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Abstract: The purpose of this paper is to establish the eigenvalues and the eigenfunctions of both the q -Durrmeyer
operators Dn,q and the limit q -Durrmeyer operators D∞,q introduced by V. Gupta in the case 0 < q < 1 . All moments
for Dn,q and D∞,q are provided. The coefficients for the eigenfunctions of the operators are explicitly derived and the
eigenfunctions of these operators are illustrated by graphical examples.
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1. Introduction
After the Bernstein polynomials [2] had been constructed to uniformly approximate continuous functions on
[0, 1] , there were very few works on these polynomials until the 30th. In 1930, when Bernstein organized a
mathematical congress in Kharkiv, breakthrough results were presented on these polynomials by a few speakers
including such mathematicians as Kantorovich, Khlodovskii and Voronovskaya, see [22].

Kantorovich used polynomials of the form

Φn(f ;x) =

n∑
k=0

φnk(f)pnk(x), (1.1)

where pnk(x) =
(
n
k

)
xk(1− x)n−k , k = 0, 1, . . . , n are the Bernstein basis polynomials and φnk(f) are positive

functionals which are not necessarily linear. Obviously, φnk(f) = f(k/n) gives the Bernstein polynomials.
Kantorovich selected

φnk(f) = (n+ 1)

∫ (k+1)/(n+1)

k/(n+1)

f(t) dt,

and obtained the polynomials—called, nowadays, the Kantorovich polynomials Kn(f ;x)—which converge to f

almost everywhere whatever measurable function f is, see [13].
Later, Lorentz [15] proved that the sequence {Kn(f ;x)} approximates f ∈ Lp[0, 1] in the Lp -norm. It

turned out that the Kantorovich polynomials approximate functions f ∈ C[0, 1] with respect to the uniform
norm, as well. After the congress, the situation has been changed drastically concerning the investigation and
application of Bernstein polynomials and related linear positive operators. The research in this field is still going
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on due to its wide range of applications, both in mathematics and engineering like computer aided geometric
design [9].

The idea of Kantorovich to replace the coefficients of Bernstein basis polynomials by integrals rather than
the values at given points was further developed in 1967 by Durrmeyer [6] who proposed to take φnk(f) in (1.1)
as

φnk(f) = (n+ 1)

∫ 1

0

f(t)pnk(t) dt,

which leads to the new positive linear operators given below.

Definition 1.1 Let f ∈ C[0, 1] . The Bernstein-Durrmeyer operators are defined by

Dn(f ;x) = (n+ 1)

n∑
k=0

pnk(x)

∫ 1

0

f(t)pnk(t) dt, n = 1, 2, . . . , (1.2)

where pnk(x) , k = 0, . . . , n are the Bernstein basis polynomials.

Along with the development of q -calculus, a variety of q -analogues of classical linear positive operators
occured. Starting from the well-known papers by Lupaş [16] and Phillips [20], the researches on q -analogues
have been going extensively revealing new applications [3, 17].

As for the Durrmeyer operator, the first q -analogue was introduced by Derriennic [5] in 2005. Derriennic
proved that, when considered in C[0, 1] , the polynomials Dn(f ;x) provide uniform approximation and possess
degree-reducing properties on polynomials. Moreover, the operators Dn(f ;x) are self-adjoint in L2[0, 1] and
converge almost everywhere to f when f is integrable on [0, 1] . Other q -analogues were defined by Gupta [10]
and Gupta and Wang [11].

In the present paper, the q -Durrmeyer operators given in [10] are studied. For the convenience of the
reader, let us recall the needed notations and definitions associated with q -calculus, see [1, Chapter 10].

Let q > 0. For any nonnegative integer n , the q -integers [n]q are defined by

[0]q := 0, [n]q := 1 + q + · · ·+ qn−1, n = 1, 2, . . . .

The following two expressions are q -analogues of the factorials and binomial coefficients which are called q -
factorials and q -binomial coefficients, respectively, given by

[0]q! := 1, [n]q! := [1]q[2]q · · · [n]q, n = 1, 2, . . . ,

and [n
k

]
q
:=

[n]q!

[k]q![n− k]q!
.

For integers 0 ⩽ k ⩽ n , the q -binomial coefficient can be expressed as[n
k

]
q
=

(q; q)n
(q; q)k(q; q)n−k

. (1.3)
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where (x; q)n stands for the q -analogue of the Pochhammer symbol defined by, for each x ∈ C ,

(x; q)0 := 1, (x; q)n :=

n−1∏
j=0

(1− xqj), (x; q)∞ :=

∞∏
j=0

(1− xqj).

