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Abstract: The higher topological complexity of a space X , TCr(X) , r = 2, 3, . . . , and the topological complexity of a
map f , TC(f) , have been introduced by Rudyak and Pavešić, respectively, as natural extensions of Farber’s topological
complexity of a space. In this paper we introduce a notion of higher topological complexity of a map f , TCr,s(f) , for
1 ≤ s ≤ r ≥ 2 , which simultaneously extends Rudyak’s and Pavešić’s notions. Our unified concept is relevant in the
r -multitasking motion planning problem associated to a robot devise when the forward kinematics map plays a role in s

prescribed stages of the motion task. We study the homotopy invariance and the behavior of TCr,s under products and
compositions of maps, as well as the dependence of TCr,s on r and s . We draw general estimates for TCr,s(f : X → Y )

in terms of categorical invariants associated to X , Y and f . In particular, we describe within one the value of TCr,s

in the case of the nontrivial double covering over real projective spaces, as well as for their complex counterparts.
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1. Introduction
In this article “space” means a topological space, and by a “map” we will always mean a continuous map.
Fibrations are taken in the Hurewicz sense.

Consider an autonomous robot devise A performing on a known work space W . The fundamental
problem in geometric motion planning ([9]) is to find a suitable (safe, efficient, optimal) path taking A from a
given initial configuration to a goal configuration. Here, the term configuration refers to a complete specification
of every parameter in the robot’s geometry at allowable (collision-free) states. If C stands for the space of all
possible configurations of A , the robot operation usually comes in the form of a forward kinematics map
F : C → W where, for a configuration q ∈ C , F (q) encodes the corresponding effect of the robot in the work
space.

In practice, motion tasks may involve constraints both on q and on F (q) . In such a context, we are
interested in a hybrid multitasking version of the motion planning problem. Given a reference configuration q0

of A and a tuple

(q1, q2, . . . , qs, e1, e2, . . . , eℓ) ∈ Cs ×Wℓ (1.1)
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of s desired configurations and ` desired effects of the robot, the goal is to describe a solving r -multiplath γ ,
namely, a family of paths γ1, γ2, . . . , γr in C with r = s+ ` , all starting at q0 , such that:

• for 1 ≤ i ≤ s , γi ends at qi ;

• for 1 ≤ j ≤ ` , γs+j ends at a point in the inverse image F−1({ej}) .

The model we propose in Section 3 is intended to study the topological instabilities in the resulting motion
planning problem. This is done through the introduction of a numerical invariant that measures the minimal
number of robust-to-noise instructions needed to solve, in a global manner, the r -multitasking motion problem
above.

Our work is motivated by Rudyak’s r -th sequential topological complexity TCr(X) of a space X ,
developed in [1, 14], and by Pavešić’s topological complexity TC(f) of a map f : X → Y , developed in [13].
We define the (r, s) -higher topological complexity TCr,s(f) of f for integers r ≥ 2 and 1 ≤ s ≤ r . Here, the
parameter s stands for the number of tasks for which the forward kinematic map must be taken into account,
while ` := r− s is the number of configurations in (1.1) above. Rudyak’s and Pavešić’s invariants are recovered
with f = 1X and (r, s) = (2, 1) , respectively.

We note that a previous version of the higher version TCr,r(f) appeared in the paper [8].

In addition to its relevance in the multitasking problem for the forward kinematics map, the parameter
s in our invariant TCr,s(f) plays a subtle role within more theoretical issues. For starters, our invariant is
sensitive to the numbers r − s (of configurations) and s (of effect tasks), a fact reflected in part by the fairly
regular monotonic behavior

TCr,s(f) ≤ min{TCr+1,s(f),TCr+1,s+1(f)}

(see Proposition 3.5). For instance, for the double covering map pn : S
n → RPn , we show

TCr,s(pn) = r + s(n− 1) + εr,s,n,

where∗ εr,s,n ∈ {0, 1} . On the other hand, the well known fact that Rudyak’s TCr(Y ) of an H -space Y

agrees with the Lusternik-Schnirelmann category of Y r−1 is encoded by TCr,r−1(f) for any fibration over Y
(Corollary 3.38). In general, the use of the biparameter (r, s) allows us to get a discrimination of the topological
properties of a space Y in a manner which is finer than that provided by the several higher topological
complexities TCr(Y ) . For instance, Rudyak’s monotonic behavior TCr(Y ) ≤ TCr+1(Y ) is refined by the
inequalities

TCr(Y ) ≤ TCr,r(f) ≤ TCr+1,r(f) ≤ TCr+1(Y ),

valid for any fibration f : X → Y (Remark 3.40).

We provide estimates for TCr,s(f) for a general map f : X → Y , possibly failing to be a fibration. As a
way of illustration, Propositions 3.6 and 3.42 yield

max{sec1×f
s

(eXr ), sec(fs), nil (Ker((∆r−s,
sf)∗))} ≤ TCr,s(f) ≤ sec(fs) · sec1×f

s

(eXr ).

We also study the homotopy invariance of TCr,s together with its behavior under composition of maps. In fact,
virtually all properties developed in [13] for the case (r, s) = (2, 1) are extended here to the higher TC realm.

∗The precise value of εr,s,n is given in Section 4 for r = s (any n ), and for n ∈ {1, 3, 7} (any r and s ).
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Yet, unlike Pavešić’s approach, we work with the standard (and better suited for actual applications) definition
of the sectional number of a map in terms of open coverings (reviewed in Section 2).

Rudyak and Soumen [15] have recently introduced a notion of higher topological complexity TCRSr (f)

of a map f . Their concept is compared to ours. For instance, in Corollary 3.25, we obtain that the equalities
TCRSr (f) = TCr,r(f) = TCr,r−1(f) hold for any fibration f admiting a section. Additionally, we show that, for
any map f (possibly not a fibration), Rudyak and Soumen’s TCRSr (f) is in fact a generalization of Murillo-Wu’s
notion of topological complexity of f (Proposition 3.10), and that, under special conditions, our TCr,s(f) with
large s unifies previous notions of topological complexity (Corollary 3.25).

2. Preliminaries on sectional numbers
Given a map f : X → Y and a subset A of Y , we say that a map s : A → X is a local section of f if
f ◦ s = inclA , and a local homotopy section of f if f ◦ s ' inclA , where inclA : A → Y is the inclusion map.
The sectional number sec(f) is the least integer m such that Y can be covered by m open subsets each of
which admits a local section of f . We set sec(f) = ∞ if no such m exists. Likewise, the sectional category
secat(f) is the least integer m such that Y can be covered by m open subsets each of which admits a local
homotopy section of f . Again, we set secat(f) = ∞ if no such m exists. See [2].

Note that f is forced to be surjective whenever sec(f) < ∞ . Furthermore, the inequality secat(f) ≤
sec(f) holds for any map f . Additionally, from the homotopy lifting property, a homotopy section of a fibration
can be replaced by a strict section. In particular, secat(f) = sec(f) when f is a fibration.

For f : X → Y and g : Y → Z , we define the sectional number secg(f) as the least integer n for which
Y admits a covering by n open sets Ui such that over each Ui there is a map si : Ui → X with g ◦f ◦si = g|Ui

.
Likewise, the sectional category secatg(f) is the least integer n for which Y admits a covering by n open sets
Ui such that over each Ui there is a map si : Ui → X with g ◦ f ◦ si ' g|Ui

. As reviewed at the end of this
section, the invariant secatg(f) is studied by Murillo and Wu in [10]. The following fact is straightforward to
prove:

Lemma 2.1 Let f : X → Y , g : Y → Z and ϕ : Z →W be arbitrary maps. We have

secφ◦g(f) ≤ secg(f) ≤ sec(f).

Recall the pathspace construction from [7, p. 407]. For a map f : X → Y , consider the space

Ef = {(x, γ) ∈ X × PY | γ(0) = f(x)},

where PY = Y I is the space of all paths [0, 1] → Y . The map

ρf : Ef → Y, (x, γ) 7→ ρf (x, γ) = γ(1)

is a fibration. Furthermore, the projection onto the first coordinate Ef → X, (x, γ) 7→ x is a homotopy
equivalence with homotopy inverse c : X → Ef given by x 7→ (x, γf(x)) , where γf(x) is the constant path at
f(x) . This renders the factorization (

X
f→ Y

)
=

(
X

c→ Ef
ρf→ Y

)
,
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a composition of a homotopy equivalence followed by a fibration. Furthermore, f is a fibration if and only f

admits a lifting function, i.e. a map Γ: Ef → PX such that, for each (x, γ) ∈ Ef , we have

Γ(x, γ)(0) = x and f ◦ Γ(x, γ) = γ. (2.1)

By a quasi pullback we mean a strictly commutative diagram

X ′ φ′
//

f ′

��

X

f

��
Y ′

φ
// Y

(2.2)

such that, for any strictly commutative diagram as the one on the left hand-side of (2.3), there exists a (not
necessarily unique) map h : Z → X ′ that renders a strictly commutative diagram as the one on the right
hand-side of (2.3).

