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Abstract: We give an extended calculus over the function algebra on h -deformed superplane. For this, we extend
the (h1, h2) -deformed differential calculus on the h -deformed superplane by adding inner derivations. We reformulate
the results with an R -matrix and present the tensor product realization of the wedge product. We also discuss Cartan
calculus via a contraction.
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1. Introduction
Noncommutative differential geometry continues to play important roles in different fields of mathematics and
mathematical physics in recent years. A differential calculus on an associative (super) algebra is one of the
fundamental structures that make up noncommutative geometry. In the language of quantum groups, there
are two types of deformations: standard (or q -deformation) and nonstandard (or h -deformation). The q -
deformation of Lie groups and algebras are presented in [17] and nonstandard deformation in [24] and [15].
A differential calculus over the quantum hyperplane was introduced in [25]. This calculus is very interesting
from the point of view of noncommutative geometry. The natural extension to q -superspaces [22] of differential
calculus was introduced in [3–7, 16, 20]. Differential calculus on h -deformed spaces and superspaces was studied
in [1, 2, 8–10, 19, 21].

The extended calculus on the quantum plane was introduced in [12] using the approach of [23]. The
Cartan calculus on the q -superplane was introduced in [11].

The present paper might be divided into three parts; the first of which is the extension of the differential

calculus on the h -deformed superplane C1|1
h in such a way to include the inner derivations, while the second part

is to use the R-matrix of the quantum supergroup GLh,h′(1|1) in the presentation of the differential calculus,
and the final part is to upgrade the discussion to the (q, h) -deformed setting.

This paper is organized as follows. In Section 2, we give some information on O(C1|1
h ) from [8, 10]. In

Section 3, we present the differential calculus from [10], in a more formal and systematic way, which we will
use to construct our notions and we introduce the commutation rules of the inner derivations with functions
on the quantum superplane, differential forms and partial differentials. In Section 4, we reformulate the results
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we got in the previous section with an R -matrix and we introduce the tensor product realization of the wedge

product. In the last section, we note that a Cartan calculus can be constructed on the superalgebra O(C1|1
q,h)

using a contraction procedure.
We denote the degree of a homogeneous element ai of a Z2 -graded vector space by p(ai) = i , where i is

in Z2 . If p(ai) = 0 then ai is said to be even and if p(ai) = 1 then ai is said to be odd. As in the classical case,
throughout this paper we will assume that odd (Grassmann) elements are anticommutative among themselves.

2. Review of the superalgebra O(C1|1
h )

Elementary properties of the two-parameter h -deformed superplanes are described in [8, 10]. We briefly mention
some concepts as we will need them in this study.

2.1. The algebra of functions on the (h, h′)-deformed superplanes

Let us start with the definition of the coordinate ring of C1|1
h . Let C⟨x, θ⟩ be a free superalgebra with unit

generated by x and θ such that x is of degree (or parity) zero and θ is of degree one. We assume that h2 = 0

and, h and θ are anticommutative.

Definition 2.1 Denote by Ih the two-sided ideal of the free superalgebra C⟨x, θ⟩ with elements xθ − θx− hx2

and θ2 + hθx . The Z2 -graded, associative, unital algebra

O(C1|1
h ) = C⟨x, θ⟩/Ih

is the algebra of polynomials on C1|1
h .

According to this definition, we have [8, 14]

xθ = θx+ hx2, θ2 = −hθx, (1)

where h2 = 0 .
Interestingly, although the deformation parameter in standard deformation is a nonzero complex num-

ber and the generator θ is nilpotent, the deformation parameter in nonstandard deformation is an odd or
Grassmann parameter whose square is zero and the generator θ is parafermionic, that is, θ3 = 0 .

Definition 2.2 Let Λh′(C1|1
h ) be the superalgebra with φ and y obeying the quadratic relations

φ2 = h′φy, φy = yφ+ h′y2 (2)

where p(φ) = 1 and p(y) = 0 , and h′ is a Grassmann parameter whose square is zero and anticommuting with

φ . We call Λh′(C1|1
h ) the exterior algebra of C1|1

h .

Remark 1 In [10], the generators of the superalgebra Λh′(C1|1
h ) are defined as differentials of x and θ . Since

h and h′ are both Grassmann parameters, we assume that hh′ + h′h = 0 for consistency.
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2.2. The quantum supergroup GLh,h′(1|1)

Let us consider the free superalgebra C⟨a, β, γ, b⟩ where a , b are of degree 0 and β , γ are of degree 1, and
write T = (tij) where tij ∈ {a, β, γ, b} .

Definition 2.3 [8] A matrix T belongs to GLh,h′(1|1) if and only if the matrix elements of T satisfy the
relations

aβ = βa− h′(a2 − βγ − ab), bβ = βb+ h′(b2 + βγ − ba),

aγ = γa+ h(a2 + γβ − ab), bγ = γb− h(b2 − γβ − ba),

β2 = h′β(a− b), βγ = −γβ + (hβ − h′γ)(b− a), (3)

γ2 = hγ(b− a), ab = ba+ hβ(a− b) + h′(a− b)γ

provided that β and γ anticommute with h and h′ .

The superalgebra O(GLh,h′(1|1)) is a Hopf superalgebra [8] and it is called the coordinate algebra of the
quantum supergroup GLh,h′(1|1) .

Theorem 2.4 Superalgebras O(C1|1
h ) and Λh′(C1|1

h ) are left O(GLh,h′(1|1))-comodule algebras.

3. Extension of left-covariant differential calculus on O(C1|1
h )

In the first subsection, we will review left-covariant Z2 -graded differential calculus on the superalgebra O(C1|1
h )

generated by two generators and quadratic relations [10] with some new theorems and formulas. We start with
the definition of a super (or Z2 -graded) differential calculus on a superalgebra A .