The Gauss q -binomial formula is valid, see [1, Chapter 10, Corollary 10.2.2]:

(−x; q)n =

n∑
k=0

[n
k

]
q
qk(k−1)/2xk. (1.4)

Two binomial formulae, which are the generalization of Taylor’s expansion in q -calculus (see [1, Chapter 10,
Corollary 10.2.2]), are presented. The first one is the Euler identity

1

(x; q)∞
=

∞∑
k=0

xk

(q; q)k
, |q| < 1, |x| < 1, (1.5)

the other one is the Rothe identity

1

(x; q)n
=

∞∑
k=0

[
n+ k − 1

k

]
q

xk, |x| < 1. (1.6)

The q -integral in the interval [0, a] , first introduced by Thomae [21] and later by Jackson [12], is defined as∫ a

0

f(t) dqt := (1− q)a

∞∑
j=0

qjf(aqj). (1.7)

Definition 1.2 [10] Let 0 < q < 1 , f ∈ C[0, 1] . The q -Durrmeyer operator Dn,q : C[0, 1] → C[0, 1] is given
by

Dn,q(f ;x) =

n∑
k=0

Ank(q; f)pnk(q;x), (1.8)

where

Ank(q; f) := [n+ 1]qq
−k

∫ 1

0

f(t)pnk(q; qt) dqt, (1.9)

and

pnk(q;x) =
[n
k

]
q
xk(x; q)n−k, k = 0, 1, . . . , n.

Observe that, for q = 1 , (1.8) gives the classical Bernstein-Durrmeyer operators (1.2). In this paper, new results
on the operator (1.8) are presented.

The present paper aims to highlight the eigenvalues and the eigenfunctions of the q -Durrmeyer operators
Dn,q and their limit operators D∞,q . For the Bernstein type operators, the intensive research on the eigen-
structure was initiated in [4] and, afterwards, has been carried out in a number of papers, see, for example,
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[5, 7, 14, 19]. This paper is organized as follows. In Section 1, some preliminary results, which will be used in
the next sections, are presented. In Section 2, all moments of the q -Durrmeyer operators Dn,q are obtained by
means of the recurrence relation which is derived in the same section. Section 3 deals with the eigenvalues and
the corresponding eigenfunctions of Dn,q . To derive the explicit formula for the coefficients of the eigenfunc-
tions, a similar technique is used with that of S. Cooper and S. Waldron found in [4]. Section 4 is devoted to
some results concerning the limit q -Durrmeyer operators such as moments, eigenvalues and eigenfunctions. It
should be noted that the moments of D∞,q are proved with a different point of view from [10]. The last section
contains some illustrations of the eigenfunctions of Dn,q and D∞,q .

2. Moments of Dn,q

In [10, Theorem 1], Gupta obtained Dn,q(t
i;x) , i = 0, 1, 2 by using the integral representation of q -Beta

function. It is noted that, unlike the q -Bernstein operators, the operators Dn,q(f ;x) leave invariant only the
constant functions, not all of the linear ones. In this section, all moments will be evaluated, explicitly.

Lemma 2.1 For f(t) = tm , m = 0, 1, . . . , the coefficients Ank(q; f) in (1.8) have the form

Ank(q; t
m) =

(qk+1; q)m
(qn+2; q)m

, k = 0, 1, . . . , n.

Proof By the definition (1.9) of Ank(q; f) , one has

Ank(q; t
m) = [n+ 1]qq

−k

∫ 1

0

tmpnk(q; qt) dqt = [n+ 1]q

[n
k

]
q

∫ 1

0

tm+k(qt; q)n−k dqt.

Taking (1.3) and (1.7) into account, one obtains

Ank(q; t
m) = [n+ 1]q

(q; q)n(1− q)

(q; q)k(q; q)n−k

∞∑
j=0

(qm+k+1)j(qj+1; q)n−k.

As (qj+1; q)n−k = (q; q)n−k+j/(q; q)j , one gets

Ank(q; t
m) = [n+ 1]q

(q; q)n(1− q)

(q; q)k(q; q)n−k

∞∑
j=0

(qm+k+1)j
(q; q)n−k+j

(q; q)j

= [n+ 1]q
(q; q)n(1− q)

(q; q)k

∞∑
j=0

[
n− k + j

j

]
q

(qm+k+1)j .

