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Abstract: In this work, we consider a velocity-vorticity formulation for the g -Navier–Stokes equations. The system
is constructed by combining the velocity-pressure system which is included by using the rotational formulation of the
nonlinearity and the vorticity equation for the g -Navier–Stokes equations. We prove the existence and uniqueness of
weak and strong solutions of this system with the periodic boundary conditions.
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1. Introduction
The velocity-vorticity formulation of the Navier–Stokes equations has been studied extensively by many re-
searchers [1, 7, 10, 19]. The velocity-vorticity model is important to study the properties of the asymptotic
behavior of the solutions decay rates [6] and this model is more realistic to understand for strongly rotating flow,
and excellent numerical results are given for the system in [1, 10, 15, 18, 19]. In recent years, the velocity-Voigt
model has been considered a good approach to study fluid motion. The model has extremely attracted the
attention of researchers [3, 11, 28, 29]. Afterward, Larios, Pei, and Rebholz suggest a new model called 3D
velocity-vorticity-Voigt (VVV) model in [14]. They prove global well-posedness and regularity of the solutions
of the equations which is given of this model. Due to the advantage of the velocity-vorticity models mentioned
above, we consider the velocity-vorticity model for the g -Navier–Stokes (gNS) equations:

∂u

∂t
+ ν∆u+ (u · ∇)u+∇p = f, (1)

∇ · (gu) = 0 (2)

where g is suitable smooth real-valued function. These equations have applications in lakes and shallow waters
[4, 16, 17]. For the details of the derivation of the gNS equations, the readers can refer to [23, 25]. Firstly, Hale
and Raugel [8, 9] have studied thin domain problems. Then Raugel and Sell [21] and Temam and Ziane [27]
have studied Navier–Stokes equations in thin domains which is given by Ωϵ = Ω × (0, ϵ) where Ω ⊂ R2 and
0 < ϵ < 1 . Taking a smooth enough real-valued g function instead of ϵ , Roh derives gNS equations using
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thin domain techniques given in [8, 9, 20]. Roh et al. [2, 13, 24] studied the existence and uniqueness, stability,
and long-time behavior of the solutions and attractors of gNS equations. Kaya and Çelebi [12] investigated
the existence and uniqueness of g -Kelvin Voigt equations. In this study, we adapt some of the ideas of Larios
et al. in [14] for proving the existence and uniqueness of the solutions of the velocity-vorticity model for gNS
equations. Of particular interest herein are the velocity-vorticity system of the gNS equations over the two
dimensional periodic box Ω = (0, 1)

2 in the following form:

∂u

∂t
− ν∆gu+ ν

1

g
(∇g · ∇)u+ w × u+ ▽P = f , (3)

∂w

∂t
− ν∆gw + ν

1

g
(∇g · ∇)w + u · ∇w = ∇× f + w(

∇g
g

· u), (4)

∇ · (gu) = 0, (5)

u(x, 0) = u0, w(x, 0) = w0 (6)

where we define g -Laplacian operator

−∆gu = −1

g
(∇ · g∇)u = −∆u− 1

g
(∇g · ∇)u.

We consider this problem under periodic boundary conditions. Here we use the equality 1
2∇(u · u) = (u · ∇)u+

u × (∇ × u) to rewrite nonlinear term in the gNS equations. In this system, u is the fluid velocity, p is the
pressure and P = p+ 1

2 |u|
2 , w which play the role of vorticity, f is the external forcing term. We obtain (4)

by taking curl of gNS equations where w = u2x − u1y is a scalar vorticity and w × u := (−u2w, u1w)T . Note
that the vorticity equation reduces to a scalar equation. This paper is arranged as follows:

In Section 2, we give some necessary notation and preliminary results for the analysis of the system
(3) − (6). In Section 3, we establish the existence and uniqueness of the weak and strong solutions of the
velocity-vorticity model for the gNS equations.

2. Preliminaries and functional setting

In this part, we introduce some symbols and concepts (see, e.g., [5, 25, 26]).
L2(Ω, g) denotes the Hilbert space with the inner product and norm

(u, v)g =

∫
Ω

(u · v) gdx and ∥u∥2L2(Ω,g) = (u, u)g,

respectively. The norm in H1(Ω, g)

∥u∥H1(Ω,g) =

[
(u, u)g +

2∑
i=1

(Diu,Diu)g

] 1
2

where Di =
∂

∂xi
. We consider spaces of real functions defined on R2 and are periodic with period 1 in x1 and

x2 directions,
u (x+ ei) = u (x) , i = 1, 2
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where e1 and e2 are the canonical basis of R2 . In this case, we denote by C∞
per(Ω) or L2

per(Ω, g) the space of
restrictions to Ω of periodic functions in the sense of above equations. We define spaces in the periodic setting
for the gNS equations

V1=

u ∈
(
C∞

per(Ω)
)2

: ∇ · gu = 0,

∫
Ω

udx = 0

 ,

Hg = the closure of V1 in
(
L2(Ω, g)

)2
,

Vg = the closure of V1 in
(
H1(Ω, g)

)2
,

H′
g = the dual space of Hg,

V′
g = the dual space of Vg

in two dimensions. Vorticity is considered a scalar, we define vorticity space as follows:

V2=

u ∈ C∞
per(Ω) : ∇ · gu = 0,

∫
Ω

udx = 0

 ,

Hg = the closure of V2 in L2(Ω, g),

Vg = the closure of V2 in H1(Ω, g),

V ′
g = the dual space of Vg,

H ′
g = the dual space of Hg,

Hcurl
g =

{
f ∈ Hg : ∇× f ∈ L2(Ω, g)

}
.