Definition 3.1 A Z2 -graded differential calculus over A is a Z2 -graded algebra Ω =
⊕∞

n=0 Ω
n where Ω0 = A

and the space Ωn of n-forms are generated as A-bimodules via the action of a C-linear mapping d : Ω −→ Ω

of degree one such that
1. d2 = 0 ,
2. d(α ∧ β) = (dα) ∧ β + (−1)p(α) α ∧ (dβ) for α, β ∈ Ω .
3. Ωn = Lin{a0 · da1 ∧ · · · ∧ dan : a0, a1, . . . , an ∈ A} for n ∈ N .

3.1. Review of left-covariant differential calculus on O(C1|1
h )

We know, from [10], that there exists a unique left-covariant differential calculus Ω over O(C1|1
h ) with respect

to O(GLh,h′(1|1)) :

Theorem 3.2 There is a unique Z2 -graded first order differential calculus Ω1(C1|1
h ) over O(C1|1

h ) which is

left-covariant according to O(GLh,h′(1|1)) such that the set {dx, dθ} is a free right O(C1|1
h )-module basis of

Ω1(C1|1
h ) . The bimodule structure for this calculus is determined by the relations

u · dxj = (−1)p(u)p(dxj)
∑
i

dxi · σij(u), (4)
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where the action of the map σ : O(C1|1
h ) −→ M2(O(C1|1

h )) on the generators of O(C1|1
h ) is as follows:

σ(x) =

[
(1− hh′)x− h′θ hx− hh′θ

−h′x x− h′θ

]
, σ(θ) =

[
θ − hx hθ

−(h′θ + hh′x) (1 + hh′)θ − hx

]
. (5)

Remark 2 We can also define a map τ : O(C1|1
h ) → M2(O(C1|1

h )) by the formulas

dxj · u =
∑
i

(−1)p(u)p(dxi) τji(u) · dxi,

where

τ(x) =

[
(1− hh′)x+ h′θ h′x

hx+ hh′θ x+ h′θ

]
, τ(θ) =

[
θ + hx h′θ − hh′x
hθ (1 + hh′)θ + hx

]
.

Theorem 3.3 The maps σ and τ are Z2 -graded left-linear homomorphisms such that

fij(uv) =
∑
k

(−1)p(u)[p(xj)+p(xk)] fik(u)fkj(v), ∀u, v ∈ O(C1|1
h ),

for f ∈ {σ, τ} .

Remark 3 As can be easily shown, the relations (1) are preserved under the action of the maps σ and τ .

To obtain higher order differential forms, we apply the differential d to 1-forms using the fact that the
square of d is zero and the Leibnitz rule. Then we have to apply the differential d to both sides of the relations

in (4) to obtain the relations satisfied between differentials of the generators of the algebra O(C1|1
h ) . However,

the expression on the right side of (4) contains the operator σ and we need to establish a relationship between
this operator and the differential d . So let us define a map σΩ as

σΩ : Ω −→ Ω, σΩ
jk(du) = dσjk(u), ∀u ∈ O(C1|1

h ), (6)

where σΩ
ij(u) := σij(u) for all u ∈ O(C2|1

q ) . Then we have

Theorem 3.4 The relations between the differentials are as follows

du ∧ dxj = (−1)[1+p(du)]p(dxj)
∑
i

(−1)p(dxi) dxi ∧ σΩ
ij(du). (7)

Naturally, the map σΩ is also a linear homomorphism acting on 0-forms, with the same properties as the
map σ :

Theorem 3.5 The map σΩ is a Z2 -graded left-linear homomorphism such that

σΩ
ij(du ∧ dv) =

∑
k

(−1)p(du)[p(dxk)+p(dxj)] σΩ
ik(du) ∧ σΩ

kj(dv), (8)

for all u, v ∈ O(C1|1
h ) .
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Proof One derives from the fact that the differential algebra Ω is associative. Really, from (7), we can write

(du ∧ dv) ∧ dxj = (−1)[1+p(dudv)]p(dxj)
∑
i

(−1)p(dxi) dxi ∧ σΩ
ij(du ∧ dv),

for all u, v ∈ O(C1|1
h ) . On the other hand, using (du ∧ dv) ∧ dxj = du ∧ (dv ∧ dxj) , one obtains

du ∧ (dv ∧ dxj) = (−1)[1+p(dv)]p(dxj)du ∧
∑
i

(−1)p(dxi) dxi ∧ σΩ
ij(dv)

= (−1)[1+p(dv)]p(dxj)
∑
i,k

(−1)p(du)p(dxi)+p(dxk)dxk ∧ σΩ
ki(du) ∧ σΩ

ij(dv).

If we substitute k for i and i for k in the second equality, we obtain the equality in (8). 2

In the next section, we will also need the action of σΩ on the elements such as u · dv .

Corollary 3.5.1 The map σΩ together with σ has the following properties

σΩ
ij(u · dv) =

∑
k

(−1)p(xi)+p(xk)+p(u)[p(xj)+p(xk)] σik(u) · σΩ
kj(dv),

σΩ
ij(du · v) =

∑
k

(−1)[1+p(du)][p(xj)+p(xk)] σΩ
ik(du) · σkj(v), (9)

for all u, v ∈ O(C1|1
h ) .

Remark 4 It is easy to see that the relations (4) are invariant under the action of the map σΩ .

Now, we want to obtain commutation relations of the generators of O(C1|1
h ) with partial derivatives.

Therefore, let us first define the partial derivatives of the generators of O(C1|1
h ) .

Definition 3.6 The linear mappings ∂x, ∂θ : O(C1|1
h ) −→ O(C1|1

h ) defined by

du = dx ∂x(u) + dθ ∂θ(u), u ∈ O(C1|1
h ) (10)

are called the partial derivatives of the calculus (Ω, d) , where p(∂x) = 0 and p(∂θ) = 1 .

Theorem 3.7 [10] The partial derivatives with the generators of O(C1|1
h ) obey the following relations

∂i · xk = δik +
∑
j

(−1)p(xk)p(∂j)σij(xk) · ∂j , (11)

where ∂1 := ∂x , ∂2 := ∂θ and x1 = x , x2 = θ . The partial derivatives satisfy the following commutation
relations

∂x∂θ = ∂θ∂x − h′∂2
x, ∂2

θ = h′∂x∂θ. (12)

Let us denote by Ω1(T C1|1
h ) the vector space formed by ∂x , ∂θ satisfying (12). This vector space is

called the tangent space.