Applying the Rothe identity (1.6) to the last sum, one obtains

Ank(q; t
m) =

(q; q)n+1

(q; q)k(qm+k+1; q)n−k+1
=

(qk+1; q)m
(qn+2; q)m

,

which completes the proof. 2

At this stage, one has

Dn,q(t
m;x) =

n∑
k=0

Ank(q; t
m)pnk(q;x) =

n∑
k=0

(qk+1; q)m
(qn+2; q)m

pnk(q;x).
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Expanding the product (qk+1; q)m in powers of [k]q , one can express the moments of q -Durrmeyer operators
in terms of the moments of q -Bernstein polynomials as follows:

Dn,q(t
m;x) =

1

(qn+2; q)m

m∑
r=0

βq(r,m)[n]rqBn,q(t
r;x), (2.1)

in which βq(r,m) > 0 are coefficients defined by

(qk+1; q)m =

m∑
r=0

βq(r,m)[k]rq. (2.2)

In the next lemma, we propose the recurrence relation for the coefficients βq(r,m) .

Lemma 2.2 For m = 0, 1, . . . , the coefficients βq(r,m) in (2.2) obey the conditions: βq(0,m) = (q; q)m ,
βq(m,m) = (1− q)mqm(m+1)/2 , βq(r,m) = 0 if r > m or r < 0 and

βq(r,m) = (1− qm)βq(r,m− 1) + qm(1− q)βq(r − 1,m− 1), r = 1, 2, . . . ,m− 1. (2.3)

Proof Obviously, for m = 0 , equality (2.2) implies that βq(0, 0) = 1 . Also, it is evident that βq(r,m) = 0 if
r > m or r < 0 . Further, assuming such an expression as in (2.2), one has

m∑
r=0

βq(r,m)[k]rq = (qk+1; q)m = (qk+1; q)m−1(1− qk+m)

= (1− qm + qm(1− q)[k]q)

m−1∑
r=0

βq(r,m− 1)[k]rq

=

m−1∑
r=0

(1− qm)βq(r,m− 1)[k]rq +

m∑
r=1

qm(1− q)βq(r − 1,m− 1)[k]rq.

As βq(m,m− 1) = βq(−1,m− 1) = 0 , the sums on the right side can be written as a single sum:

m∑
r=0

βq(r,m)[k]rq =

m∑
r=0

((1− qm)βq(r,m− 1) + qm(1− q)βq(r − 1,m− 1)) [k]rq.

Comparing the coefficients of [k]rq on both sides, for r = 0 , one gets

βq(0,m) = (1− qm)βq(0,m− 1)

which gives
βq(0,m) = (1− qm)(1− qm−1) · · · (1− q)βq(0, 0) = (q; q)m.

Also, for r = m , one finds
βq(m,m) = qm(1− q)βq(m− 1,m− 1),

which gives
βq(m,m) = (1− q)mqmqm−1 · · · qβq(0, 0) = (1− q)mqm(m+1)/2.
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Finally, for r = 1, 2, . . . ,m− 1, one receives (2.3). 2

The next theorem gives the explicit formula for the moments Dn,q(t
m;x) . To present the result, one

needs q -Stirling numbers of the second kind [8],

Sq(i, j) =
1

[j]q! qj(j−1)/2

j∑
r=0

(−1)rqr(r−1)/2

[
j

r

]
q

[j − r]iq, (2.4)

with Sq(0, 0) = 1 , Sq(i, 0) = 0 for i > 0 , Sq(i, j) = 0 for j > i and the eigenvalues λ
(n)
m,q of the q -Bernstein

operators [19],

λ
(n)
0,q = λ

(n)
1,q = 1, λ(n)

m,q =

(
1− 1

[n]q

)(
1− [2]q

[n]q

)
· · ·
(
1− [m− 1]q

[n]q

)
, m = 2, 3, . . . , n.

With the help of the numbers βq(r,m) , one can evaluate Dn,q(t
m;x) .