Z

α ++

β

��
X

f

��

Z

α **

β

��
h // X ′ φ′

//

f ′

��

X

Y ′
φ

// Y Y ′

(2.3)

Note that such a condition amounts to saying that X ′ contains the canonical pullback Y ′×Y X determined by
f and ϕ as a retract in a way that is compatible with the mappings into X and Y ′ .

For convenience, we record the following standard properties, most of which appear in chapter 4 of [19]:

Lemma 2.2

1. If (2.2) is a quasi pullback, then
sec(f ′) ≤ sec(f).

2. For a map f : X → Y ,
secat(ρf ) = secat(f).

3. If f, g : X → Y are homotopic maps (which we shall denote by f ' g ), then

secat(f) = secat(g).

4. If f : X → Y and g : Y → Z are maps, then

sec(g) · secg(f) ≥ sec(g ◦ f) ≥ max{sec(g), secg(f)}.

In particular, sec(g ◦ f) = secg(f) provided g admits a section.
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5. If p : E → B is a fibration, then
sec(p) ≤ cat(B).

In particular, secat(f) ≤ cat(Y ) for any map f : X → Y .

6. If f : X → Y is null-homotopic, then
secat(f) = cat(Y ).

7. (cf. [16, Proposition 20, p. 83]) Let f : X → Y be a map with Y normal. If {C1, . . . , Ck} and
{D1, . . . , Dℓ} are open coverings of Y such that on each Ci ∩Dj there exists a section of f , then

sec(f) ≤ k + `− 1.

8. For a space Z and a map f : X → Y ,

sec(1Z × f) = sec(f) and secat(1Z × f) = secat(f).

The sectional number of the canonical pullback ϕ∗(p) : K×BE → K on the left hand-side of (2.4) below,
denoted by secφ(p) , is called relative sectional number.

K ×B E //

φ∗(p)

��

E

p

��

X
φ //

f

��

W

h

��
K

φ
// B Y

g
// Z

(2.4)

Lemma 2.3 The inequalities secg(h) ≤ secg(f) ≤ sec(f) hold for any commutative square as the one on the
right hand-side of (2.4). If the square is a quasi pullback, then in fact secg(h) = secg(f) = sec(f) .

Proof For U ⊂ Y and s : U → X satisfying g ◦ f ◦ s = g|U , the map σ : U →W given by σ = ϕ ◦ s defines a
lift of g|U through h . The first inequality asserted in the lemma then follows by observing (see [19, Proposition
4.5.16]) that secφ(p) can be defined in terms of open covers {Ui} of K such that each element of the cover
admits a lift σi : Ui → E of ϕ|Ui

through p , i.e. p ◦σi = ϕ|Ui
. The second inequality in the lemma comes from

Lemma 2.1. The proof is complete by noticing that sec(f) ≤ secg(h) when the given square is a quasi pullback.
Indeed, the quasi pullback hypothesis implies that any lift σ : U → W of g|U through h can be lifted through
ϕ to a local section U → X of f . 2

Remark 2.4 Note that, when p is a fibration, secφ(p) can be defined in terms of open covers {Ui} of K such
that each element of the cover admits a homotopic lift σi : Ui → E of ϕ|Ui

through p , i.e. p ◦ σi ' ϕ|Ui
.

We close the section by indicating how the sectional numbers we have just formalized capture the different
versions in the literature of (topological) complexity of a map f : X → Y . Let eX2 : PX → X × X be the
double-evaluation fibration given by eX2 (γ) = (γ(0), γ(1)) .
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• The complexity of f , cx(f) , introduced by Pavešić in [11] (see also [12]), is the sectional number

sec(PX
eX2

−−−→ X ×X
1X×f
−−−→ X × Y ).

When f is a fibration between ANRs spaces, the number cx(f) coincides with the notion of topological
complexity TC(f) studied in [13]. The complexity cx(f) has recently been used in [18, 20].

• A different approach was taken by Murillo and Wu in [10]. Their topological complexity of f , which we
denote by TCMW (f) , is given by

TCMW (f) = secatf×f (eX2 ),

i.e. the least integer n such that X×X can be covered by n open sets {Ui}ni=1 on each of which there is
a map si : Ui → PX satisfying (f × f) ◦ eX2 ◦ si ' (f × f)|Ui

. Their naive or strict topological complexity
of f , which we denote by tcMW (f) , is defined analogously, except that one now requires each of the maps
si : Ui → PX to satisfy the stronger condition (f × f) ◦ eX2 ◦ si = (f × f)|Ui

. In other words,

tcMW (f) = secf×f (eX2 ).

As shown in [10], the inequality TCMW (f) ≤ tcMW (f) holds for any map f , while in fact TCMW (f) =

tcMW (f) when f is a fibration.

• As detailed in Subsection 3.1, relative sectional numbers are closely related to Rudyak-Soumen’s qua-
sistrong sectional category of a map. In fact, by extending ideas in Scott’s study of the relative sectional
number

secf×f (eY2 )

([17, Definition 3.1]), we show that Rudyak-Soumen’s higher TC is in fact a generalization of Murillo-Wu’s
TC of a map. See Proposition 3.10 below.

3. Higher topological complexity

For r ≥ 2 , let Jr be the wedge of r closed intervals [0, 1]i , i = 1, . . . , r , where the zero points 0i ∈ [0, 1]i are
identified. For a space X , let XJr denote the space of maps γ : Jr → X with the compact-open topology.
Consider the fibration†

eXr : XJr → Xr, er(γ) = (γ(11), . . . , γ(1r)) , (3.1)

where 1i ∈ [0, 1]i . Here we regard XJr as the space of ordered r -multipaths in X all whose components have a
common starting point. From [14], the r -th higher topological complexity TCr(X) of X is the sectional number
of the fibration (3.1). In other words, the r -th higher topological complexity of X is the smallest positive
integer TCr(X) = k for which the product Xr is covered by k open subsets Xr = U1 ∪ · · · ∪Uk such that, for
any i = 1, 2, . . . , k , there exists a local section si : Ui → XJr of eXr over Ui (i.e., eXr ◦ si = inclUi

).

Let f : X → Y be a map, and let

efr,s : X
Jr → Xr−s × Y s, efr,s = (1Xr−s × fs) ◦ eXr ,

†Since PX is homeomorphic to XJ2 , the notation eXr is compatible with the use of eX2 in the previous section.
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for 1 ≤ s ≤ r . For example, efr,r−1 = (1X × fr−1) ◦ eXr and efr,r = fr ◦ eXr .

Definition 3.1

1. The strong (r, s)-th higher topological complexity of a map f : X → Y , denoted by TCr,s(f) , is the
sectional number sec(efr,s) of the map efr,s , that is, the least integer m such that the cartesian product
Xr−s × Y s can be covered by m open subsets Ui such that, for any i = 1, 2, . . . ,m , there exists a local
section si : Ui → XJr of efr,s , so efr,s ◦ si = inclUi . If no such m exists we set TCr,s(f) = ∞ .

2. The homotopy (r, s)-th higher topological complexity of the map f , denoted by HTCr,s(f) , is the sectional
category secat(efr,s) of the map efr,s , that is, the least integer m such that the cartesian product Xr−s×Y s

can be covered with m open subsets Ui such that, for any i = 1, 2, . . . ,m , there exists a local homotopy
section si : Ui → XJr of efr,s , so efr,s ◦ si ' inclUi

. If no such m exists we set HTCr,s(f) = ∞ .

Note that f is forced to be surjective whenever TCr,s(f) < ∞ . The strong form of the higher TC of a
map is best suited for applications. Accordingly, TCr,s(f) will be the main focus in this work.

Remark 3.2 For r ≥ 2 , consider the evaluation fibration e′r : PX → Xr given by

e′r(γ) =

(
γ(0), γ

(
1

r − 1

)
, . . . , γ

(
r − 2

r − 1

)
, γ(1)

)
.