Corollary 3.7.1 The set {∂x, ∂θ} is a basis of the right O(C1|1
h )-module Ω1(T C1|1

h ) .
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3.2. An exterior differential

We know, from Subsection 3.1, that the cotangent space Ω1(T ∗C1|1
h ) is a O(C1|1

h ) -bimodule spanned by the

basis {dx, dθ} with the relations (4) and that the tangent space Ω1(T C1|1
h ) is a O(C1|1

h ) -bimodule spanned
by the basis {∂x, ∂θ} with the relations (12). Therefore, we can define an inner product in analogy with the

corresponding objects of the theory of ordinary manifolds. The general inner product between Ω1(T C1|1
h ) and

Ω1(T ∗C1|1
h ) is of the form

∂j(dxk) :=< ∂j , dxk >= δjk.

In this section, we wish to set up an extended calculus on O(C1|1
h ) . Let us start by introducing an exterior

derivative operator D that maps k -forms to (k + 1) -forms (with functions being 0-forms) and obeys

D ◦D := D2 = 0

D(w1 ∧ w2) = (Dw1) ∧ w2 + (−1)p(w1) w1 ∧ (Dw2)

≡ dw1 ∧ w2 + (−1)p(w1) w1 ∧ dw2 (13)

where wi ’s are any differential forms. (Actually, we assume that the action of D on w1 (and then w2 ) in (13)
is the same as the differential of w1 , that is, dw1 .)

The exterior derivative D on the superalgebra O(C1|1
h ) is given by

Du ≡ dx ∂x(u) + dθ ∂θ(u), (14)

so that it verifies (13) and the rule
Dα = dα+ (−1)p(α) αD, (15)

where α is a differential form on the superspace C1|1
h . In particular,

Duk = duk + (−1)p(uk) ukD. (16)

3.3. Inner derivations
To extend the differential calculus on the h -deformed superplane to a larger calculus, it is necessary to add
inner derivations to this calculus.

While starting we wish to give some information about inner derivations. An inner derivation is defined
to be the contraction of a vector field with a differential form. So, if X is a vector field on a manifold M , then
the inner derivation iX is a linear operator which transforms k -forms to (k − 1) -forms. The inner derivation
is an antiderivation of degree −1 on the exterior algebra and

iX(α1 ∧ α2) = (iXα1) ∧ α2 + (−1)p(α1)p(iX) α1 ∧ (iXα2)

where αi ’ are any differential form. The action of the inner derivation iX on 0- and 1-forms is

iX(f) = 0, iX(df) = X(f).

The anticommutativity of forms gives

iX ◦ iY = −iY ◦ iX , iX ◦ iX := i2X = 0.
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From now on, unless we say otherwise, we will write iX iY instead of iX ◦ iY .
In this and the next two subsections, we will consider the vector fields as the partial derivatives of

generators.

Now we will find the relations of the generators x , θ of the algebra O(C1|1
h ) with the inner derivations.

The commutation relations (4) satisfied by the generators with their differentials allow us to write the possible
relations of both the generators and their differentials with inner derivations as

i∂k
· u =

∑
j

σ̃kj(u) · i∂j
, i∂k

· du = i∂k
(du) +

∑
j

σ̂kj(du) · i∂j
(17)

for all u ∈ O(C1|1
h ) , where ∂k ∈ {∂x, ∂θ} . So our goal will be to express σ̃ and σ̂ in terms of the operators σ

and σΩ , respectively.

Theorem 3.8 The relations of the generators with inner derivations are given by the formulas

i∂k
· u =

∑
j

(−1)p(u)p(i∂j ) σkj(u) · i∂j
, (18)

for all u ∈ O(C1|1
h ) . The commutation relations of differentials of the generators with inner derivations are

given by the formulas

i∂k
· du = i∂k

(du) + (−1)p(i∂k )
∑
j

(−1)[1+p(du)]p(i∂j ) σΩ
kj(du) · i∂j

, (19)

for all u ∈ O(C1|1
h ) .

Proof Assuming that there is a sum over the repeated index, if we start from (4) and use relations (17), after
a few operations, we write ( ik := i∂k

)

0 = ik

(
u · dxj − (−1)p(u)p(dxj)dxi · σij(u)

)
= σ̃km(u) · im · dxj − (−1)p(u)p(dxj) [δki + σ̂kn(dxi) · in]σij(u)

= σ̃km(u) [δmj + σ̂ms(dxj)is]− (−1)p(u)p(dxj) [σkj(u) + σ̂kn(dxi)σ̃nr(σij(u))ir]

= σ̃kj(u)− (−1)p(u)p(dxj)σkj(u) + [σ̃km(u)σ̂ms(dxj)− (−1)p(u)p(dxj)σ̂km(dxi)σ̃ms(σij(u))]is.

There are two conclusions we can deduce from here: the first is that

σ̃ki(u) = (−1)p(u)p(dxi)σki(u) = (−1)p(u)p(ii)σki(u), ∀u ∈ O(C1|1
h ).

The second is that

σ̂kj(du) = (−1)p(ik)+[1+p(du)]p(ij) σΩ
kj(du), ∀u ∈ O(C1|1

h ).

Thus, the proof is complete. 2
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We can check the correctness of the second equality above as follows: we can write

ik (udxj) =
∑
m

(−1)p(u)p(im)σkm(u)

(
δmj +

∑
n

(−1)p(im)+p(xj)p(in)σΩ
mn(dxj)in

)

= (−1)p(u)p(dxj)σkj(u) +
∑
n,m

(−1)p(xj)p(dxn)+p(du)p(dxm)σkm(u)σΩ
mn(dxj)in

= (−1)p(u)p(dxj)σkj(u) +
∑
n

(−1)p(dxk)+[p(du)+p(dxj)]p(dxn)σΩ
kn(udxj)in

using the first equality in (9). On the other hand, using the second equality in (9) we can write

ik (dxiσij(u)) =

(
δki + (−1)p(ik)

∑
m

(−1)p(xi)p(im)σΩ
km(dxi)im

)
σij(u)

= δkiσij(u) +
∑
n,m

(−1)p(dxk)+p(σij(u))p(dxn)+p(xi)p(dxm)σΩ
km(dxi)σmn(σij(u))in

= δkiσij(u) +
∑
n

(−1)p(dxk)+[p(du)+p(dxj)]p(dxn)σΩ
kn(dxiσij(u))in

and so

ik

(
(−1)p(u)p(dxj)

∑
i

dxiσij(u)

)
= (−1)p(u)p(dxj)σkj(u) +

∑
n

(−1)p(dxk)+[p(du)+p(dxj)]p(dxn)σΩ
kn(udxj)in.