Theorem 2.3 For m = 0, 1, . . . , there holds

Dn,q(t
m;x) =

m∑
r=0

an,q(r,m)xr,

where

an,q(r,m) =
[n]rq λ

(n)
r,q

(qn+2; q)m

m∑
i=r

βq(i,m)Sq(i, r). (2.5)

Proof It is known that Bn,q(t
r, x) is a polynomial of degree min {r, n} (see [18]) and has the form [8],

Bn,q(t
r;x) =

r∑
i=0

Sq(r, i)

[n]r−i
q

λ
(n)
i,q x

i. (2.6)

Putting (2.6) into (2.1), one obtains

Dn,q(t
m;x) =

1

(qn+2; q)m

m∑
r=0

r∑
i=0

βq(r,m)[n]iqSq(r, i)λ
(n)
i,q x

i.

Changing the order of sums and swapping the roles of r and i , one obtains

Dn,q(t
m;x) =

m∑
r=0

(
[n]rq λ

(n)
r,q

(qn+2; q)m

m∑
i=r

βq(i,m)Sq(i, r)

)
xr,

as desired. 2

3. On the eigenconfiguration of Dn,q

In this section, the eigenvalues and the corresponding eigenfunctions of Dn,q are obtained. Notice that, in
distinction to Bn,q , all eigenvalues of Dn,q are simple.
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Theorem 3.1 For all 0 < q < 1 , the operator Dn,q has (n+ 1) simple eigenvalues η
(n)
m,q given by

η(n)m,q := an,q(m,m) =
[n]mq λ

(n)
m,q

(qn+2; q)m
(1− q)mqm(m+1)/2, m = 0, 1, . . . , n. (3.1)

Proof Notice that Dn,q(1;x) = 1 and, for m = 1, . . . , n , the polynomial Dn,q(t
m;x) can be written as

Dn,q(t
m;x) = η(n)m,qx

m + Pm−1(x), (3.2)

where Pm−1 is a polynomial of degree at most m− 1 and η
(n)
m,q are given by (3.1). For j < m ⩽ n , the fraction

η
(n)
m,q/η

(n)
j,q equals

η
(n)
m,q

η
(n)
j,q

=
[n]m−j

q (1− q)m−jq[m(m+1)−j(j+1)]/2λ
(n)
m,q

(qn+j+2; q)m−jλ
(n)
j,q

.

Obviously,

[n]m−j
q (1− q)m−j

(qn+j+2; q)m−j
=

m+1∏
k=j+2

1− qn

1− qn+k
< 1

and

λ
(n)
m,q

λ
(n)
j,q

=

m−1∏
k=j

(
1− [k]q

[n]q

)
< 1

Therefore, η
(n)
m,q/η

(n)
j,q < 1 , which gives η

(n)
m,q < η

(n)
j,q for j < m , meaning that η

(n)
m,q are distinct.

By (3.2), the matrix representation of Dn,q in the standard basis
{
1, x, x2, . . . , xn

}
has the form

1 ∗ ∗ ∗ . . . ∗
0 η

(n)
1,q ∗ ∗ . . . ∗

0 0 η
(n)
2,q ∗ . . . ∗

0 0 0 η
(n)
3,q · · · ∗

...
...

...
... . . . ∗

0 0 0 0 . . . η
(n)
n,q


.

Therefore, the numbers η
(n)
m,q , m = 0, . . . , n are the eigenvalues of Dn,q . 2

Remark 3.2 It is worth pointing out that η
(n)
m,1 are the eigenvalues of the classical Bernstein-Durrmeyer

operators.

Theorem 3.3 For n ∈ N and m = 0, 1, . . . , n , the monic polynomials φ
(n)
m (q;x) , which are the eigenfunctions

of Dn,q(f ;x) corresponding to the eigenvalue of η
(n)
m,q , have the form

φ(n)
m (q;x) =

m∑
r=0

cn,q(r,m)xr, (3.3)
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where cn,q(m,m) = 1 and

cn,q(m− j,m) =
1

η
(n)
m,q − η

(n)
m−j,q

j−1∑
i=0

cn,q(m− i,m)an,q(m− j,m− i), j = 1, 2, . . . ,m− 1. (3.4)

Proof Let the eigenfunctions of Dn,q(f ;x) be represented by

φ(n)
m (q;x) =

m∑
r=0

cn,q(r,m)xr, cn,q(m,m) := 1. (3.5)

Since φ
(n)
m (q;x) are the eigenfunctions of Dn,q(f ;x) , one can write

Dn,q(φ
(n)
m (q;x);x) = η(n)m,qφ

(n)
m (q;x) (3.6)

In view of the expression (3.5), (3.6) becomes

η(n)m,q

m∑
s=0

cn,q(s,m)xs =

m∑
r=0

cn,q(r,m)Dn,q(t
r;x)

=

m∑
r=0

cn,q(r,m)

r∑
s=0

an,q(s, r)x
s =

m∑
s=0

m∑
r=s

cn,q(r,m)an,q(s, r)x
s.