We have commutative diagrams

PX
φ //

e′r ""D
DD

DD
DD

D XJr

eXr||yy
yy
yy
yy

Xr

XJr

eXr ""E
EE

EE
EE

EE
ψ // PX

e′r||zz
zz
zz
zz
z

Xr,

where ϕ(γ) = (γ1, . . . , γr) and ψ(α1, . . . , αr) = α1 · (α1 · α2) · (α2 · α3) · · · (αr−1 · αr). Here α · β stands for the
concatenation of α and β , α(t) = α(1− t) is the path α traversed in opposite direction and, for i = 1, 2, . . . , r ,

γi(t) = γ

(
(i− 1) · t
r − 1

)
.

Therefore
TCr,s(f) = sec ((1Xr−s × fs) ◦ e′r) and HTCr,s(f) = secat ((1Xr−s × fs) ◦ e′r) , (3.2)

which explains the use of the name “sequential topological complexity” as an alternative for “higher topological
complexity”.

Remark 3.3 As an abuse of notation, when using the “sequential” setting, we will keep writing efr,s for the
map (1Xr−s × fs) ◦ e′r in (3.2).
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More generally, we can use other evaluation maps to define TCr,s and HTCr,s . For instance, let Gr be
any connected graph where r ordered distinct vertices v1, . . . , vr have been selected, and consider the evaluation
map eGr

: XGr → Xr , eGr
(γ) = (γ(v1), . . . , γ(vr)) . Then, as explained in [1, pages 2106–2107], there are

commutative diagrams

XJr //

eXr ""E
EE

EE
EE

E XGr

eGr||yy
yy
yy
yy

Xr

XGr

eGr ""E
EE

EE
EE

E
// PX

e′r||zz
zz
zz
zz

Xr

which, together with (3.2), yield

TCr,s(f) = sec ((1Xr−s × fs)× eGr
) ,

HTCr,s(f) = secat ((1Xr−s × fs)× eGr
) .

Remark 3.4

1. By definition, the higher topological complexity TCr,s(1X) of the identity map 1X : X → X coincides
with the higher topological complexity TCr(X) , i.e., TCr,s(1X) = TCr(X), for any s ∈ {1, . . . , r}.

2. Note that HTCr,s(f) ≤ TCr,s(f) for any map f . Moreover, it is easy to see that f is a fibration if and
only if efr,s is a fibration (for instance, use Remark 3.2 in the proof of [13, Lemma 4.1]). Therefore, we
immediately obtain TCr,s(f) = HTCr,s(f) for any fibration f .

The following result generalizes [14, Proposition 3.3].

Proposition 3.5 For any map f : X → Y and any s = 1, 2, . . . , r ,

TCr,s(f) ≤ min{TCr+1,s(f),TCr+1,s+1(f)}.

Proof Define µr,s : X
Jr+1 → XJr as the map which forgets the (r + 1 − s) -th path, for any s ∈ {1, . . . , r} .

Explicitly, the (r+1) -tuple γ = (γ1, . . . , γr−s, γr+1−s, γr+2−s, . . . , γr+1) of paths γi in X is sent under µr,s to
the r -tuple γ = (γ1, . . . , γr−s, γr+2−s, . . . , γr+1) of paths. Choose a ∈ X and consider the subspace inclusion
ϕa × 1Y s : Xr−s × Y s ↪→ Xr+1−s × Y s , where

ϕa : Xr−s ↪→ Xr−s+1, ϕa(x1, . . . , xr−s) = (x1, . . . , xr−s, a).

If r = s , we think of Xr−s as the single-point space {a} , and ignore it in any cartesian product. Take an
open cover U1, . . . , Um of Xr+1−s × Y s such that each Ui has a local section σi : Ui → XJr+1 of efr+1,s for
i = 1, . . . ,m , and put

Vi = Ui ∩
(
Xr−s × Y s

)
.

Then a local section si : Vi → XJr of efr,s is given by

Vi ↪→ Ui
σi−→ XJr+1

µr,s−→ XJr .
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This yields TCr,s(f) ≤ TCr+1,s(f) .

On the other hand, choose an element b ∈ Y and consider the subspace inclusion 1Xr−s×ib : Xr−s×Y s ↪→
Xr−s × Y s+1 , where

ib : Y
s → Y s+1, ib(z) = (b, z).

As before, take an open cover U1, . . . , Um of Xr−s×Y s+1 such that each Ui has a local section σi : Ui → XJr+1

of efr+1,s+1 for i = 1, . . . ,m , and put

Vi = Ui ∩
(
Xr−s × Y s

)
.

Then a local section si : Vi → XJr of efr,s is given by

Vi ↪→ Ui
σi−→ XJr+1

µr,s−→ XJr .

We thus get TCr,s(f) ≤ TCr+1,s+1(f) . 2

Proposition 3.6 For a map f : X → Y , we have

TCr,s(f) ≥
{

max{sec(fs), sec1Xr−s×fs

(eXr ), cat(Xr−s−1 × Y s)}, for s < r;
max{sec(fr), secfr

(eXr ), TCr(Y )}, for s = r.

Proof Item (4) of Lemma 2.2, yields

TCr,s(f) = sec(XJr
eXr

−−→ Xr
1Xr−s×fs

−−−−−−→ Xr−s × Y s)

≥ max{sec(1Xr−s × fs), sec(1Xr−s×fs)(eXr )}

= max{sec(fs), sec(1Xr−s×fs)(eXr )},

where the last equality comes from item (8) of Lemma 2.2.

For s < r , consider the canonical pullback

(ia)
∗(efr,s)

��

// XJr

efr,s
��

Xr−s−1 × Y s
ia

// Xr−s × Y s,

where ia : Xr−s−1 × Y s ↪→ Xr−s × Y s is the subspace inclusion given by ia(x, y) = (a, x, y) , for some fixed
a ∈ X . Since (ia)

∗(efr,s) is contractible, items (1) and (6) of Lemma 2.2 yield TCr,s(f) ≥ cat(Xr−s−1 × Y s) .
On the other hand, for s = r , the commutative diagram

XJr

efr,r ""D
DD

DD
DD

D
f# // Y Jr

eYr||zz
zz
zz
zz

Y r

yields the inequality TCr(Y ) ≤ TCr,r(f) . 2
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3.1. Rudyak-Soumen higher TC as a generalization of Murillo-Wu’s TC

The quasistrong LS category of a map f : X → (Y,B) , qscat(f) , introduced by Rudyak and Soumen in [15,
Definition 2.7], is the least integer n such that X can be covered by n open subsets {Ui}ni=1 on each of which
there is a homotopy Hi : Ui × [0, 1] → Y satisfying (Hi)0 = f |Ui and (Hi)1 (Ui) ⊂ B .

For any commutative diagram

X
φ //

f

��

X ′

h

��
Y

g
// Z,

(3.3)

it is easy to see that
qscat(g : Y → (Z,B)) ≤ sec(f) · qscat(h : X ′ → (Z,B)). (3.4)

Furthermore, if Z is path-connected, then

qscat(g : Y → (Z,B)) ≤ cat(g : Y → Z),

with equality whenever B is contractible.

Proposition 3.7 Assume (3.3) is a quasi pullback with h : X ′ → Z a fibration admiting a section over a
subspace B of Z . Then sec(f) ≤ qscat(g : Y → (Z,B)) .

Proof Let σ : B → X ′ be a section of h and H : U × I → Z be a homotopy with H1 = g|U and H0(U) ⊂ B .
The outer square in the diagram

U
σ◦H0 //

j0

��

X ′

h

��
U × I

G

;;x
x

x
x

x

H
// Z

commutes and, since h is a fibration, there is a homotopy G : U × I → X ′ that renders the complete diagram
commutative. Then the commutative diagram

U G1

))


 m

))

X
φ //

f

��

X ′

h

��
Y

g
// Z

and the quasi pullback hypothesis yield a section s : U → X of f . 2

Taking into account (3.4) we then get:
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Corollary 3.8 Under the conditions in Proposition 3.7, sec(f) = qscat(g : Y → (Z,B)) provided qscat(h :

X ′ → (Z,B)) = 1 .

Corollary 3.8 implies [4, Proposition 9.18, p. 261] as shown in the next example.