The inner product and norm in Hg and Hg are the same of L2(Ω, g) . The norm in Vg and Vg are the same
as that of H1(Ω, g) . Let the function g = g(x1, x2) be the suitable smooth real-valued function. We assume
that g satisfies the following conditions:

(i) g(x1, x2) ∈ C∞
per(Ω)

(ii) 0 < m0 ≤ g(x1, x2) ≤M0 where m0 and M0 are positive constants for all (x1, x2) ∈ Ω

(iii) ∥∇g∥∞ = sup
(x1,x2)∈Ω

|∇g(x1, x2)| <∞

Two spaces L2(Ω) and L2(Ω, g) have equivalent norms and the following inequalities are satisfied:

√
m0 ∥u∥L2(Ω) ≤ ∥u∥L2(Ω,g) ≤

√
M0 ∥u∥L2(Ω)

where m0 and M0 are positive constants. Now we define g -Stokes operator and some notations as follows:
(see, e.g., [14, 25] )

Agu = Pg

[
−1

g
(∇ · g∇)u

]
.
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Ag has countable eigenvalues that satisfy the following inequality

0 < λg ≤ λ1 ≤ λ2 ≤ λ3 ≤ ...

where λg = 4π2m0

M0
. The Poincaré inequality

√
λg ∥φ∥L2 ≤ ∥∇φ∥L2

is satisfied for all φ ∈ Vg where λ1 is the first eigenvalue of the Stokes operator Ag . Since the operator Ag

and Pg are self-adjoint, using integration by parts we have

⟨Agu, u⟩g =

∫
Ω

(∇u : ∇u) gdx = (∇u,∇u)g = ∥∇u∥2L2

where the operation “ : ” denoted by “ dot product ” of two matrices. Now we write the following compact
embedding

Vg ⊂ Hg ≡ H
′

g ⊂ V
′

g .

We define the operator Cgu = Pg

[
1
g (∇g · ∇)u

]
and ⟨Cgu, v⟩g = bg

(
∇g
g , u, v

)
, Pg : L2

per(Ω, g) −→ Hg(Ω)

Helmholtz-Leray orthogonal projection. The bilinear operator Bg : Vg × Vg → V ′
g

Bg(u, v) = Pg(u · ∇)v

and the trilinear form bg is defined as

bg(u, v, w) =

2∑
i,j=1

∫
Ω

ui(Divj)wjgdx = (Pg(u · ∇)v, w)g , for all u, v, w ∈ Vg.

We have the following properties

i) bg(u, v, w) = −bg(u,w, v), (7)

ii) bg(u, v, v) = 0 (8)

for sufficiently smooth functions. Through the paper, c is a constant that changes from line to line. Now we
will give the following lemma (see [22, 26]).

Lemma 2.1 The bilinear operator Bg and bg satisfy the following inequalities in the case n = 2 :

∣∣∣⟨Bg(u, v), w⟩V ′
g

∣∣∣ ≤ c ∥u∥
1
2

L2 ∥∇u∥
1
2

L2 ∥∇v∥
1
2

L2 ∥Av∥
1
2

L2 ∥w∥L2 for all u ∈ Vg, v ∈ D(Ag), w ∈ Hg, (9)

|bg(u, v, w)| ≤ c ∥u∥
1
2

L2 ∥∇u∥
1
2

L2 ∥∇v∥L2 ∥w∥
1
2

L2 ∥∇w∥
1
2

L2 for all u, v, w ∈ Vg, (10)

|Bg(u, v)| ≤ c ∥u∥
1
2

L2 ∥Au∥
1
2

L2 ∥∇v∥L2 , for all u ∈ D(Ag), v ∈ Vg. (11)
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3. Existence and uniqueness of weak and strong solutions

In this section, we define weak and strong solutions and give proof of the existence and uniqueness of solutions
of the velocity-vorticity model for gNS equations. Using the notation in Section 2, we apply Pg to (3)− (6) ,
the equivalent system of equations is obtained in the following similar to Navier–Stokes equations (see, e.g.,
[26]).

du

dt
+ νAgu+ νCgu+ Pg (w × u) = Pgf, (12)

dw

dt
+ νAgw + νCgw +Bg (u,w) = Pg (∇× f) + Pg

(
w

(
∇g
g

· u
))

, (13)

u(0) = u0, w(0) = w0. (14)

Here we consider the definition of weak solution of the system (12)− (14) in the following form.