Therefore, ik (u · dxj)− (−1)p(u)p(dxj)ik (
∑

i dxiσij(u)) = 0 .
To find the relations of the partial derivatives with the inner derivations, let us assume the possible

relations are of the form

i∂k
∂j =

∑
m,n

Bmn
kj ∂n i∂m (20)

where the constants Bkl
ij possibly depend on h and/or h′ .

Theorem 3.9 The relations between the partial derivatives and the inner derivations are of the form

i∂x∂x = (1− hh′) ∂xi∂x + h (∂θi∂x − ∂xi∂θ
),

i∂x
∂θ = −∂θi∂x

− h ∂θi∂θ
+ h′ ∂xi∂x

+ hh′ ∂xi∂θ
, (21)

i∂θ
∂x = ∂xi∂θ

+ h ∂θi∂θ
+ h′ ∂xi∂x

− hh′ ∂θi∂x
,

i∂θ
∂θ = (1 + hh′) ∂θi∂θ

− h′ (∂xi∂θ
+ ∂θi∂x

).

Proof If we apply the inner derivations i∂x
and i∂θ

from the left to relations (11), we find

B11
11 = 1− hh′, B11

12 = B11
21 = −B12

22 = −B21
22 = h′, B12

12 = −B21
21 = −1,

B22
22 = 1 + hh′, B12

11 = −B21
11 = −B22

12 = B22
21 = h, B12

21 = −B21
12 = −hh′.

All other constants are zero. 2
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Lemma 3.10 The partial derivatives in terms of the exterior derivative and the inner derivations are expressed
below:

i∂x
D = ∂x −Di∂x

, i∂θ
D = ∂θ +Di∂θ

. (22)

Proof To obtain the desired expressions, we apply the inner derivations from the left to D =
∑

duk∂k which
is given by (14) and use the relations (19) and (21). 2

Theorem 3.11 The commutation relations between the inner derivations are

i2∂x
= −h i∂θ

i∂x , i∂x i∂θ
= i∂θ

i∂x − h i2∂θ
. (23)

Proof Possible commutation relations between the inner derivations can be in the form of i∂x
i∂θ

= a i∂θ
i∂x

+

b i2∂x
+ c i2∂θ

and i∂x
i∂x

= k i∂x
i∂θ

with the constants a , b , c , and k . Therefore, the goal will be achieved when
these constants are found. We use Lemma 3.10 for this. For example, one has, by the use of the inverse relations
to (21),

0 = D(i∂x i∂θ
− a i∂θ

i∂x − b i2∂x
− c i2∂θ

)

= (∂x − i∂x
D)i∂θ

+ a(∂θ − i∂θ
D)i∂x

− (−1)p(b)(∂x − i∂x
D)i∂x

+ (−1)p(c)(∂θ − i∂x
D)i∂x

= −(i∂x
i∂θ

− a i∂θ
i∂x

+ (−1)p(b)b i2∂x
+ (−1)p(c)c i2∂θ

)D

+ [1− (1 + hh′)a− (−1)p(b)bh+ (−1)p(c)ch′]i∂θ
∂x

+ [(a− 1)h′ + (−1)p(b)bhh′]i∂x∂x + [(1− a)h+ (−1)p(c)chh′]i∂θ
∂θ

+ [1− hh′ − a− (−1)p(b)bh+ (−1)p(c)ch′]i∂x∂θ.

So it must be a = 1 , b = 0 and c = −h . The other relation can be obtained by doing similar operations. 2

Remark 5 Using Lemma 3.10, one can easily see that

D∂u = (−1)p(∂u) ∂uD, (24)

where ∂u ∈ {∂x, ∂θ} .

4. The R-matrix formalism
The (h, h′) -deformation of GL(1|1) was obtained through a contraction [8]. In this section, we will reformulate
all the relations obtained in the previous section using the R matrix found in [8].

We know from Theorem 3.2 that there exist a left-covariant differential calculus over O(C1|1
h ) with respect

to the Hopf superalgebra O(GLh,h′(1|1)) . So, we can use the R -matrix of the quantum supergroup GLh,h′(1|1)
to formulate the calculus.

4.1. Commutation relations of calculus
The relations in (1) can be rewritten as

xixj =
∑
m,n

R̂ij
mn xmxn (25)
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with the matrix R̂ , where [8]

R̂h,h′ =


1− hh′ −h′ h′ 0

h −hh′ 1 h′

−h 1 −hh′ h′

0 −h −h −1− hh′

 .

This matrix has the property R̂2
h,h′ = I , as well as providing the graded Yang-Baxter equation and braided

group relation.

Now, if we apply d to both sides of (25), keeping in mind that some elements of the matrix R̂ are odd,
we can express the relations of generators with their differentials (see, eq. (4)) as

xj · dxk = (−1)p(xj)
∑
m,n

(−1)p(R̂
jk
mn) R̂jk

mn dxm · xn. (26)

From here, we see that

dxj ∧ dxk = −(−1)p(dxj)
∑
m,n

(−1)p(dxm) R̂jk
mn dxm ∧ dxn. (27)

We can express the relations (11) and (12) in the form

∂jxk = δjk +
∑
m,n

(−1)p(∂j)p(R̂
km
jn ) R̂km

jn xn∂m, (28)

∂j∂k =
∑
m,n

(−1)p(∂j∂k)p(R̂
nm
kj ) R̂nm

kj ∂m∂n (29)

with the help of the R̂ -matrix.