Example 3.9 Assume (3.3) is a quasi pullback with Z path-connected and h : X ′ → Z a null-homotopic
fibration. Fix z0 ∈ Z and set B = {z0} . Then qscat(h : X ′ → (Z,B)) = cat(h : X ′ → Z) = 1 , so that
sec(f) = qscat(g : Y → (Z,B)) = cat(g : Y → Z) .

We next introduce the two central characters in this subsection.
(A) A notion of higher topological complexity of a map has been introduced in [15] by Rudyak and

Soumen as follows. For r ≥ 2 and a map f : X → Y , the r -higher topological complexity of f (à la
Rudyak-Soumen), which we denote TCRSr (f) , is given by

TCRSr (f) = qscat (fr : Xr → (Y r,∆r(Y ))) ,

that is, the least integer n such that Xr can be covered by n open subsets {Ui}ni=1 on each of which there is
a homotopy Hi : Ui × [0, 1] → Y r satisfying (Hi)0 = fr|Ui and (Hi)1 (Ui) ⊆ ∆r(Y ) , where

∆r(Y ) = {(y, . . . , y) ∈ Y r : y ∈ Y }

is the diagonal. More generally, for 2 ≤ s ≤ r , set ∆r,s(Y ) = Y r−s×∆s(Y ) , and define the (r, s) -th quasistrong
higher topological complexity of f , denoted by qsTCr,s(f) , as the least integer n such that Xr can be covered
by n open subsets {Ui}ni=1 on each of which there is a homotopy Hi : Ui× [0, 1] → Y r satisfying (Hi)0 = fr|Ui

and (Hi)1 (Ui) ⊆ ∆r,s(Y ) , that is,

qsTCr,s(f) = qscat
(
fr : Xr → (Y r,∆r,s(Y ))

)
.

Note that qsTCr,r(f) = TCRSr (f) and qsTCr,s′(f) ≤ qsTCr,s(f) for any 2 ≤ s′ ≤ s ≤ r .

(B) Here is a natural generalization of Murillo and Wu’s complexity reviewed at the end of Section 2.
For a map f : X → Y and 1 ≤ s ≤ r ≥ 2 , consider the diagram

XJr

eXr
��

Xr
1Xr−s×fs

// Xr−s × Y s.

The (r, s) -higher topological complexity of f (à la Murillo-Wu), which we denote by TCMW
r,s (f) , is given by

TCMW
r,s (f) = secat1Xr−s×fs (

eXr
)
,

i.e. the least integer n such that Xr can be covered by n open sets {Ui}ni=1 on each of which there is a map
si : Ui → XJr satisfying (1Xr−s × fs)◦eXr ◦si ' (1Xr−s × fs)|Ui

. Note that TCMW
r,s (f) coincides with the least
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integer n such that Xr can be covered by n open sets {Ui}ni=1 on each of which there is a map si : Ui → X

satisfying

(1Xr−s × fs) ◦∆X
r ◦ si ' (1Xr−s × fs)|Ui

,

where ∆X
r : X → Xr, x 7→ (x, . . . , x) . Likewise, the naive (r, s) -higher topological complexity of f (à la

Murillo-Wu), which we denote by tcMW
r,s (f) , is defined analogously, now requiring each of the maps si : Ui → PX

to satisfy the stronger condition (1Xr−s × fs) ◦ eXr ◦ si = (1Xr−s × fs)|Ui
. In other words,

tcMW
r,s (f) = sec1Xr−s×fs

(eXr ).

Note that the inequality TCMW
r,s (f) ≤ tcMW

r,s (f) holds for any map f , while in fact TCMW
r,s (f) = tcMW

r,s (f)

when f is a fibration. We will write TCMW
r (f) = TCMW

r,r (f) and tcMW
r (f) = tcMW

r,r (f) . Of course

TCMW
2 (f) = TCMW (f),

the Murillo-Wu’s complexity.

The following statement generalizes [17, Theorem 3.4] and solves on the positive the question raised
in [15] by Rudyak-Soumen regarding their inequality (3.6).

Proposition 3.10 For r ≥ 2 and a map f : X → Y , we have

TCRSr (f) = TCMW
r (f) = secfr (eYr ).

Proof For U ⊂ Xr and σ : U → Y Jr satisfying eYr ◦ σ = (fr)|U , consider the homotopy H : U × [0, 1] → Y r

given by

H(x, t) =
(
σ1(x) · σr(x)(t), . . . , σr−1(x) · σr(x)(t), f(xr)

)
.

Here, for each x = (x1, . . . , xr) ∈ U , σ(x) = (σ1(x), . . . , σr(x)) is an ordered r -multipath in Y —see (3.1).
Recall that α(t) = α(1 − t) is the path α traversed in opposite direction, and that α · β stands for the
concatenation of α and β . Note that H0 = (fr)|U and H1(U) ⊂ ∆r(Y ) . This yields secfr (eYr ) ≥ TCRSr (f) .

We next argue the inequality TCRSr (f) ≥ TCMW
r (f) . For U ⊂ Xr and a homotopy H : U × [0, 1] → Y r

satisfying H0 = (fr)|U and H1(U) ⊂ ∆r(Y ) , set

αj(x)(t) := pj(H(x, t))

for each j = 1, . . . , r , x ∈ U and t ∈ [0, 1] , where pj : Y
r → Y is the projection to the j -th coordinate. Then

the homotopy G : U × [0, 1] → Y r given by

G(x, t) =
(
α1(x) · α1(x)(t), α2(x) · α1(x)(t), . . . , αr(x) · α1(x)(t)

)
satisfies G0 = (fr)|U and G1 = fr ◦∆X

r ◦ π1 , where π1(x1, . . . , xr) = x1 . This yields the asserted inequality.

1627



IPANAQUE ZAPATA and GONZÁLEZ/Turk J Math

We complete the proof by showing the inequality TCMW
r (f) ≥ secfr (eYr ) . For U ⊂ Xr and s : U → X

satisfying fr ◦∆X
r ◦ s ' (fr)|U , consider the commutative diagram

X
cf //

∆X
r

��

Y Jr

eYr
��

Xr

fr
// Y r,

where cf : X → Y Jr is given so that cf (x) = f(x) , the constant map. Then the map σ : U → Y Jr given by
σ = cf ◦ s defines a homotopy lift of (fr)|U through eYr . The result follows since eYr is a fibration. 2

3.2. The TCr,s input

We start by comparing the generalized Murillo-Rudyak-Soumen-Wu complexity secfr (eYr ) to HTCr,r(f) .

Proposition 3.11 For r ≥ 2 and a map f : X → Y , we have:

1. secfr (eYr ) ≤ HTCr,r(f) ≤ TCr,r(f) .

2. If f admits a section, then secfr (eYr ) = HTCr,r(f) = TCr,r(f).

Proof (1) Choose U ⊂ Y r and s : U → XJr satisfying fr◦eXr ◦s ' inclU , and consider V = (fr)−1(U) ⊂ Xr .
Then the map σ : V → Y Jr given by σ = f# ◦ s ◦ (fr)|V defines a homotopy lift of (fr)|V through eYr . This
yields the inequality secfr (eYr ) ≤ HTCr,r(f) ; therefore, the proof is complete in view of item (2) in Remark 3.4.

(2) It suffices to show the inequality TCr,r(f) ≤ secfr (eYr ) assuming that s : Y → X is a section of f . Let
U be an open subset of Xr , σ : U → Y Jr be a lifting of (fr)|U through eYr , and consider V = (sr)−1(U) ⊂ Y r .
Then the map ρ : V → XJr given by ρ = s# ◦σ ◦ (sr)|U defines a local section of efr,r = (fr) ◦ eXr , which yields
the asserted inequality. 2

Propositions 3.10 and 3.11 immediately yield:

Corollary 3.12 For r ≥ 2 and a map f : X → Y which admits a section, we have

TCRSr (f) = TCMW
r (f) = secfr (eYr ) = HTCr,r(f) = TCr,r(f).

Next we establish general estimates involving our TCr,s(−) and Rudyak-Soumen’s qsTCr,s(−) .

Proposition 3.13 For any 2 ≤ s ≤ r and any commutative diagram

X
φ //

f

��

W

h
��

Y
g

// Z

we have
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1. HTCr,s(f) · secat (fr−s) · qsTCr,s(h) ≥ qsTCr,s(g) .