Comparing the coefficient of xs , one gets

η(n)m,qcn,q(s,m) =

m∑
r=s

cn,q(r,m)an,q(s, r).

Replacing s by m− j and r by m− i yields

η(n)m,qcn,q(m− j,m) =

j∑
i=0

cn,q(m− i,m)an,q(m− j,m− i)

which gives

cn,q(m− j,m) =
1

η
(n)
m,q − η

(n)
m−j,q

j−1∑
i=0

cn,q(m− i,m)an,q(m− j,m− i),

as desired. 2

4. On the limit operators

The focus is on the limit q -Durrmeyer operator introduced in [10]. This operator emerged as a limit of
Dn,q(f ;x) . More precisely, it was shown that {Dn,q} → D∞,q as n → ∞ in strong operator topology.

Writing

p∞k(q;x) = lim
n→∞

pnk(q;x) =
xk(x; q)∞
(q; q)k

, k = 0, 1, . . . ,

the operator D∞,q can be expressed as follows:
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Definition 4.1 [10] Let q ∈ (0, 1) , f ∈ C[0, 1] . The limit q -Durrmeyer operator is defined by

D∞,q(f ;x) =

{ ∑∞
k=0 A∞k(q; f)p∞k(q;x), x ∈ [0, 1),

f(1), x = 1

where

A∞k(q; f) :=
q−k

1− q

∫ 1

0

f(t)p∞k(q; qt) dqt, (4.1)

and

p∞k(q;x) =
(x, q)∞ xk

(q, q)k
, k = 0, 1, . . .

Lemma 4.2 For all m = 0, 1, . . . , one has

A∞k(q; t
m) = (qk+1; q)m, k = 0, 1, . . . (4.2)

Proof Using (4.1) with f(t) = tm , one can write

A∞k(q; t
m) =

q−k

1− q

∫ 1

0

tmp∞k(q; qt) dqt =
1

(1− q)(q; q)k

∫ 1

0

tm+k(qt; q)∞ dqt.

Applying (1.7) and the relation (q; q)∞ = (q; q)j(q
j+1; q)∞ , one obtains

A∞k(q; t
m) =

1

(q; q)k

∞∑
j=0

(qm+k+1)j(qj+1; q)∞ =
(q; q)∞
(q; q)k

∞∑
j=0

(qm+k+1)j

(q; q)j
.

By virtue of the Euler identity (1.5), one arrives at

A∞k(q; t
m) =

(q; q)∞
(q; q)k(qm+k+1; q)∞

= (qk+1; q)m,

as stated. 2

The next theorem gives the explicit formula for the moments of D∞,q .

Theorem 4.3 For all m = 0, 1, . . . , one has

D∞,q(t
m;x) =

m∑
k=0

a∗q(k,m)xk, (4.3)

where

a∗q(k,m) =

m∑
s=k

[m
s

]
q

[ s
k

]
q
(−1)k+sq(s(s+1)+k(k−1))/2. (4.4)

Proof Using (4.1) and (4.2) results in

D∞,q(t
m;x) =

∞∑
k=0

A∞k(q; t
m)p∞k(q;x) = (x; q)∞

∞∑
k=0

(qk+1; q)mxk

(q; q)k
.
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Employing Gauss q -binomial formula (1.4) leads to

(qk+1; q)m =

m∑
s=0

[m
s

]
q
(−1)sqs(s−1)/2(qk+1)s,

which allows to write

D∞,q(t
m;x) = (x; q)∞

∞∑
k=0

(
m∑
s=0

[m
s

]
q
(−1)sqs(s−1)/2(qk+1)s

)
xk

(q; q)k

= (x; q)∞

m∑
s=0

[m
s

]
q
(−1)sqs(s−1)/2qs

( ∞∑
k=0

(qsx)k

(q; q)k

)
.

By Euler identity (1.5), one gets

D∞,q(t
m;x) =

m∑
s=0

[m
s

]
q
(−1)sqs(s+1)/2(x; q)s.