4.2. Commutation relations with inner derivations
Proofs of the formulas given below can be made by direct calculations, but it is necessary to do a lot of processing
and play with indices.

i∂j · xk = (−1)p(xk)
∑
m,n

(−1)[1+p(ij)]p(R̂
km
jn ) R̂km

jn xn · i∂m ,

i∂j
· dxk = δjk − (−1)p(dxk)

∑
m,n

(−1)p(i∂j )[1+p(R̂km
jn )] R̂km

jn dxn · i∂m
,

i∂j∂k = (−1)p(∂k)
∑
m,n

(−1)[1+p(i∂j )+p(∂k)]p(R̂
nm
kj ) R̂nm

kj ∂m i∂n ,

i∂j
i∂k

= (−1)p(i∂k )+1
∑
m,n

(−1)p(i∂n )+[p(i∂j )+p(i∂k )]p(R̂
nm
kj ) R̂nm

kj i∂m
i∂n

.

4.3. Tensor product realization of the wedge

The relations (19) can be used to define the wedge product ∧ of forms as an antisymmetrized tensor product.

Since dxi ⊗ dxj is an element in the tensor space of Ω1(T ∗C1|1
h ) ⊗ Ω1(T ∗C1|1

h ) , we can define the product of
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two forms in terms of tensor products as

dxj ∧ dxk = dxj ⊗ dxk −
∑
m,n

(−1)p(dxj)+p(dxm)R̂jk
mn dxm ⊗ dxn.

These equations give implicit commutation relations between the dxk ’s. So we have

< ∂i, dxj ∧ dxk >= δij dxk −
∑
m,n

(−1)p(dxj)+p(dxm)R̂ij
mn δmi dxn.

We can also define iXj
to act on this product by contracting in the first tensor product space, that is,

i∂k
(dxi ∧ dxj) = δki dxj − (−1)p(dxi)

∑
m,n

(−1)p(dxm)+p(i∂k )p(R̂
ij
mn)R̂ij

mn δmk dxn.

Explicitly,

i∂x
(dx ∧ dx) = hh′dx− h′dθ, i∂θ

(dx ∧ dx) = h′dx,

i∂x(dx ∧ dθ) = (1 + hh′)dθ + hdx, i∂θ
(dx ∧ dθ) = dx+ h′dθ,

i∂x(dθ ∧ dx) = dθ + hdx, i∂θ
(dθ ∧ dx) = (1 + hh′)dx− h′dθ,

i∂x
(dθ ∧ dθ) = hdθ, i∂θ

(dθ ∧ dθ) = (2 + hh′)dθ − hdx.

A tensor product decomposition of products of inner derivations are in the form

i∂j
∧ i∂k

= i∂j
⊗ i∂k

− (−1)p(i∂k )
∑
m,n

(−1)p(i∂m )+[p(i∂j i∂k )]p(R̂
mn
kj )R̂mn

kj i∂n
⊗ i∂m

.

5. An aspect to the contraction
With the singular limit q → 1 of a linear transformation from the q -deformed plane, the h -deformed plane can
be obtained [2]. This method is known as the contraction procedure [18]. The h -deformation of the superplane
and some of the superspaces was also made using the same method (see, for example, [8–10, 14]). Using such

a contraction method, a two-parameter differential calculus on the superalgebra O(C1|1
h ) is established in [10].

Our aim in this section is to expand the situation to Cartan calculus. The first two subsections are given to
form the background of the next subsection. The information in these subsections is taken from [10] and [11],
but presented in a more formal and systematic way.

In this section, we will denote (q, q′) -deformed objects by capital letters. Lower case letters will represent
transformed coordinates. The lemmas in each subsection contain the (q, q′) -deformed relations. Four parame-
ters, including q and q′ , will appear in the relations that emerge in the following theorems. The corresponding
relations in Section 3 are obtained in the limits q → 1 and q′ → 1 of the resulting relations.

5.1. Generators and their differentials

The q -deformed superalgebra of functions on C1|1
q generated by X and Θ defined by the relations [22]

XΘ = qΘX, Θ2 = 0, (30)
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where q ∈ C − {0} . We now introduce new even generator x and odd generator θ in terms of X and Θ by
[8, 10]

x = X − h′

q′ − 1
Θ, θ =

(
1 +

hh′

(q − 1)(q′ − 1)

)
Θ− h

q − 1
X, (31)

where h and h′ are both Grassmann parameters (that is, hh′ = −h′h and h2 = 0 = h′2 ) and q′ is a nonzero
complex parameter. Then, in the limits q → 1 and q′ → 1 , the relations (30) changes to the relations (1).

Remark 6 If we do not get to the limit, we can talk about the two-parameter deformation of the superalgebra

O(C1|1) , denoted by O(C1|1
q,h) . One of the deformation parameters is a nonzero complex number and the other

is a Grassmann parameter:
xθ = qθx+ hx2, θ2 = −hθx.

The q′ -deformed exterior algebra Λq′(C1|1
q ) of the q -deformed superplane is generated by Φ and Y with

the relations [22]
Φ2 = 0, ΦY = q′−1Y Φ. (32)

If we choose Φ = dX and Y = dΘ , the differential d is uniquely determined by the conditions d2 = 0 and the
Z2 -graded Leibniz rule and from (31) we write

dx = dX +
h′

q′ − 1
dΘ, dθ =

(
1 +

hh′

(q − 1)(q′ − 1)

)
dΘ+

h

q − 1
dX. (33)

Inserting (33) to (32), we see that the transformed objects obey the relations (2) in the limits q → 1 and q′ → 1 .

Remark 7 If we do not get to the limit, we can mention the two-parameter deformation of the superalgebra
Λ(C1|1) :

dx ∧ dθ = q′−1(dθ ∧ dx+ h′ dθ ∧ dθ), dx ∧ dx = h′ dθdx.

The quantum de Rham complex Ω(C1|1
q ) is formed by adding to the relations (30) and (32) four cross-

commutation relations satisfied between the elements of O(C1|1
q ) and Λq′(C1|1

q ) , which are given by the following
lemma.