2. HTCr,s(f) · TCRSs (h) ≥ secat(fs) · TCRSs (h) ≥ TCRSs (g) .

In particular, TCr,r(f) · TCRSr (h) ≥ HTCr,r(f) · TCRSr (h) ≥ TCRSr (g).

Proof For (1), consider open sets U , A and V , and maps σ , ρ and H satisfying

(i) U ⊂ Xr−s × Y s , σ : U → XJr with efr,s ◦ σ ' inclU ;

(ii) A ⊂ Y r , ρ : A→ Xr−s × Y s with (fr−s × 1Y s) ◦ ρ ' inclA ;

(iii) V ⊂W r , H : V × [0, 1] → Zr with H0 = hr|V and H1(V ) ⊂ ∆r,s(Z) .

(In (ii) we are using the equality sec(fr−s) = sec(fr−s × 1Y s) coming from item (8) of Lemma 2.2.) Consider
also the diagram

Ṽ

))

� _

��
XJr

efr,s

��

eXr

&&MM
MMM

MMM
MMM

VK k

yyrrr
rrr

rrr
rr

H0

����
��
��
��
��
��
��
��
�

H1

��

Xr

1×fs
rrrr

xxrrrr

φr

//

fr

��

W r

hr

��
Xr−s × Y s

fr−s×1

��

Zr

U
+ �

99sssssssssss

σ

??

∆r,s(Z)
S3

eeKKKKKKKKKK

Y r

grpppppppppppppp

77pppppppppppppp

A
+ �

88qqqqqqqqqqqq

ρ

@@

Â � � //

@@

Ã,
. �

==zzzzzzzz

ρ|

BB

where Ã = ρ−1(U) , Ṽ =
(
ϕr ◦ eXr

)−1
(V ) and Â =

(
σ ◦ ρ|

)−1
(Ṽ ) . All regions of the diagram are strictly

commutative, except for the three homotopy commutative triangles involving the homotopies in (i), (ii), and (iii).

Note that the sets Ã , Ṽ and Â can be empty but, when Â 6= ∅ , we can take the homotopy G : Â× [0, 1] → Zr

given by
G(y, t) = H

(
ϕr ◦ eXr ◦ σ ◦ ρ(y), t

)
.

Then G0 ' gr|Â and G1(Â) ⊂ ∆r,s(Z) . The asserted inequality (1) then follows by observing that, as the sets

U , A and V vary over suitable coverings, the resulting sets Â cover Y r .
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Regarding (2), the inequality HTCr,s(f) ≥ secat(fs) is obvious, and thus, we focus on the second
inequality of (2). Consider open sets A and V and maps ρ and H satisfying:

(iv) A ⊂ Y s , ρ : A→ Xs with fs ◦ ρ ' inclA ;

(v) V ⊂W s , H : V × [0, 1] → Zs with H0 = hs|V and H1(V ) ⊂ ∆s(Z) .

Consider also the diagram

Ṽ � _

��

// VL l

zzuuu
uu
uu
uu
u

H0

����
��
��
��
��
��
��
��

H1

��

Xs

fs

��

φs

// W s

hs

��
Y s

gs // Zs

Â � � //

77

A
. �

=={{{{{{{{{

ρ

<<

∆s(Z)
R2

ddHHHHHHHHHH

where Ṽ = (ϕs)
−1

(V ) and Â = ρ−1(Ṽ ) . All regions of the diagram are strictly commutative, except for the

two homotopy commutative triangles involving the homotopies in (iv) and (v). Note that the sets Ṽ and Â

can be empty but, when Â 6= ∅ , we can take the homotopy G : Â× [0, 1] → Zs given by

G(y, t) = H (ϕs ◦ ρ(y), t) .

Then G0 ' gs|Â and G1(Â) ⊂ ∆s(Z) . The second inequality in (2) now follows by observing that, as the sets

A and V vary over suitable coverings, the resulting sets Â cover Y s . 2

3.3. Products
The following result was proved in [16, Proposition 22, p. 84]. It will be used in the proof of Proposition 3.15.
Here we agree that a normal space is, by definition, required to be Hausdorff.

Lemma 3.14 Let f × f ′ : X × X ′ → Y × Y ′ be the product of two maps f : X → Y and f ′ : X ′ → Y ′ . If
Y × Y ′ is normal, then

sec(f × f ′) ≤ sec(f) + sec(f ′)− 1.

In [1, Proposition 3.11] the authors obtained the subadditivity of TCr under suitable topological hypoth-
esis. The corresponding property for higher topological complexity of maps is given next.

Proposition 3.15 Let f : X → Y and f ′ : X ′ → Y ′ be two maps. If the cartesian product (X × X ′)r−s ×
(Y × Y ′)s is normal, then

TCr,s(f × f ′) ≤ TCr,s(f) + TCr,s(f ′)− 1.
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Proof The proof proceeds by analogy with the proof of [1, Proposition 3.11]. Indeed, consider the commutative
diagram with horizontal homeomorphisms

(X ×X ′)Jr

ef×f′
r,s

��

φ // XJr ×X ′Jr

efr,s×e
f′
r,s

��

(X ×X ′)r−s × (Y × Y ′)s
ψ

// (Xr−s × Y s)×
(
X ′r−s × Y ′s

)
.

Here ϕ (γ : Jr → X ×X ′) :=
(
pX ◦ γ : Jr → X, pX′ ◦ γ : Jr → X ′

)
, while

ψ
(
(x1, x

′
1), . . . ,

(
(xr−s, x

′
r−s), (y1, y

′
1), . . . , (ys, y

′
s)
)

:= ((x1, . . . , xr−s, y1, . . . , ys), (x
′
1, . . . , x

′
r−s, y

′
1 . . . , y

′
s)),

where xi ∈ X , yi ∈ Y , x′i ∈ X ′ and y′i ∈ Y ′ , and where pX and pX′ are the obvious projections. The desired
conclusion then follows from Lemma 3.14. 2

3.4. Effect of pre- and postcomposition
We study the effect on the higher topological complexity of maps under pre- and postcomposition.

Lemma 3.16 Consider the commutative diagram

X ′

f ′

��

X
φ //

f

��

X ′

f ′

��
Y ′

ξ
// Y

ψ
// Y ′.

1. If ψ ◦ ξ ' 1Y ′ then secat(f) ≥ secat(f ′) .

2. If ψ ◦ ξ = 1Y ′ then sec(f) ≥ sec(f ′) (and, of course, secat(f) ≥ secat(f ′)).

Proof Suppose U ⊂ Y and take V = ξ−1(U) ⊂ Y ′ . Note that a map σ : U → X yields a map

δ =
(
V

ξ→ U
σ→ X

φ→ X ′
)
. If ψ ◦ ξ = 1Y ′ (ψ ◦ ξ ' 1Y ′ , respectively) and f ◦ σ = inclU (f ◦ σ ' inclU ,

respectively), then f ′ ◦ δ = inclV (f ′ ◦ δ ' inclV , respectively). 2

Proposition 3.17 Consider the diagram of maps W h→ X
f→ Y

g→ Z .

(a) If f admits a section (homotopy section, respectively), then

TCr,s(f ◦ h) ≤ TCr,s(h)
(

HTCr,s(f ◦ h) ≤ HTCr,s(h), respectively
)
, for any s ≤ r.

(b) If f admits a homotopy section, then

HTCr,s(g) ≤ HTCr,s(g ◦ f), for any s ≤ r; (3.5)

TCr,s(g) ≤ TCr,s(g ◦ f), for any s < r. (3.6)
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In particular, if f admits a section and s ≤ r , we get

TCr(Y ) ≤ HTCr,s(f) ≤ TCr,s(f) ≤ TCr(X).

Proof We use the sequential setting. Item (a) follows Lemma 3.16 applied to the commutative diagram

PW

ef◦h
r,s

��

PW
1 //

ehr,s
��

PW

ef◦h
r,s

��
W r−s × Y s

1×ξs
// W r−s ×Xs

1×fs
// W r−s × Y s,

where ξ : Y → X is either a section or a homotopy section of f . On the other hand, for item (b), assume only
that ξ : Y → X is a homotopy section to f , and consider the commutative diagram

PY

egr,s
��

PX
f# //

eg◦fr,s

��

PY

egr,s
��

Y r−s × Zs
ξr−s×1

// Xr−s × Zs
fr−s×1

// Y r−s × Zs.

Since (3.5) follows also from Lemma 3.16, we will focus on (3.6) assuming s < r (in addition to f ◦ ξ ' 1Y ).