Again, taking into account Gauss q -binomial formula (1.4), one comes up with

D∞,q(t
m;x) =

m∑
s=0

s∑
k=0

[m
s

]
q

[ s
k

]
q
(−1)k+sq(s(s+1)+k(k−1))/2xk

=

m∑
k=0

m∑
s=k

[m
s

]
q

[ s
k

]
q
(−1)k+sq(s(s+1)+k(k−1))/2xk,

which completes the proof. 2

The previous theorem will be used to describe the polynomial eigenfunctions of D∞,q .

Theorem 4.4 For each m = 0, 1, . . . , the operator D∞,q has a polynomial eigenfunction of degree m ,

corresponding to the eigenvalue η∗m,q = qm
2 . The monic polynomial φ∗

m(q;x) has the explicit representation

φ∗
m(q;x) =

m∑
r=0

c∗q(r,m)xr, (4.5)

where c∗q(m,m) = 1 and for j = 1, 2, . . . ,m ,

c∗q(m− j,m) =
1

qm2 − q(m−j)2

j−1∑
i=0

c∗q(m− i,m)a∗q(m− j,m− i).

Proof Using (4.3), one writes

D∞,q(t
m;x) = a∗q(m,m)xm + l.o.t.,

where, by (4.4), a∗q(m,m) = qm
2 and l.o.t. stands for “lower order terms”. Also, (4.3) implies that the vector

space Pn of polynomials of degree at most n is invariant under D∞,q and that the matrix representation of
D∞,q in the standart basis

{
1, x, x2, . . . , xn

}
of Pn is upper triangular matrix with diagonal entries being
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η∗m,q = qm
2 , m = 0, 1, . . . , n. Therefore, η∗m,q = qm

2 are the eigenvalues of D∞,q . As the eigenvalues are

distinct, there exists a one-dimensional eigenspace associated with qm
2 which is spanned by a polynomial of

degree exactly m .
Let φ∗

m(q;x) be a monic eigenpolynomial of degree m given by (4.5) with c∗q(m,m) = 1. Using the fact

that D∞,q(φ
∗
m;x) = qm

2

φ∗
m(q;x) results in

qm
2

m∑
s=0

c∗q(s,m)xs =

m∑
r=0

c∗q(r,m)D∞,q(t
r;x) =

m∑
r=0

c∗q(r,m)

r∑
s=0

a∗q(s, r)x
s =

m∑
s=0

m∑
r=s

c∗q(r,m)a∗q(s, r)x
s.

Comparing the coefficient of xs in both sides brings about

qm
2

c∗q(s,m) =

m∑
r=s

c∗q(r,m)a∗q(s, r) = c∗q(s,m)a∗q(s, s) +

m∑
r=s+1

c∗q(r,m)a∗q(s, r).

Hence

c∗q(s,m) =
1

qm2 − qs2

m∑
r=s+1

c∗q(r,m)a∗q(s, r).

Replacing s by m− j and r by m− i , one obtains the desired result. 2

In the remaining part of the paper, the asymptotic behaviour, when n → ∞ , of the eigenfunctions (3.3)
is investigated. To this aim, one needs the following auxiliary results.

Lemma 4.5 Let βq(r,m) be as in (2.2) and Sq(i, r) be the q -Stirling numbers of the second kind as in (2.4).
Then, for 0 ⩽ r ⩽ m, one has

m∑
i=r

βq(i,m)Sq(i, r) = (1− q)r
m∑
s=r

[m
s

]
q

[s
r

]
q
(−1)r+sqs(s+1)/2.

Proof Using Sq(i, r) = 0 for r > i and (2.4), one has
m∑
i=r

βq(i,m)Sq(i, r) =
1

[r]q! qr(r−1)/2

m∑
i=0

βq(i,m)

r∑
j=0

[
r

j

]
q

(−1)jqj(j−1)/2[r − j]iq

=
1

[r]q! qr(r−1)/2

r∑
j=0

[
r

j

]
q

(−1)jqj(j−1)/2
m∑
i=0

βq(i,m)[r − j]iq.

By virtue of (2.2),
m∑
i=r

βq(i,m)Sq(i, r) =
1

[r]q! qr(r−1)/2

r∑
j=0

[
r

j

]
q

(−1)jqj(j−1)/2(qr−j+1; q)m.