Definition 3.1 Let T > 0 , f ∈ L2(0, T ;Hcurl
g ) , u0 ∈ Hg , and w0 ∈ L2(Ω, g) . Then (u,w) is called a weak

solution on the time interval [0, T ] to system (3)− (6) , if u ∈ C(0, T ;Hg) ∩ L2(0, T ;Vg) , ut ∈ L2(0, T ;V
′

g) ,

w ∈ C(0, T ;Hg)∩L2(0, T ;Vg), wt ∈ L2(0, T ;V
′

g ) ; moreover, (u,w) satisfies system (3)− (6) in the weak sense
following equations

(ut,ψ)g + ν (∇u,∇ψ)g + (w × u,ψ)g + ν (Cgu,ψ)g = (f,ψ)g , (15)

(wt, ψ)g + ν (∇w,∇ψ)g + (Bg(u,w), ψ) + ν (Cgw,ψ)g = (∇× f, ψ)g +

(
w

(
∇g
g

· u
)
, ψ

)
g

(16)

for any ψ ∈ L2(0, T ;Vg) and ψ ∈ L2(0, T ;Vg) . Note that by taking ψ = vφ(t) and ψ = vφ(t) for v ∈ Vg,

φ∈
(
C1

c (0, T )
)2 and v ∈ Vg, φ ∈ C1

c (0, T ) , it follows that formulation (12)− (13) is equivalent to formulation
(15)− (16) , interpreted as an operator equation holding in an appropriate distributional sense.

Theorem 3.2 Let f ∈ L2(0, T ;Hcurl
g ) , u0 ∈ Hg , and w0 ∈ L2(Ω, g) . Then the velocity-vorticity system

(3)− (6) has a unique global weak solution (u,w) in the sense of Definition 3.1 that satisfies ∇ · (gw) = 0 .

Proof We prove the theorem using the well-known Feado-Galerkin method [22, 26]. We consider the following
finite-dimensional Galerkin ordinary differential equations for (12)− (13).

dum
dt

+ νAgum + νCgum + Pm (wm × um) = Pmf, (17)

dwm

dt
+ νAgwm + νCgwm +Bg (um, wm) = Pm (∇× f) + Pm

(
wm

(
∇g
g

· um
))

(18)

with initial data um (0) = u0m, wm (0) = w0m. We will use (17) − (18) to obtain converges for um and wm.

Now using standart technique (see, e.g., [26]), we define an approximate solution for (12) − (14). Since Vg is
separable and V1 is dense in Vg , there exists a sequence {xj}j∈Nwhich forms a complete orthonormal system

in Hg and a base for Vg . Likewise there exists a sequence {yj}j∈N which constructs a complete orthonormal
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system in L2(Ω, g) and a base for Hg . Let m be arbitrary fixed positive integer. For each m, we define an
approximate solution (um(t), wm(t)) of (12)− (14) as follows:

um(t) =

m∑
j=1

gjm(t)xj , wm(t) =

m∑
j=1

hjm(t)yj

and (
u

′

m(t), xi

)
g
+ ν (∇um(t),∇xi)g + νbg

(
∇g
g
, um(t), xi

)
+ (wm(t)× um(t), xi)g

= (f(t), xi)g (i = 1, ...,m) t ∈ [0, T ] , (19)

(
w

′

m(t), yi

)
g
+ ν (∇wm(t),∇yi)g + νbg

(
∇g
g
, wm(t), yi

)
+ bg (um(t), wm(t), yi)

= (∇× f(t), yi)g +

(
wm(t)

(
∇g
g

· um(t)

)
, yi

)
g

(i = 1, ...,m) t ∈ [0, T ] , (20)

um(0) = u0m, um(0) = u0m (21)

where u0m and w0m are the orthogonal projections in Hg and Hg of u0 and w0 , respectively, onto the space
spanned by x1, ..., xm and y1, ..., ym , respectively. The equations (19)−(20) give nonlinear differential equations
for gjm , hjm. j = 1, . . . ,m in the following form

g
′

jm(t) = F (gjm(t)),

h
′

jm(t) = G(hjm(t))

and the condition (21) is equivalent to 2m equations

gjm(0) = (u0m, xj) ,

hjm(0) = (w0m, yj) .

This system forms a nonlinear first order system of ordinary differential equations for the function gjm(t) and
hjm(t) and has a maximal solution defined on some interval [0, tm] , tm < T . We shall prove later the priori
estimates for the solutions of (19)− (20) so we obtain tm = T [26]. We multiply (19) and (20) by gjm(t) and
hjm(t) respectively, and add these equations for j = 1, . . . ,m . We get(

u
′

m(t), um(t)
)
g
+ ν (∇um(t),∇um(t))g + νbg

(
∇g
g
, um(t), um(t)

)
= (f(t), um(t))g , (22)

(
w

′

m(t), wm(t)
)
g
+ ν (∇wm(t),∇wm(t))g + νbg

(
∇g
g
, wm(t), wm(t)

)
+ bg (um(t), wm(t), wm(t))

= (∇× f(t), wm(t))g +

(
wm(t)(

∇g
g

· um(t)), wm(t)

)
g

. (23)
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Using Cauchy-Schwarz and Young inequalities for (22) , we obtain the following inequalities:

d

dt
∥um(t)∥2L2 +

3ν

2
∥∇um(t)∥2L2 ≤ 2

ν
∥f(t)∥2L2 +

(
ν

2
+

2ν ∥∇g∥2∞
m2

0

)
∥um(t)∥2L2 . (24)

From the last inequality, we write:

d

dt
∥um(t)∥2L2 ≤ 2

ν
∥f(t)∥2L2 + α ∥um(t)∥2L2 (25)

where α = ν
2 +

2ν∥∇g∥2
∞

m2
0

. Again using Gronwall inequality for (25) , we get

sup
s∈[0,T ]