Choose a homotopy H : f ◦ ξ ' 1Y and suppose we are given an open set U ⊂ Xr−s × Zs admitting
a local section σ : U → PX of eg◦fr,s . It is then elementary to check that a local section δ of egr,s on
V := (ξr−s × 1Zs)−1(U) is given, in terms of concatenation of paths, by the formula

δ(v) =
(
H(y1,−) · (f ◦ σ((ξ(y1), . . . , ξ(yr−s), zr−z+1, . . . , zr)) |1) ·H(y2,−)

)
·(

H(y2,−) · (f ◦ σ((ξ(y1), . . . , ξ(yr−s), zr−z+1, . . . , zr)) |2) ·H(y3,−)
)
· · · · ·(

H(yr−s−1,−) · (f ◦ σ((ξ(y1), . . . , ξ(yr−s), zr−z+1, . . . , zr)) |r−s−1) ·H(yr−s,−)
)
·(

H(yr−s,−) · (f ◦ σ((ξ(y1), . . . , ξ(yr−s), zr−z+1, . . . , zr)) |r−s)
)
·(

f ◦ σ((ξ(y1), . . . , ξ(yr−s), zr−z+1, . . . , zr)) |r−s+1

)
· · · · ·(

f ◦ σ((ξ(y1), . . . , ξ(yr−s), zr−z+1, . . . , zr)) |r−1

)
,

for any v = (y1, . . . , yr−s, zr−z+1, . . . , zr) ∈ V . Here, τ is the path τ traversed backwards (see Remark 3.2). Fur-
thermore, σ((ξ(y1), . . . , ξ(yr−s), zr−z+1, . . . , zr)) |j stands for the restriction of σ((ξ(y1), . . . , ξ(yr−s), zr−z+1, . . . , zr))

to the segment [
j − 1

r − 1
,

j

r − 1

]
,

i.e. σ((ξ(y1), . . . , ξ(yr−s), zr−z+1, . . . , zr)) |j (t) is given by the formula

σ((ξ(y1), . . . , ξ(yr−s), zr−z+1, . . . , zr))

(
t+ j − 1

r − 1

)
, t ∈ [0, 1],
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for j = 1, . . . , r − 1 . Since the sets V cover Y r−s × Zs as the sets U cover Xr−s × Zs , we get the desired
inequality TCr,s(g) ≤ TCr,s(g ◦ f) . 2

Remark 3.18 It is highly illuminating to take a look back to item (b) of Propostion 3.17 and its proof. For
starters, it should be stressed that (3.6) involves the strong form of the higher TC, even though the hypothesis
on f has a homotopy nature. Such a phenomenon works because of the additional hypothesis s < r . Indeed, the
first four lines in the definition of δ(v) allow us to incorporate the homotopy H into a pullback-type construction
(involving the homotopy section ξ ) of the strict section δ out of the strict section σ . Of course, such a trick
would not be need if f had a strict section, as then (3.6) would be true for any s ≤ r (using the “same”
argument that proves (3.5)). But then, it is more striking to remark that (3.5) and (3.6) actually have stronger
forms when s = r , as spelled out next.

Proposition 3.19 Let f : X → Y and g : Y → Z be maps.

1. Independently of whether f admits a (homotopy) section, we have

TCr,r(g) ≤ TCr,r(g ◦ f) and HTCr,r(g) ≤ HTCr,r(g ◦ f).

In particular, TCr(Y ) ≤ HTCr,r(f) ≤ TCr,r(f) .

2. If f admits a section (homotopy section, respectively), then

TCr,r(g) = TCr,r(g ◦ f) (HTCr,r(g) = HTCr,r(g ◦ f), respectively).

In particular TCr(Y ) = TCr,r(f) (TCr(Y ) = HTCr,r(f) , respectively).

Proof Working again in the sequential context, item (1) follows immediately by applying Lemma 3.16 to the
diagram

PY

egr,r
��

PX
f# //

eg◦fr,r

��

PY

egr,r
��

Zr
1Zr

// Zr
1Zr

// Zr.

Moreover, if f admits a section σ : Y → X , then TCr,r(g ◦ f) ≤ TCr,r(g ◦ f ◦ σ) = TCr,r(g) , so in fact
TCr,r(g) = TCr,r(g ◦ f) . Likewise, if σ : Y → X is a homotopy section of f , then HTCr,r(g ◦ f) ≤
HTCr,r(g ◦ f ◦ σ) = HTCr,r(g) , so in fact HTCr,r(g) = HTCr,r(g ◦ f) . 2

The facts we have discussed in this subsection have a number of interesting corollaries. First, we deduce
the following important invariance property, which states that the complexity of the map is not altered by a
deformation retraction of the domain.

Corollary 3.20 If ρ : X ′ → X is a deformation retraction, then for any f : X → Y and any s ≤ r we have

TCr,s(f) = TCr,s(f ◦ ρ) and HTCr,s(f) = HTCr,s(f ◦ ρ).
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Proof Let i : X ↪→ X ′ be the inclusion map, so that ρ ◦ i = 1X and i ◦ ρ ' 1X′ . Because ρ admits a section,
the case s = r follows from Proposition 3.19. Therefore, we assume s < r . Item (b) of Proposition 3.17 implies
TCr,s(f) ≤ TCr,s(f ◦ ρ) on the nose, as well as TCr,s(f ◦ ρ) ≤ TCr,s(f) , since (f ◦ ρ) ◦ i = f . Similarly, we get
the equality HTCr,s(f) = HTCr,s(f ◦ ρ) . 2

The following fact (written in the sequential setting) is analogous to [20, Lemma 4.6].

Lemma 3.21 If f : X → Y is a fibration and f ′ : Y → Y ′ is a map, then we have the quasi pullback diagram

PX
f# //

ef
′◦f

r,r−1 ��

PY

ef
′

r,r−1��
X × Y ′r−1

f×1
Y ′r−1

// Y × Y ′r−1
.

Proof Choose maps β and α that render the commutative diagram

Z β

**

α

((

H
**UUUUUUUUUUU

PX
f# //

ef
′◦f

r,r−1��

PY

ef
′

r,r−1��
X × Y ′r−1

f×1
Y ′r−1

// Y × Y ′r−1
,

when the dashed map H is ignored. We need to construct a map H that still fits in the commutative diagram.

Consider the commutative diagram

Z
p1◦α //

i0

��

X

f

��
Z × I

β̂

// Y ,

where p1 is the projection onto the first coordinate and β̂ : Z × I → Y is given by β̂(z, t) = β(z)(t) . Because
f is a fibration, there exists G : Z × I → X rendering the commutative diagram

Z
p1◦α //

i0
��

X

f

��
Z × I

G

<<xxxxxxxx

β̂

// Y.

It is elementary to check that the map H : Z → PX given by H(z)(t) = G(z, t) has the required property. 2

Just as Proposition 3.19 specializes to s = r , the next result specializes to s = r − 1 providing a
generalization of [20, Proposition 4.7]. The proof follows directly from item (1) of Lemma 2.2 and Lemma 3.21.
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Corollary 3.22 If f : X → Y is a fibration, then TCr,r−1(f
′ ◦ f) ≤ TCr,r−1(f

′) for any map f ′ : Y → Y ′ .
In particular, TCr,r−1(f) ≤ TCr(Y ) .

In turn, Proposition 3.17 and Corollary 3.22 can be combined to deduce the following important property,
which states that the (r, r − 1) -complexity of a fibration admiting a homotopy section depends only of the
complexity of its codomain.

Corollary 3.23 If f : X → Y is a fibration that admits a homotopy section, then

TCr,r−1(f) = TCr(Y ).

Example 3.24 For the projection pX : X × F → X we have TCr,r−1(pX) = TCr(X).

Item (2) of Proposition 3.19 together with Corollaries 3.12 and 3.23 yield the following omnibus statement,
which comprises the fact that, for large values of s , TCr,s unifies previous notions of topological complexity.

Corollary 3.25 If f : X → Y is a fibration that admits a homotopy section, then for any r ≥ 2 , we have

TCRSr (f) = TCMW
r (f) = secfr (eYr ) = HTCr,r(f) = TCr,r(f) = TCr,r−1(f) = TCr(Y ).