Taking into account the Gauss q -binomial formula (1.4), one obtains
m∑
i=r

βq(i,m)Sq(i, r) =
1

[r]q! qr(r−1)/2

r∑
j=0

[
r

j

]
q

(−1)jqj(j−1)/2
m∑
s=0

[m
s

]
q
(−1)sqs(s−1)/2(qr−j+1)s

=
1

[r]q! qr(r−1)/2

m∑
s=0

[m
s

]
q
(−1)sqs(s−1)/2(qr+1)s

r∑
j=0

[
r

j

]
q

(−1)jqj(j−1)/2(q−s)j .
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Using (1.4) again, one ends up with
m∑
i=r

βq(i,m)Sq(i, r) =
1

[r]q! qr(r−1)/2

m∑
s=0

[m
s

]
q
(−1)sqs(s−1)/2(qr+1)s(q−s; q)r.

Since (q−s; q)r = 0 for s = 0, 1, . . . , r − 1 and

(q−s; q)r = (−1)rq−sr+
r(r−1)

2
(q; q)s

(q; q)s−r
,

one arrives at
m∑
i=r

βq(i,m)Sq(i, r) =
1

[r]q!

m∑
s=r

[m
s

]
q
(−1)r+sqs(s+1)/2 (q; q)s

(q; q)s−r

= (1− q)r
m∑
s=r

[m
s

]
q

[s
r

]
q
(−1)r+sqs(s+1)/2,

which completes the proof. 2

The next result is on the limits of the coefficients of the moments (2.5) and (4.4).

Lemma 4.6 For 0 ⩽ r ⩽ m, one has

lim
n→∞

an,q(r,m) = a∗q(r,m).

Proof Indeed, limn→∞[n]rq = (1 − q)−r and limn→∞ λ
(n)
r,q = qr(r−1)/2. Hence, using Lemma 4.5 and the fact

that (qn+2; q)m → 1 as n → ∞ , one receives the result on taking the limit on both sides of (2.5). 2

Corollary 4.7 For r = m , the following result is valid:

lim
n→∞

η(n)m,q = qm
2

, m = 0, 1, . . .

The assertion below demonstrates the uniform convergence of the eigenfunctions of Dn,q to those of D∞,q on
any compact set.

Theorem 4.8 For 0 ⩽ r ⩽ m, one has

lim
n→∞

cn,q(r,m) = c∗q(r,m).

Proof Obviously, the statement is true for r = m . Suppose that limn→∞ cn,q(m− i,m) = c∗q(m− i,m) exists
for i = 0, 1, . . . , r − 1 where 1 ⩽ r ⩽ m . Notice that

lim
n→∞

η(n)m,q = η∗m,q.

Now, taking the limits of both sides of (3.4) and using the induction hypothesis together with Lemma 4.6, one
gets,

lim
n→∞

cn,q(m− r,m) =
1

qm2 − q(m−j)2

r−1∑
i=0

c∗q(m− i,m)a∗q(m− r,m− i) = c∗q(m− r,m),

which gives the desired result. 2
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5. Simulations

This section consists of some illustrative graphs for the eigenfunctions φ
(n)
m (q;x) and φ∗

m(q;x) . Figure 1

shows the eigenfunctions φ
(6)
m (q;x) , for m = 0, 1, . . . , 6 , normalized to have the uniform norm 1. In Figure 2,

several members of the sequence {φ(n)
4 (q;x)} together with their limit φ∗

4(q;x) are drawn. As supported by
graphics, the eigenfunctions of Dn,q converge to those of D∞,q. Figure 3 indicates the eigenfunctions φ∗

m(q;x),

m = 0, 1, . . . , 5 of the limit q -Durrmeyer operator D∞,q . In Figures 4 and 5, unlike in the previous ones, the

parameter q is varied and the eigenfunctions {φ(5)
5 (q;x)} of the operators D5,q and {φ∗

5(q;x)} of the operators
D∞,q, respectively, for several values of q , are shown.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Figure 1. The normalized eigenfunctions of D6,q for q = 0.5 .

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

Figure 2. The eigenfunctions φ
(n)
4 (q;x) for different values of n and φ∗

4(q;x) for q = 0.8.
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-0.5

0

0.5

1

Figure 3. Several normalized eigenfunctions of D∞,q for q = 0.8.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

Figure 4. The eigenfunctions φ
(5)
5 (q;x) for a few values of q.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

Figure 5. The eigenfunctions φ∗
5(q;x) for a few values of q.
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