyd−B
c > RMaxwell

c (for Q = 0.10)
aRivlin−Ericksen
c = aNewtonian

c < aOldroyd−B
c < aMaxwell

c ( for Q = 0.10)
ωOldroyd−B
c < ωMaxwell

c ( for Q=0,10 )
Roc|Q>0 > Roc|Q=0 (true for all the 4 liquids considered),
ac|Q>0 > ac|Q=0 (true for Newtonian, Rivlin-Ericksen, and Oldroyd-B liquids),
ac|Q>0 < ac|Q=0 (true for Maxwell liquid),
ωc|Q>0 < ωc|Q=0 (true for Oldroyd-B and Maxwell liquids).

Figure 2 illustrates the stationary convection curves in the (Rc, k
2
c ) plane for different values of the Chan-

drasekhar number (Q) , while keeping other parameters constant. The results indicate that as the Chan-
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Figure 2: Rc versus k2
c with Q = 0 and Q = 10 for, (a) Newtonien liquid , (b)Maxwell liquid (c)Rivlin-

Rricsen liquid (d)Oldroyd-B liquid

drasekhar number (Q) increases, so does the Rayleigh number (Rc) . This suggests that the magnetic field has
a stabilising effect on the liquid layer.

Also in Figure 2 (a) it can be observed that the graphical values for Q = 0 and Q = 10 are quite similar
for the Newtonian fluid, which gives results for smaller values of Rc . For the same values, in Figure 2 (b) and
in Figure 2 (c), Maxwell and Rivlin-Ericksen fluids give similar results. On the other hand, in Figure 2 (d),
Oldroyd-B fluid gives different results from the above flows for Q = 0 and Q = 10 . It can also be seen that Rc

reaches higher values.
The table 1 lists the fluid models considered in this study. The results obtained from Maxwell, Rivlin-

Ericksen, Walters’ Liquid B, and Newtonian fluids form limiting cases within this general study. These cases
represent different fluid behaviours, including fluids with predominantly viscous behaviour with Maxwell, fluids
with both viscous and elastic behaviour with Rivlin-Ericksen, fluids with time-dependent and stress-dependent
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behaviour with Walters’ Liquid B, and fluids with constant viscosity with Newtonian fluids. The following table
provides information on Q, Λ , and Λ1 values compared to literature data.

Table 1: Various models covered by the present study.

Q Λ1 ∈ [0, 1) Λ ∈ [0, 1] Model
0 ̸= 0 ̸= 0 Oldroyd-B liquid (Siddheshwar et al., [15])
0 =0 ̸= 0 Rivlin-Ericksen liquid (Siddheshwar and Srikrishna [17], Siddheshwar et al., [15])
0 ̸= 0 =0 Maxwell liquid (Siddheshwar et al., [15])
0 =0 =0 Newtonian liquid (Lorenz [8], Saltzman [10])

> 0 ̸= 0 ̸= 0 magnetoconvection in Oldroyd-B liquid
> 0 =0 ̸= 0 magnetoconvection in Rivlin-Ericksen liquid
> 0 ̸= 0 =0 magnetoconvection in Maxwell liquid
> 0 =0 =0 magnetoconvection in Newtonian liquid

4. Conclusion:
a) The effect of the magnetic field on the Rayleigh-Bénard system is to increase the critical Rayleigh number.
b) The magnetic field has a rheostatic effect on convection in viscoelastic liquids and can therefore be used as
an external means of controlling convection.
c) The results of Maxwell, Rivlin-Ericksen, Walters’ Liquid B, and Newtonian liquids are limiting cases of the
present general study.
It can be concluded that the stability transition principle is similar for Maxwell fluid and Rivlin-Ericksen liquid
for Q = 0 and Q = 10. In section 3, the obtained results are utilized to examine the behavior of viscoelastic
liquids concerning the critical Rayleigh number as it varies with the critical wave number. Finally, we note that
our analysis was carried out on liquids, which is very important for the comparison of the available studies in
the literature.
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