3.5. Homotopy invariance

Recall that two maps f : X → Y and f ′ : X ′ → Y are said to be fibre homotopy equivalent (or FHE-equivalent)
if there are commutative diagrams of the form

X
ψ //

f   @
@@

@@
@@

@ X ′

f ′
~~}}
}}
}}
}}

Y

X ′

f ′
  A

AA
AA

AA
A

φ // X

f~~~~
~~
~~
~~

Y

and the maps ϕ ◦ ψ and ψ ◦ ϕ are homotopic to the respective identity map by fibre preserving homotopies.
In [13, Corollary 3.9] the author proved the FHE-invariance of TC(f) . A generalization of the corre-

sponding property for the higher case TCr,s(f) is given next.

Proposition 3.26 Given f : X → Y and f ′ : X ′ → Y , assume that there exist fibrewise maps ψ : X → X ′

and ϕ : X ′ → X that are homotopy inverses of each other. Then

TCr,s(f) = TCr,s(f ′) and HTCr,s(f) = HTCr,s(f ′),

for any s ≤ r . In particular, the (r, s)-higher topological complexity is a FHE-invariant.

Proof By Proposition 3.17 and Proposition 3.19 we have

TCr,s(f) = TCr,s(f ′ ◦ ψ) ≥ TCr,s(f ′) = TCr,s(f ◦ ϕ) ≥ TCr,s(f),

so TCr,s(f) = TCr,s(f ′). Similarly, we get the equality HTCr,s(f) = HTCr,s(f ′) . 2

On the other hand, from item (3) of Lemma 2.2 we see that the homotopy higher topological complexity
is a homotopy invariant:

Proposition 3.27 If f ' g then HTCr,s(f) = HTCr,s(g) , for any s ≤ r .
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3.6. Upper bounds

In [13, Theorem 3.17], as corrected in version 2 of the Arxiv version, Pavešić presents an upper bound of TC(f)

for any map f . We next generalize such a fact by giving an upper estimate for the (2s, s) -higher topological
complexity of any map f .

Proposition 3.28 Let f : X → Y be a map with X path-connected and Xs × Y s normal. We have

TC2s,s(f) ≤ cat(Xs) + cat(Xs) · sec(fs)− 1. (3.7)

Proof Fix x0 ∈ X and let U be an open subset of Xs so that there exists a homotopy H : U × [0, 1] → Xs

from the inclusion U ↪→ Xs to the constant map to (x0, . . . , x0) ∈ Xs . Assume also that s : V → Xs is a local
section of fs on an open subset V of Y s . The map K : (V ∩s−1(U))×[0, 1] → Xs given by K(v, t) = H(s(v), t)

is a homotopy from the restriction of s to the constant map to (x0, . . . , x0) . Then, in terms of concatenation
of paths, the formula

δ(u, v) =
[
(p1 ◦H(u,−)) · (p2 ◦H(u,−))

]
·
[
(p2 ◦H(u,−)) · (p3 ◦H(u,−))

]
· · · · ·[

(ps−1 ◦H(u,−)) · (ps ◦H(u,−))
]
·
[
(ps ◦H(u,−)) · (p1 ◦K(v,−))

]
·[

(p1 ◦K(v,−)) · (p2 ◦K(v,−))
]
· · · · ·

[
(ps−1 ◦K(v,−)) · (ps ◦K(v,−))

]
defines a local section to ef2s,s over U × (V ∩ s−1(U)) . Here, pi : Xs → X stands for the i -th projection and, as
in Remark 3.2, τ stands for the path τ traversed in the opposite direction. The conclusion then follows from
item (7) of Lemma 2.2. 2

The estimate (3.7) is sharp under special conditions:

Corollary 3.29 Let f : X → Y be a map with X contractible and Y s normal. Then

TC2s,s(f) = sec(fs).

Proof Use Propositions 3.6 and Proposition 3.28. 2

Relative sectional numbers sec−(−) can also be used to draw estimates. Specifically, item (4) of
Lemma 2.2 yields:

Proposition 3.30 For any map f : X → Y , we have

TCr,s(f) ≤ sec(fs) · sec1Xr−s×fs

(eXr ).

Corollary 3.31 Let f : X → Y be a map.

1. If f admits a section, TCr,s(f) = sec1Xr−s×fs

(eXr ).

2. If X is contractible, TCr,s(f) = sec(fs) .

Proof Recall the lower estimate max{sec(fs), sec1Xr−s×fs

(eXr )} ≤ TCr,s(f) in Proposition 3.6 and the upper
estimate sec1Xr−s×fs

(eXr ) ≤ TCr(X) coming from Lemma 2.1. 2

Note that item (2) of Corollary 3.31 generalizes Corollary 3.29.
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Example 3.32 Let f : X → Y be a map. If f admits a section, then

TCr(Y ) = TCr,r(f) = secf
r

(eXr ).

The former equality follows from item (2) of Proposition 3.19.

3.7. Higher complexity of a fibration

We now obtain new estimates for TCr,s(f) when f is a fibration. Firstly, we restate the definition of TCr,s(f)
(for s < r ) in more geometric terms. Recall that a deformation of U ⊂ Z in Z to a subset V ⊂ Z is a map
H : U × I → Z such that H(u, 0) = u and H(u, 1) ∈ V , for all u ∈ U .

Proposition 3.33 Let f : X → Y be a fibration, and let U ⊂ Xr−s×Y s with s < r . The following statements
are equivalent:

1. There is a local section σ : U → XJr for efr,s .

2. U can be deformed in Xr−s × Y s to the subset

∆f = {(x, . . . , x, f(x), . . . , f(x)) ∈ Xr−s × Y s : x ∈ X}. (3.8)

Proof (1) =⇒ (2) . The homotopy H : U × [0, 1] → Xr−s × Y s sending (u, t) to(
σ(u)((1− t)1), . . . , σ(u)((1− t)r−s), f(σ(u)((1− t)r−s+1)), . . . , f(σ(u, (1− t)r))

)
deforms U in Xr−s×Y s to ∆f . Here, for x ∈ [0, 1] , the notation xi stands for the copy of x lying in the i -th
wedge summand of [0, 1] in Jr .

(2) =⇒ (1) . Let pi denote the projection to the i -th factor and choose a lifting function Γ : Ef → PX

of the fibration f as in (2.1). Given a deformation H : U × [0, 1] → Xr−s×Y s of U to ∆f , we define a section
σ : U → XJr for efr,s by

σ(u) =
(
p1 ◦H(u,−), . . . , pr−s ◦H(u,−),Γ(∗, pr−s+1 ◦H(u,−)), . . . ,Γ(∗, pr ◦H(u,−))

)
,

where ∗ = p1(H(u, 1)) = · · · = pr−s(H(u, 1)) (here we use the hypothesis s < r ) and τ stands for the path τ

traversed in the opposite direction. 2

Corollary 3.34 If f : X → Y is a fibration and s < r , then TCr,s(f) equals the minimal number of elements
of a covering of Xr−s × Y s by open sets that can be deformed in Xr−s × Y s to the set in (3.8).

Proposition 3.35 If f is a fibration then:

1. cat(Xr−s−1 × Y s) ≤ TCr,s(f) ≤ cat(Xr−s × Y s) , for s < r .

2. cat(Y r−1) ≤ TCr,r−1(f) ≤ min{TCr(Y ), cat(X × Y r−1)}.
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3. max{sec(fr),TCr(Y )} ≤ TCr,r(f) ≤ cat(Y r) .

Proof Because f is a fibration, the map efr,s : X
Jr → Xr−s×Y s is a fibration too (see item (2) of Remark 3.4).

Then, by item (5) of Lemma 2.2, we obtain TCr,s(f) = sec(efr,s) ≤ cat (Xr−s × Y s) for any 1 ≤ s ≤ r .

In addition, from Corollary 3.22, we get that TCr,r−1(f) ≤ TCr(Y ) . All the lower estimates follow from
Proposition 3.6. 2

The upper estimate TCr,s(f) ≤ cat(Xr−s × Y s) for s ≤ r in Proposition 3.35 is sharp under special
conditions (see Corollary 3.36 below). However, there is room for improvement, as it can be seen from
Corollary 3.38 below and, in particular, from Remark 4.1 in the final section of the paper, where the upper
estimate in item (2) of Proposition 3.35 becomes sharp due to the TCr term.

Corollary 3.36 Let f : X → Y be a fibration and assume that X is contractible. Then

TCr,s(f) = cat(Y s) = sec(fs), for any s ≤ r.

Example 3.37 If f : X̃ → X is the universal covering of a spherical space X , then TCr,s(f) = cat(Xs) =

sec(fs) for s ≤ r .