∥um(s)∥2L2 ≤ eαT

∥u0∥2 +
2

ν

T∫
0

∥f(s)∥2L2 ds

 . (26)

Let us denote right hand side of (26) by K1(T ) = eαT

(
∥u0∥2 + 2

ν

T∫
0

∥f(s)∥2L2 ds

)
. Using Cauchy-Schwarz and

Young inequalities and (10) are applied for (23) , we obtain the following inequalities:

d

dt
∥wm(t)∥2L2 + ν ∥∇wm(t)∥2L2 ≤ 2

ν
∥∇ × f(t)∥2L2 + β ∥wm(t)∥2L2 (27)

where β =
{

ν
2 +

2ν∥∇g∥2
∞

m2
0

+
2c∥∇g∥2

∞
ν K1(T )

}
. Neglecting the last term in the left hand side of (27) , we obtain

d

dt
∥wm(t)∥2L2 ≤ 2

ν
∥∇ × f(t)∥2L2 + β ∥wm(t)∥2L2 . (28)

Again using Gronwall inequality for (28) , we get

sup
s∈[0,T ]

∥wm(s)∥2L2 ≤ eβT

∥w0∥2 +
2

ν

T∫
0

∥∇ × f(s)∥2L2 ds

 . (29)

Let us denote right hand side of (29) by K2(T ) = eβT

(
∥w0∥2 + 2

ν

T∫
0

∥∇ × f(s)∥2L2 ds

)
. From (26) and (29) , we

imply that the sequences {um}m and {wm}m remain in a bounded set of L∞(0, T ;Hg) and L∞(0, T ;L2(Ω, g)) ,
respectively. Then we integrate (24) from 0 to T , we get

∥um(T )∥2L2 +
3ν

2

T∫
0

∥∇um(t)∥2L2 dt ≤ ∥u0m∥2 + 2

ν

T∫
0

∥f(t)∥2L2 dt+ α

T∫
0

∥um(t)∥2L2 dt.

Neglecting the first term in the left hand side of above equation, we write

T∫
0

∥∇um(t)∥2L2 dt ≤
2

3ν

∥u0∥2 +
2

ν

T∫
0

∥f(t)∥2L2 dt+ αK1(T )T

 . (30)
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Let us denote right hand side of (30) by

K3(T ) =
2

3ν

∥u0∥2 +
2

ν

T∫
0

∥f(t)∥2L2 dt+ αK1(T )T


and then we integrate (27) from 0 to T , we get

∥wm(T )∥2L2 + ν

T∫
0

∥∇wm(t)∥2L2 dt ≤ ∥w0m∥2 + 2

ν

T∫
0

∥∇ × f(t)∥2L2 dt+ β

T∫
0

∥wm(t)∥2L2 dt.

Neglecting the first term in the left hand side of above equation, we have

T∫
0

∥∇wm(t)∥2L2 dt ≤
1

ν

∥w0∥2 +
2

ν

T∫
0

∥∇ × f(t)∥2L2 dt+ βK2(T )T

 . (31)

Let us denote right hand side of (31) by

K4(T ) =
1

ν

∥w0∥2 +
2

ν

T∫
0

∥∇ × f(t)∥2L2 dt+ βK2(T )T

 .

Here using the hypothesis of theorem on data (30) and (31) , we imply that the sequences {um}m and {wm}m
remain in a bounded set of L2(0, T ;Vg) and L2(0, T ;H1(Ω, g)) , respectively. Due to the estimates (26) and
(30) , we assert the existence of elements

um ∈ L∞(0, T ;Hg) ∩ L2(0, T ;Vg). (32)

Due to the estimates (29) and (31) , we assert the existence of elements

wm ∈ L∞(0, T ;L2(Ω, g)) ∩ L2(0, T ;H1(Ω, g)). (33)

Multiplying (18) by g and then taking divergence of this equations and denoting vm = ∇ · (gwm) , we obtain

dvm
dt

+Bg(um, vm) = 0. (34)

Then, multiplying (34) by vm and integrating from 0 to T , we get

∥vm(T )∥2L2 ≤ ∥vm(0)∥2L2 . (35)

Let us use [22, Lemma7.5] and the initial data w0 ∈ Hg , then we have vm(0) . This implies ∇· (gwm) = vm = 0

in L2(0, T ;L2(Ω, g)) . Since L2(0, T ;Hg) is closed in L2(0, T ;L2(Ω, g)) , we write ∇ · (gw0) = 0 . Namely, we
get

wm ∈ L∞(0, T ;Hg) ∩ L2(0, T ;Vg). (36)
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Now, we will show that dum

dt is uniformly bounded in L2(0, T ;V
′

g) . We take the inner product of (17) with
ψ ∈ L2(0, T ;Vg) for all test functions.∣∣∣⟨Pm(wm × um),ψ⟩V′

g

∣∣∣ ≤ c ∥um∥
1
2

L2 ∥∇um∥
1
2

L2 ∥wm∥L2 ∥ψ∥H1 ,

∣∣∣∣∣
〈
Pm

(
1

g
(∇g∇)um

)
,ψ

〉
V′

g

∣∣∣∣∣ ≤ c ∥∇g∥∞ ∥∇um∥L2 ∥ψ∥H1 .