Lemma 5.1 [11] The (q, q′)-deformed relations of the elements of O(C1|1
q ) and their differentials are as follows:

U · dXj = (−1)p(U)p(dXj)
∑
i

dXi · σij(U), U,X. ∈ O(C1|1
q ) (34)

where

σ(X) =

[
qq′X (qq′ − 1)Θ
0 qX

]
, σ(Θ) =

[
q′Θ 0
0 Θ

]
. (35)

Theorem 5.2 The generators of O(C1|1
q,h) and their differentials satisfy the following (q, q′, h, h′)-deformed

commutation relations
u · dxj = (−1)p(u)p(dxj)

∑
i

dxi · σij(u), u, x. ∈ O(C1|1
q,h) (36)
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where

σ(x) =

[
(qq′ − hh′)x− h′θ hx+ (qq′ − 1− hh′)θ

−qh′x q(x− h′θ)

]
, σ(θ) =

[
q′(θ − hx) q′hθ

−(h′θ + hh′x) (1 + hh′)θ − hx

]
. (37)

Proof Substituting (31) and (33) into (34), we see that the transformed objects satisfy the relations (36). 2

Remark 8 We arrive at the relations (4) in the limits q → 1 and q′ → 1 .

5.2. The partial derivatives

If we introduce relations of the coordinates of the q -deformed superplane with the partial derivatives after
obtaining the derivatives ∂x and ∂θ in terms of ∂X and ∂Θ , we can find the relations (11) (and also (12)) given
in Theorem 3.7.

Lemma 5.3 [11] The relations between the generators of O(C1|1
q ) and partial derivatives are as follows

∂i ·Xk = δik +
∑
j

(−1)p(Xk)p(∂j)σij(Xk) · ∂j , (38)

where ∂1 := ∂X , ∂2 := ∂Θ and X1 = X , X2 = Θ .

Theorem 5.4 The (q, q′, h, h′)-deformed commutation relations of the generators of the superalgebra O(C1|1
q,h)

with partial derivatives are as follows

∂i · xk = δik +
∑
j

(−1)p(xk)p(∂j)σij(xk) · ∂j (39)

with the matrices σ in (37) .

Proof We can transform the partial derivatives ∂x and ∂θ of the elements of O(C1|1
q,h) in terms of ∂X and

∂Θ of the generators of O(C1|1
q ) as

∂x =

(
1− hh′

(q − 1)(q′ − 1)

)
∂X +

h

q − 1
∂Θ, ∂θ = ∂Θ − h′

q′ − 1
∂X . (40)

Substituting (40) together with (31) into (38), we get the relations (39). 2

Remark 9 Relations (39) contain four parameters, and we reached the relations (11) in the limits q → 1 and
q′ → 1 .

5.3. The exterior differentials
In the q -deformed case, it is known that the exterior differential can be written in terms of differentials and
partial derivatives as follows:

dqf = (dX∂X + dΘ∂Θ)(f)
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where f is a differentiable function. If (33) and (40) are considered, then the differential dh := d preserves its
form

df = (dx∂x + dθ∂θ)(f).

Let us introduce an exterior derivative Dq which maps k -forms to (k + 1) -forms and obeys the rules
D2

q = 0 and

Dq(α1 ∧ α2) = (Dqα1) ∧ α2 + (−1)p(α1) α1 ∧ (Dqα2)

≡ dqα1 ∧ α2 + (−1)p(α1) α1 ∧ dqα2 (41)

where αi ’s are any differential forms. The exterior derivative Dq on the superalgebra O(C1|1
q ) is given by

Dqf ≡ (dX ∂X + dΘ ∂Θ)(f),

so that it verifies (41) and the rule Dqα = dα + (−1)p(α) αDq , where α is a differential form on C1|1
q . In

particular, DqXk = dXk + (−1)p(Xk) XkDq .
As a note, the case for the operator d above is also valid for the operator Dq . That is, the operator

Dh := D also preserves with the same form as Dq .

5.4. The inner derivations
As we mentioned in Section 3, we use partial derivatives of generators as vector fields. We connected the
coordinates of the h -deformed superplane to the coordinates of the q -deformed superplane with a singular
transformation above. Hence, both differentials and partial derivatives of generators are affected by this
situation. Naturally, inner derivations and Lie derivatives will also be affected.

Let us introduce the inner derivations i∂x
and i∂θ

in terms of i∂X
and i∂Θ

by

i∂x
=

(
1− hh′

(q − 1)(q′ − 1)

)
i∂X

+
h

q − 1
i∂Θ

, i∂θ
= i∂Θ

− h′

q′ − 1
i∂X

. (42)

We will see below that although the expressions in (42) in the limits q → 1 and q′ → 1 have no limits,
the resulting relations are well defined.

Lemma 5.5 [11] (i) The relations of the generators with the inner derivations are given by

i∂X
·X = qq′X · i∂X

+ (qq′ − 1)Θ · i∂Θ
, i∂Θ

·X = qX · i∂Θ
,

i∂X
·Θ = −q′Θ · i∂X

, i∂Θ ·Θ = Θ · i∂Θ . (43)

(ii) The relations of differentials of the generators with the inner derivations are given by

i∂X
· dX = 1− dX · i∂X

+ (q−1q′−1 − 1)dΘ · i∂Θ
, i∂X

· dΘ = q−1dΘ · i∂X
,

i∂Θ · dΘ = 1 + q−1q′−1dΘ · i∂Θ , i∂Θ · dX = q′−1dX · i∂Θ . (44)

(iii) The relations of the partial derivatives with the inner derivations are given by

i∂X
· ∂X = q−1q′−1∂X · i∂X

, i∂Θ
· ∂X = q−1∂X · i∂Θ

,

i∂X
· ∂Θ = −q′−1[∂Θ · i∂X

+ (q′ − q−1)∂X · i∂Θ
], i∂Θ

· ∂Θ = ∂Θ · i∂Θ
. (45)
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Theorem 5.6 (i) The (q, q′, h, h′)-deformed relations between the generators and the inner derivations are
given, in a compact form, by

i∂k
· u =

∑
j

(−1)p(u)p(i∂j ) σkj(u) · i∂j
, u ∈ O(C1|1

q,h) (46)

with the matrices σ in (37) .
(ii) The (q, q′, h, h′)-deformed relations of the differentials with the inner derivations are given, in a compact
form, by

i∂k
· dxm = δkm + (qq′)−1(−1)p(i∂k )

∑
j

(−1)[1+p(dxm)]p(i∂j )dσkj(xm) · i∂j
(47)

for all xm ∈ O(C1|1
q,h) with the matrices σ in (37) .