It is well known that, if Y is a topological group, or more generally an H -space, then the r -higher
topological complexity of Y coincides with cat(Y r−1) . As a consequence:

Corollary 3.38 Let f : X → Y be a fibration over an H -space Y . Then

TCr,r−1(f) = cat(Y r−1) = TCr(Y ).

Example 3.39 If f : X → Y is a fibration with a section, then (3.6), item (4) in Proposition 2.2 and item (2)

in Proposition 3.35 yield TCr,r−1(f) = TCr(Y ) = sec1X×fr−1

(eXr ) .

Remark 3.40 Item (2) of Proposition 3.35 together with Propositions 3.5 and 3.6 yield

TCr(Y ) ≤ TCr,r(f) ≤ TCr+1,r(f) ≤ TCr+1(Y ),

for any fibration f : X → Y .

3.8. Cohomological lower bound

Švarc’s cohomological lower bound for the sectional category of a map, a tool widely used in computations,
arises as follows. A multiplicative cohomology theory h∗ on the homotopy category of pairs of spaces comes
equipped with a relative cohomology product

∪ : h∗(X,A)⊗ h∗(X,B) → h∗(X,A ∪B)

whenever A,B ⊂ X are excisive. In our case, A and B will be open sets. On the other hand, consider the
index of nilpotence

nil(S) = min{n : every product of n elements in S vanishes}

defined for a subset S of a ring R .
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Lemma 3.41 ([16, Theorem 4 on p. 73]) For any map f : X → Y , we have

nil (Ker(f∗ : h∗(Y ) → h∗(X))) ≤ secat(f).

In our context:

Proposition 3.42 For every map f : X → Y and for every multiplicative cohomology theory h∗ , we have

nil
(
Ker((∆r−s,

sf)∗ : h∗(Xr−s × Y s) → h∗(X))
)
≤ HTCr,s(f),

where (∆r−s,
sf) : X → Xr−s × Y s is given by (∆r−s,

sf) = (1Xr−s × fs) ◦ ∆r , with ∆r : X → Xr, x 7→
(x, . . . , x) , the diagonal map.

Proof In the sequential context, consider the commutative diagram

PX

efr,s %%LL
LLL

LLL
LL

X
coo

(∆r−s,
sf)yysss

sss
sss

s

Xr−s × Y s,

where c : X → PX is the homotopy equivalence given by c(x) = x , the constant path at x . The result follows
from Lemma 3.41 as nil

(
Ker((efr,s)∗)

)
= nil (Ker((∆r−s,

sf)∗)) . 2

Although Proposition 3.42 is formulated in general terms, we will mostly consider cases where the Künneth

formula h∗(Xr−s×Y s) ∼= h∗(X)
⊗(r−s)⊗h∗(Y )

⊗s . In such cases, the action of (∆r−s,
sf)∗ on tensors of factors

α1, . . . , αr−s ∈ h∗(X) and β1, . . . , βs ∈ h∗(Y ) is given by the product:

(∆r−s,
sf)∗(α1 ⊗ · · · ⊗ αr−s ⊗ β1 ⊗ · · · ⊗ βs) = α1 · · ·αr−s · f∗(β1) · · · f∗(βs).

In concrete cases (e.g., those worked out in Section 4 below) we do not attempt to compute the entire kernel
of the homomorphism (∆r−s,

sf)∗ , but we rather look for specific elements in the kernel and try to find long
nontrivial products.

4. Examples

4.1. The complexity TCr,s(pn : Sn → RPn)

Recall from [1, Corollary 3.12] the higher topological complexity of the n -th sphere Sn , n ≥ 1 :

TCr(Sn) =
{
r, if n is odd,
r + 1, if n is even.

(4.1)

Consider the usual double covering map pn : Sn → RPn . Since cat(Sn) = 2 and cat(RPn) = n + 1 ,
Proposition 3.35 and the subadditivity of the Lusternik-Schnirelmann category yield the upper estimate

TCr,s(pn) ≤ sn+ r − s+ 1, for any s ≤ r. (4.2)

For a lower estimate, start by noticing that pn∗ : H∗(RPn;Z2) → H∗(Sn;Z2) is trivial in positive dimensions.
Set ι ∈ Hn(Sn;Z2) , the fundamental class of the sphere Sn , and let α ∈ H1(RPn;Z2) be the generator
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of the cohomology ring H∗(RPn;Z2) = Z2[α]/
(
αn+1

)
. Set vi = q∗i α ∈ H1((Sn)r−s × (RPn)s;Z2) , where

qi : (Sn)
r−s × (RPn)s → RPn is the projection onto the i -th factor (r − s + 1 ≤ i ≤ r ). Note that

0 6= vi ∈ Ker(∆r−s,
spn)

∗ . In fact, the product
∏r
i=r−s+1 v

n
i does not vanish so that

TCr,s(pn) ≥ sn+ 1. (4.3)

In particular, (4.2) and (4.3) yield

TCr,r(pn) = rn+ 1 and TCr,r−1(pn) = (r − 1)n+ εr−1, (4.4)

where εr−1 ∈ {1, 2} . Thus, we next assume in addition r − s ≥ 2 . For i = 1, 2, . . . , r − s , set ui = q∗i ι ∈

Hn((Sn)r−s × (RPn)s;Z2) and wi = ui + ur−s ∈ Ker(∆r−s,
spn)

∗, where qi : (S
n)
r−s × (RPn)s → Sn is the

projection onto the i -th factor.
Then

r−s−1∏
i=1

wi ·
r∏

i=r−s+1

vni =

r−s∑
j=1

u1 · · · ûj · · ·ur−s ·
r∏

i=r−s+1

vni 6= 0,

so that TCr,s(pn) ≥ sn + r − s , which is a linear improvement over (4.3). Taking into account (4.2), we then
see that (4.4) extends to

TCr,s(pn) = sn+ εs, for any s ≤ r, (4.5)

where εs ∈ {r − s, r − s+ 1} and, in fact, εr = 1 .

Remark 4.1 Assume n ∈ {1, 3, 7} , so that RPn has the structure of an H -space. Corollary 3.38 then yields

TCr,r−1(pn) = cat((RPn)r−1) = TCr(RPn) = (r − 1)n+ 1. (4.6)

Note here that cat(Sn × (RPn)r−1) = (r − 1)n + 2 > TCr,r−1(pn) , which is relevant for the discussion in the
paragraph following the proof of Proposition 3.35. In addition, we note that the following constructions have
been done in [3, Section 5]:

• For n ∈ {1, 3, 7} , an explicit partition of Sn × RPn into n + 1 subsets, each admitting a section for
epn2,1 : PSn → Sn × RPn , thus realizing (4.6) when r = 2 .

• For general n , an explicit partition of Sn × RPn into n + 2 subsets, each admitting a section for
epn2,1 : PSn → Sn × RPn , thus realizing the estimate εr−1 ≤ 2 in (4.5).

Similarly, for the standard quotient map q : S2n+1 → CPn , we obtain the estimate

sn+ r − s ≤ TCr,s(q) ≤ sn+ r − s+ 1,

for any s ≤ r .

1640



IPANAQUE ZAPATA and GONZÁLEZ/Turk J Math

4.2. Fibrations over spheres

For a fibration f : X → Sn , (4.1) and item (2) of Proposition 3.35 yield

r = cat((Sn)r−1) ≤ TCr,r−1(f) ≤ TCr(Sn) ≤ r + 1.

In particular, for n odd, we actually have TCr,r−1(f) = TCr(Sn) = r . On the other hand, (4.1), Proposition 3.6
and item (3) of Proposition 3.35 yield

r ≤ TCr(Sn) ≤ TCr,r(f) ≤ cat((Sn)r) = r + 1.

In particular, if n is even, we get in fact TCr,r(f) = TCr(Sn) = r + 1 .

5. Conclusion
We introduce a notion of higher topological complexity of a map f , TCr,s(f) , for 1 ≤ s ≤ r ≥ 2 , which
simultaneously extends Rudyak’s and Pavešić’s notions. Our unified concept is relevant in the r -multitasking
motion planning problem associated to a robot devise when the forward kinematics map plays a role in s

prescribed stages of the motion task. The use of the biparameter (r, s) allows us to get a discrimination of
the topological properties of a space Y in a manner which is finer than that provided by the several higher
topological complexities TCr(Y ) .
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