Thus, Pm(wm × um) and Cgum are uniformly bounded L2(0, T ;V
′

g) and it is easily seen that f and Agum

are bounded in L2(0, T ;V
′

g) uniformly in m . We obtain that

dum
dt

is uniformly bounded in L2(0, T ;V
′

g). (37)

Now, we will show that dwm

dt is uniformly bounded in L2(0, T ;V
′

g ) . We take the inner product of (18) with
ψ ∈ L2(0, T ;Vg) for all test functions.∣∣∣∣∣

〈
Pmwm

(
∇g
g

· um
)
, ψ

〉
V ′
g

∣∣∣∣∣ ≤ c ∥∇g∥∞ ∥wm∥
1
2

L2 ∥∇wm∥
1
2

L2 ∥um∥
1
2

L2 ∥∇um∥
1
2

L2 ∥ψ∥H1 ,

∣∣∣⟨Bg(um, wm), ψ⟩V ′
g

∣∣∣ ≤ c ∥g∥∞ ∥um∥
1
2

L2 ∥∇um∥
1
2

L2 ∥∇wm∥L2 ∥ψ∥
1
2

L2 ∥∇ψ∥
1
2

L2 ,∣∣∣∣∣
〈
Pm

(
1

g
(∇g · ∇)wm

)
, ψ

〉
V ′
g

∣∣∣∣∣ ≤ c ∥∇g∥∞ ∥∇wm∥L2 ∥ψ∥H1 .

Thus, Pmwm

(
∇g
g · um

)
, Bg(um, wm) and Cgwm are uniformly bounded L2(0, T ;V

′

g ) and it is easily seen that

∇× f and Agwm are bounded in L2(0, T ;V
′

g ) , uniformly in m , we obtain that

dwm

dt
is uniformly bounded in L2(0, T ;V

′

g ). (38)

From (32) and (37) and Aubin compactness theorem (see, e.g., [22, 26]), we conclude that there is a subsequence
(which we shall relabel ) um(t) and a function u(t) such that

um ⇀ u weakly in L2(0, T ;Vg), (39)

um ⇀ u weak-* in L∞(0, T ;Hg). (40)

(39) , (40) , and (37) give us
um → u strongly in L2(0, T ;Hg). (41)

Similarly, from (36) and (38) and Aubin compactness theorem, there is a subsequence (which we shall relabel)
wm(t) and a function w(t) such that

wm ⇀ w weakly in L2(0, T ;Vg), (42)
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wm ⇀ w weak-* in L∞(0, T ;Hg). (43)

(42) , (43) , and (38) give us

wm → w strongly in L2(0, T ;Hg). (44)

In order to pass to the limit, we consider the scalar functions ψ ∈ C
1

c ([0, T ] ;Vg) and ψ ∈ C
1

c ([0, T ] ;Vg) .
Now taking inner product of (17) and (18) by ψ and ψ , respectively, and then integrating in time over [0, t] ,
0 < t < T and using integration by parts, we have

−
t∫

0

(um,ψt)g ds+ (um(t),ψ(t))g − (um(0),ψ(0))g + ν

t∫
0

(
A

1
2
g u,A

1
2
g ψ
)
g
ds

+

t∫
0

(um × wm, Pmψ)g ds+ ν

t∫
0

bg

(
∇g
g
, um,ψ

)
ds =

t∫
0

(f,ψ)g ds, (45)

−
t∫

0

(wm, ψt)g ds+ (wm(t), ψ(t))g − (wm(0), ψ(0))g

+ ν

t∫
0

(
A

1
2
g w,A

1
2
g ψ
)
g
ds+ ν

t∫
0

bg

(
∇g
g
, wm, ψ

)
ds+

t∫
0

bg(um, wm, ψ)ds

=

t∫
0

(∇× f, ψ)g ds+

t∫
0

(
wm

(
∇g
g

· um
)
, Pmψ

)
g

ds. (46)

Using the standard arguments, as in theory of Navier–Stokes equations (see, e.g., [22, 26]), we can pass to limit
(45) and (46) . Considering the selection of ψ and ψ in (45) and (46) , respectively, we have expressed the
convergence of each term as in the following. The sequence um(t) converges weakly in L2(0, T ;Hg) and this
implies that

(um(t),ψ(t)) → (u(t),ψ(t)),

(um(0),ψ(t)) → (u(0),ψ(t))

for a.e. t ∈ [0, T ] . Similarly, the sequence wm(t) converges weakly in L2(0, T ;Hg) and this implies that

(wm(t), ψ(t)) → (w(t), ψ(t)),

(wm(0), ψ(t)) → (w(0), ψ(t))
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for a.e. t ∈ [0, T ] . Concerning the nonlinear term in (45) , we get

∣∣∣∣ t∫
0

(um × wm, Pm ψ)g ds−
t∫
0

(u× w, ψ)g ds

∣∣∣∣
≤ c ∥ψ∥L∞(0,t;L2) ∥ψ∥L∞(0,t;H1) ∥wm∥L2(0,t;H1) ∥um − u∥L2(0,t;L2)

+c ∥ψ∥L∞(0,t;L2) ∥ψ∥L∞(0,t;H1) ∥wm − w∥L2(0,t;L2) ∥um∥L2(0,t;H1)

+c ∥Pmψ−ψ∥L∞(0,t;L2) ∥Pmψ−ψ∥L∞(0,t;H1) ∥wm∥L2(0,t;L2) ∥um∥L2(0,t;H1) .