(iii) The (q, q′, h, h′)-deformed commutation relations of the partial derivatives with the inner derivations are
given by

i∂x · ∂x = q−1q′−1[(1− hh′)∂x · i∂x + h(∂θ · i∂x − q′∂x · i∂θ
],

i∂x · ∂θ = (qq′)−1[−q∂θ · i∂x + qh′∂x · i∂x − h∂θ · i∂θ
+ hh′∂x · i∂θ

] + [1− (qq′)−1]∂x · i∂θ
,

i∂θ
· ∂x = q−1(∂x · i∂θ

+ q′−1h′∂x · i∂x
+ h∂θ · i∂θ

− q′−1hh′∂θ · i∂x
), (48)

i∂θ
· ∂θ = (1 + q−1q′−1hh′)∂θ · i∂θ

− q−1q′−1h′(∂x · i∂θ
+ q∂θ · i∂x

).

Proof (i) Inserting (31) and (42) to (43), directly only after long calculations we obtain explicit relations as
follows:

i∂x
· x = [(qq′ − hh′)x− h′θ] · i∂x

+ (hx− hh′θ) · i∂θ
+ (qq′ − 1)θ · i∂θ

,

i∂x
· θ = −q′(θ − hx) · i∂x

+ q′hθ · i∂θ
,

i∂θ
· x = q(x− h′θ) · i∂θ

− qh′x · i∂x ,

i∂θ
· θ = [(1 + hh′)θ − hx] · i∂θ

+ (h′θ + hh′x) · i∂x .

These relations are the same as the relations in (46). In the limits q → 1 and q′ → 1 , we get the relations (18).
(ii) Inserting (42) and (33) to (44), we obtain explicit relations as follows:

i∂x
· dx = 1− [(1− q−1q′−1hh′)dx+ q−1q′−1h′dθ] · i∂x

+ q−1q′−1(hdx+ hh′dθ) · i∂θ

+ (q−1q′−1 − 1)dθ · i∂θ
,

i∂x · dθ = q−1(dθ + hdx) · i∂x + q−1hdθ · i∂θ
,

i∂θ
· dx = q′−1(dx+ h′dθ) · i∂θ

+ q′−1h′dx · i∂x ,

i∂θ
· dθ = 1 + (qq′)−1[(1 + hh′)dθ + hdx] · i∂θ

− (qq′)−1(h′dθ − hh′dx) · i∂x
.

These relations are the same as the relations in (47). In the limits q → 1 and q′ → 1 , we get the relations (19).
(iii) Inserting (40) and (42) to (45), we obtain the desired relations. 2
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Lemma 5.7 [11] The q -deformed relations between the inner derivations are given by

i2∂X
= 0, i∂X

i∂Θ
= q i∂Θ

i∂X
. (49)

Theorem 5.8 The (q, h)-deformed commutation relations between the inner derivations are given by

i2∂x
= −h i∂θ

i∂x
, i∂x

i∂θ
= q i∂θ

i∂x
− h i2∂θ

. (50)

Proof Inserting (42) to (49), we obtain the desired relations. 2

Remark 10 The dependence of the inner derivations and the partial derivatives are the same as the standard
deformed forms:

i∂j
D = ∂j + q−1q′−1 (−1)p(i∂j ) Di∂j

.

5.5. The Lie derivatives
Let us introduce the Lie derivatives £∂x

and £∂θ
in terms of £∂X

and £∂Θ
by

£∂x
=

(
1− hh′

(q − 1)(q′ − 1)

)
£∂X

+
h£∂Θ

q − 1
, £∂θ

= £∂Θ
− h′£∂X

q′ − 1
. (51)

Then, one can easily show that the Lie derivatives £∂x
and £∂θ

preserve their undeformed forms:

£∂j = i∂jD − (−1)p(i∂j )Di∂j .

Lemma 5.9 [11] (i) The commutation relations of the Lie derivatives with the generators of O(C1|1
q ) are as

follows:

£∂X
·X = 1 + qq′X ·£∂X

+ (qq′ − 1)[Θ ·£∂Θ
+ dX · i∂X

+ (1− q−1q′−1)dΘ · i∂Θ
],

£∂X
·Θ = q′Θ ·£∂X

+ (q−1 − q′)dΘ · i∂X
,

£∂Θ ·X = qX ·£∂Θ + (q′−1 − q)dX · i∂Θ , (52)

£∂Θ ·Θ = 1−Θ ·£∂Θ + (q−1q′−1 − 1)dΘ · i∂Θ .

(ii) The relations between the Lie derivatives and the differentials are as follows:

£∂X
· dX = dX ·£∂X

+ (1− q−1q′−1)dΘ ·£∂Θ
, £∂X

· dΘ = q−1dΘ ·£∂X
,

£∂Θ · dX = −q′−1dX ·£∂Θ , £∂Θ · dΘ = q−1q′−1dΘ ·£∂Θ . (53)

(iii) The relations between the Lie derivatives and the partial derivatives are as follows:

£∂X
· ∂X = ∂X ·£∂X

, £∂X
· ∂Θ = q∂Θ ·£∂X

+ (1− qq′)∂x ·£∂θ
,

£∂Θ
· ∂X = q′∂X ·£∂Θ

, £∂Θ
· ∂Θ = −qq′∂Θ ·£∂Θ

. (54)
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Theorem 5.10 (i) The (q, q′, h, h′)-deformed relations between the generators of the superalgebra O(C1|1
q,h) and

the Lie derivatives are given, in a compact form, by

£∂k
· xm = δkm +

∑
j

(−1)p(xm)p(£∂j
)σkj(xm) ·£∂j

+ (q−1q′−1 − 1)(−1)p(i∂k )
∑
j

σΩ
kj(xm) · i∂j

(55)

for all xm ∈ O(C1|1
q,h) with the matrices σ in (37) .