This nonlinear term converges to 0 in view of (41) and (44) and the uniform bounds on um and wm . On the
other hand, we have∣∣∣∣∣∣

t∫
0

bg

(
∇g
g
, um, Pmψ

)
ds−

t∫
0

bg

(
∇g
g
, u,ψ

)
ds

∣∣∣∣∣∣ ≤ c ∥∇g∥∞ ∥Pmψ−ψ∥L∞(0,t;H1) ∥um∥L2(0,t;L2)

+ c ∥∇g∥∞ ∥um − u∥L2(0,t;L2) ∥ψ∥L2(0,t;H1)

which converges to 0 in view of (41) and using [22, Lemma 7.5]. Now for the other term in (46) as in the
following ∣∣∣∣ t∫

0

bg(um, wm, Pmψ)ds−
t∫
0

bg(u,w, ψ)ds

∣∣∣∣
≤ c ∥Pmψ − ψ∥L∞(0,t;L2) ∥wm∥L2(0,t;H1) ∥um∥L2(0,t;H1)

+c ∥um∥L2(0,t;H1) ∥wm − w∥L2(0,t;L2) ∥ψ∥L∞(0,t;H1)

+c ∥ψ∥L∞(0,t;H1) ∥wm∥L2(0,t;H1) ∥um − u∥L2(0,t;L2)

which converges to 0 in view of (41) and (44) and also using [22, Lemma 7.5]. And then we consider the last
term in the left hand side of (46) , we write∣∣∣∣∣∣

t∫
0

(
wm

(
∇g
g

· um
)
, Pmψ

)
g

ds−
t∫

0

(
w

(
∇g
g

· u
)
, ψ

)
g

ds

∣∣∣∣∣∣
≤ c ∥∇g∥∞ ∥ψ∥L∞(0,t;L2) ∥ψ∥L∞(0,t;H1) ∥wm∥L2(0,t;H1) ∥um∥L2(0,t;H1)

+ c ∥∇g∥∞ ∥ψ∥L∞(0,t;L2) ∥ψ∥L∞(0,t;H1) ∥wm − w∥L2(0,t;L2) ∥um∥L2(0,t;H1)

+ c ∥∇g∥∞ ∥Pmψ − ψ∥L2(0,t;L2) ∥wm∥L2(0,t;H1) ∥u∥
1
2

L∞(0,t;L2) ∥u∥
1
2

L∞(0,t;H1)
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which converges to 0 in view of (41) and (44) and also using [22, Lemma 7.5] and the uniform bounds on wm

and um .
Similarly, we will show to pass to the limit for the equation (34) . Taking inner product of the equation

(34) by ψ ∈ C
1

c ([0, T ] ;Vg) and then integrating over [0, t], 0 < t < T and using integration by parts we get

−
t∫

0

(vm, ψt)g ds+ (vm(t), ψ(t))g − (vm(0), ψ(0))g +

t∫
0

⟨Bg(um, vm), Pmψ)⟩ ds = 0. (47)

For the nonlinear term in (47) , we write

∣∣∣∣ t∫
0

⟨Bg(um, vm), Pmψ)⟩ ds−
t∫
0

⟨Bg(u, v), ψ)⟩ ds
∣∣∣∣

≤ c ∥Pmψ − ψ∥L∞(0,t;L2) ∥um∥L2(0,t;H1) ∥vm∥L2(0,t;H1)

+c ∥ψ∥L∞(0,t;H1) ∥v∥L2(0,t;H1) ∥um − u∥L2(0,t;L2)

+c ∥um∥L2(0,t;H1) ∥vm − v∥L2(0,t;L2) ∥ψ∥L∞(0,t;H1) .

Using the results about convergences in above, we will pass to the limit in (47) then we get the following weak
formulation for v = ∇ · (gw ) in view of (34)

⟨vt, ψ⟩+ ⟨Bg(u, v), ψ⟩ = 0.

Now all the above convergences are valid if we take ψ = vφ(t) and ψ = vφ(t) where v ∈ Vg ,φ ∈
(
C1 (0, T )

)2
and v ∈ Vg, φ ∈ C1 (0, T ) . In particular, the convergences are valid for all φ ∈

(
C1

c [0, T ]
)2 and φ ∈ C1

c [0, T ];

thus, (15) and (16) hold in the sense of distributions, which in turn implies that (12) and (13) are valid as an
equation of operators. In other words, (3)− (6) hold in the weak sense by Lemma 1.2 in [26]. Furthermore, it
is easy to show that the initial condition is satisfied in a weak sense similar to the problem for Navier–Stokes
equations in [26]. So we prove the existence of weak solutions of our system in the means of Definition 3.1.

Now we prove the uniqueness of the weak solutions. We suppose (u1, w1) and (u2, w2) are two weak
solutions to system (3) − (6) with the same initial condition and forcing term f . Let u = u1 − u2 and
w = w1 − w2 . Then we obtain

∂u

∂t
− ν∆gu+ ν

1

g
(∇g · ∇)u+ w × u1 + w2 × u+ ▽P = 0, (48)

∂w

∂t
− ν∆gw + ν

1

g
(∇g · ∇)w + u1 · ∇w − u · ∇w2 = w

(
∇g
g

· u1
)
− w2

(
∇g
g

· u
)
, (49)

∇ · (gu) = 0 , ∇ · (gw) = 0, (50)

u(x, 0) = 0, w(x, 0) = 0 (51)
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when (48) and (49) are multiplied by u(t) and w(t) respectively, and add these equations, we get

d

dt

(
∥u(t)∥2L2 + ∥w(t)∥2L2

)
+ 2ν ∥∇u(t)∥2L2 + 2ν ∥∇w(t)∥2L2

≤ −2

∫
Ω

(w(t)× u1(t))ugdx+ 2ν

∣∣∣∣bg (∇g
g
, u(t), u(t)

)∣∣∣∣+ 2ν

∣∣∣∣bg (∇g
g
, w(t), w(t)

)∣∣∣∣

+ 2 |bg (u(t), w2(t), w(t))|+ 2

∫
Ω

w(t)

(
∇g
g

· u1(t)
)
w(t)gdx+ 2

∫
Ω

w2(t)

(
∇g
g

· u(t)
)
w(t)gdx. (52)

Cauchy-Schwarz and Young inequalities are applied for each term in the right hand side of (52), we write

d

dt

(
∥u(t)∥2L2 + ∥w(t)∥2L2

)
+
ν

2
∥∇u(t)∥2L2

≤

{
2ν ∥∇g∥2∞

m2
0

+
2c

ν3
∥w2(t)∥2L2 ∥∇w2(t)∥2L2 +

2c

ν
∥∇g∥2∞ ∥w2(t)∥2L2

}
∥u(t)∥2L2

+

{
2c

ν
∥∇u1(t)∥2L2 +

2ν ∥∇g∥2∞
m2

0

+
2c

ν
∥∇g∥2∞ ∥u1(t)∥2L2

}
∥w(t)∥2L2 .

When necessary arrangements are made, we obtain

d

dt

(
∥u(t)∥2L2 + ∥w(t)∥2L2

)
≤ K5

(
∥u(t)∥2L2 + ∥w(t)∥2L2

)
(53)

where

K5 = max

{
2ν ∥∇g∥2∞

m2
0

+
2c

ν3
∥w2(t)∥2L2 ∥∇w2(t)∥2L2 +

2c

ν
∥∇g∥2∞ ∥w2(t)∥2L2 ,

2c

ν
∥∇u1(t)∥2L2 +

2ν ∥∇g∥2∞
m2

0

+
2c

ν
∥∇g∥2∞ ∥u1(t)∥2L2

}
.

By using Gronwall inequality, we conclude that

(
∥u(t)∥2L2 + ∥w(t)∥2L2

)
≤ eK5(t)

(
∥u(0)∥2L2 + ∥w(0)∥2L2

)
.

Thus, u(t) = 0 and w(t) = 0 for all t ≥ 0 since we have u(0) = 0 and w(0) = 0 . Thus, the theorem is proved.
2
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Definition 3.3 Let T > 0 , f ∈ L2(0, T ;Hcurl
g ) , u0 ∈ Vg , and w0 ∈ Vg . The pair of functions (u,w) is called

a strong solutions on the time interval [0, T ] to system (3) − (6) , if it is a weak solution as in Definition 3.1
and satisfies additionaly u ∈ L2(0, T ;D(Ag)) ∩ L∞(0, T ;Vg) , and w ∈ L2(0, T ;D(Ag)) ∩ L∞(0, T ;Vg) .

Now we will give theorem the existence of the strong solutions for the system (3)− (6) .

Theorem 3.4 Let the initial data u0 ∈ Vg , w0 ∈ Vg , and f ∈ L2(0, T ;Hcurl
g ) . Then, there exists a unique

strong solution (u,w) in the sense of Definition 3.3.

Proof Now we multiply the Galerkin approximation (17) by Agum and integrate by over Ω , we will show
priori estimates for the higher order regularity of the solution of (3)− (6). Hence, we obtain

1

2

d

dt
∥∇um(t)∥2L2 + ν ∥Agum(t)∥2L2 ≤ −νbg

(
∇g
g
, um(t), Agum(t)

)

− (wm × um, Agum(t))g + (f,Agum(t))g .

Here using the Cauchy-Schwarz, Young inequalities, and (9) , we get

d

dt
∥∇um(t)∥2L2 +

ν

2
∥Agum(t)∥2L2 ≤ 1

ν
∥f∥2L2

+

(
2ν ∥∇g∥2∞

m2
0

+
c

ν3
∥wm(t)∥2L2 ∥∇wm(t)∥2L2

)
∥∇um(t)∥2L2 . (54)

Neglecting the second term in the left hand side of (54) , we write

d

dt
∥∇um(t)∥2L2 ≤ 1

ν
∥f∥2L2 + p1 ∥∇um(t)∥2L2

where

p1 =
2ν ∥∇g∥2∞

m2
0

+
c

ν3
∥wm(t)∥2L2 ∥∇wm(t)∥2L2 .