(ii) The (q, q′, h, h′)-deformed relations of the differentials with the Lie derivatives are given, in a compact form,
by

£∂k
· dxm = (qq′)−1(−1)p(£∂k

)
∑
j

(−1)[1+p(dxm)]p(£∂j
)σΩ

kj(xm) ·£∂j
, (56)

for all xm ∈ O(C1|1
q,h) with the matrices σ in (37) .

(iii) The (q, q′, h, h′)-deformed commutation relations of the partial derivatives with the Lie derivatives are given
by

£∂x
· ∂x = (1 + hh′)∂x ·£∂x

− h(q′ ∂x ·£∂θ
− ∂θ ·£∂x

),

£∂x
· ∂θ = ∂θ ·£∂x

− h′ ∂x ·£∂x
+ h ∂θ ·£∂θ

− hh′ ∂x ·£∂θ
, (57)

£∂θ
· ∂x = −q′ ∂x ·£∂θ

+ h′ ∂x ·£∂x + q′h ∂θ ·£∂θ
− hh′ ∂θ ·£∂x ,

£∂θ
· ∂θ = −(qq′ − hh′)∂θ ·£∂θ

+ h′ (∂x ·£∂θ
+ qh′ ∂θ ·£∂x).

Proof (i) Substituting (31) and (51) into (52), directly only after long calculations, we obtain explicit relations
as follows:

£∂x · x = 1 + [(qq′ − hh′)x− h′θ] ·£∂x + (qq′ − 1− hh′)θ ·£∂θ

+ (q−1q′−1 − 1)(hdx · i∂θ
− h′dθ · i∂x + hh′dx · i∂x + hh′dθ · i∂θ

)

+ (qq′ − 1)[dx · i∂x
+ (1− q−1q′−1)dθ · i∂θ

],

£∂x
· θ = q′(θ − hx) ·£∂x

− q′hθ ·£∂θ
+ (q−1 − q′) [h(dx · i∂x

+ dθ · i∂θ
) + dθ · i∂x

] ,

£∂θ
· x = −qh′x ·£∂x + q(x− h′θ) ·£∂θ

+ (q′−1 − q) [h′(dx · i∂x + dθ · i∂θ
) + dx · i∂θ

] ,

£∂θ
· θ = 1− (hh′x+ h′θ) ·£∂x + [hx− (1 + hh′)θ] ·£∂θ

+ (q−1q′−1 − 1)[(hh′dx− h′dθ) · i∂x
+ (hdx+ (1 + hh′)dθ) · i∂θ

].

(ii) Substituting (33) and (51) into (53), we obtain explicit relations as follows:

£∂x
· dx = (1− q−1q′−1hh′)dx ·£∂x

+ q−1q′−1[h′dθ ·£∂x
− hdx ·£∂θ

− hh′dθ ·£∂θ
]

+ (1− q−1q′−1)dθ ·£∂θ
,

£∂x · dθ = q−1dθ£∂x + q−1hdx ·£∂θ
+ q−1hdθ ·£∂θ

,

£∂θ
· dx = −q′−1dx ·£∂θ

− q′−1hdx ·£∂x
− q′−1hdθ ·£∂θ

,

£∂θ
· dθ = q−1q′−1[(1 + hh′)dθ ·£∂θ

− hdθ ·£∂x
+ h′dx£∂θ

+ hh′dx ·£∂x
].

(iii) Substituting (40) and (51) into (54), directly only after long calculations, we obtain desired relations. 2
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Lemma 5.11 [11] The relations between Lie derivatives are given by the formulas

£∂X
£∂Θ = q′−1£∂Θ£∂X

, £2
∂Θ

= 0. (58)

Theorem 5.12 The (q′, h′)-deformed relations between the Lie derivatives are given by

£∂x
£∂θ

= q′−1 (£∂θ
£∂x

− h′ £2
∂x
), £2

∂θ
= h′ £∂x

£∂θ
. (59)

Proof Inserting (51) to (58), directly only after long calculations, we obtain desired relations. 2

Lemma 5.13 [11] The relations between the inner derivations and the Lie derivatives are given by the formulas

£∂X
i∂X

= i∂X
£∂X

, £∂X
i∂Θ

= qi∂Θ
£∂X

+ (qq′ − 1)i∂X
£∂Θ

£∂Θ
i∂X

= −q′i∂X
£∂Θ

, £∂Θ
i∂Θ

= qq′i∂Θ
£∂Θ

. (60)

The proof of the following theorem follows from (51) and (60).

Theorem 5.14 The (q, q′, h, h′)-deformed relations between the inner derivations and the Lie derivatives are
given by

£∂x
i∂x

= (1− hh′) i∂x
£∂x

+ h(q′ i∂x
£∂θ

+ i∂θ
£∂x

),

£∂x
i∂θ

= q i∂θ
£∂x

− qh′ i∂x
£∂x

− h i∂θ
£∂θ

+ (qq′ − 1 + hh′) i∂x
£∂θ

,

£∂θ
i∂x

= −q′ i∂x
£∂θ

+ h′ i∂x
£∂x

− q′h i∂θ
£∂θ

− hh′ i∂θ
£∂x

, (61)

£∂θ
i∂θ

= (qq′ + hh′) i∂θ
£∂θ

− h′ (i∂x
£∂θ

− q i∂θ
£∂x

).

6. Discussion
We know that none of the transformations (31), (33), (40), (42), and (51) exist within the limits q → 1 and
q′ → 1 . However, all relations obtained using those transformations are well behaved. In the limits q → 1 and
q′ → 1 , the relations (55)-(57), (59), and (61) are dropped due to Remark 10, leaving only an extended calculus

containing the inner derivations on O(C1|1
h ) .
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