Using Gronwall’s lemma, we have

∥∇um(t)∥2L2 ≤ ∥∇u0∥2L2 exp

 t∫
0

p1(τ)dτ

+
1

ν

t∫
0

∥f(s)∥2L2 exp

 t∫
0

p1(τ)dτ

 ds.

Similarly, we multiply (18) by Agwm and integrate by over Ω , we get

1

2

d

dt
∥∇wm(t)∥2L2 +

ν

4
∥Agwm(t)∥2L2 = −νbg

(
∇g
g
, wm(t), Agwm(t)

)
− bg (um(t), wm(t), Agwm(t))

+

(
wm(t)

(
∇g
g

· um(t)

)
, Agwm(t)

)
g

+ (∇× f,Agwm(t))g .
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Using the Cauchy-Schwarz, Young inequalities and the inequality of (9) , we see that
d

dt
∥∇wm(t)∥2L2 +

ν

2
∥Agum(t)∥2L2 ≤ 4

ν
∥∇ × f∥2L2

+

(
2cν ∥∇g∥2∞

m2
0

+
c

ν3
∥um(t)∥2L2 ∥∇um(t)∥2L2

+
2c ∥∇g∥2∞
νm2

0

∥∇um(t)∥2L2

)
∥∇wm(t)∥2L2 . (55)

Neglecting the second term in the left hand side of (55) , we obtain

d

dt
∥∇wm(t)∥2L2 ≤ 4

ν
∥∇ × f∥2L2 + p2 ∥∇wm(t)∥2L2

where

p2 =
2cν ∥∇g∥2∞

m2
0

+
c

ν3
∥um(t)∥2L2 ∥∇um(t)∥2L2 +

2c ∥∇g∥2∞
νm2

0

∥∇um(t)∥2L2 .

By using Gronwall inequality, we get

∥∇wm(t)∥2L2 ≤ ∥∇w0∥2L2 exp

 t∫
0

p2(τ)dτ

+
4

ν

t∫
0

∥∇ × f(s)∥2L2 exp

 t∫
0

p2(τ)dτ

 ds.

To obtain a priori estimates for strong solution, we use the following estimates which are given in Theorem 3.2;

sup
s∈[0,T ]

∥um(s)∥2L2 ≤ K1,
T∫
0

∥∇um(t)∥2L2 dt ≤ K3,

sup
s∈[0,T ]

∥wm(s)∥2L2 ≤ K2,
T∫
0

∥∇wm(t)∥2L2 dt ≤ K4

where the constants K1 = K1(u0, ν, f, T ), K2 = K2(w0, ν, f, T ), K3 = K3(u0, ν, f, T ) , K4 = K4(w0, ν, f, T ) .
Therefore, we obtain

t∫
0

p1(τ)dτ ≤
2νT ∥∇g∥2∞

m2
0

+
c

ν3
sup

t∈[0,T ]

∥wm(t)∥2L2

T∫
0

∥∇wm(τ)∥2L2 dτ ≤
2νT ∥∇g∥2∞

m2
0

+
c

ν3
K2K4 = K6

and
t∫

0

p2(τ)dτ ≤
2cνT ∥∇g∥2∞

m2
0

+
c

ν3
sup

t∈[0,T ]

∥um(t)∥2L2

T∫
0

∥∇um(τ)∥2L2 dτ +
4c ∥∇g∥2∞
νm2

0

T∫
0

∥∇um(τ)∥2L2 dτ

≤
2cνT ∥∇g∥2∞

m2
0

+
c

ν3
K1K3 +

4c ∥∇g∥2∞
νm2

0

K3 = K7.
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Moreover, we have

sup
s∈[0,T ]

∥∇um(t)∥2L2 ≤ eK6 ∥∇u0∥2L2 +
1

ν
TeK6 ∥f∥2L2(0,T ;L2) = K8 (56)

and

sup
s∈[0,T ]

∥∇wm(t)∥2L2 ≤ eK7 ∥∇w0∥2L2 +
4

ν
TeK7 ∥∇ × f∥2L2(0,T ;L2) = K9. (57)

Then we integrate (54) and (55) from 0 to T , we get

∥∇um(T )∥2L2 +
ν

2

T∫
0

∥Agum(t)∥2L2 ≤ ∥∇u0∥2L2 +
1

ν
∥f∥2L2(0,T ;L2) +

2ν ∥∇g∥2∞
m2

0

K3 +
c

ν3
K2K4K3

and

∥∇wm(T )∥2L2 +
ν

4

T∫
0

∥Agwm(t)∥2L2 ≤ ∥∇w0∥2L2 +
4

ν
∥∇ × f∥2L2(0,T ;L2)

+
2ν ∥∇g∥2∞

m2
0

K4 +
c

ν3
K3K1K4 +

4c ∥∇g∥2∞
νm2

0

K3K4.

Neglecting the first term in the left hand side of above equations, we write

T∫
0

∥Agum(t)∥2L2 ≤ 2

ν

(
∥∇u0∥2L2 +

1

ν
∥f∥2L2(0,T ;L2) +

2ν ∥∇g∥2∞
m2

0

K3 +
c

ν3
K2K4K3

)
= K10, (58)

T∫
0

∥Agwm(t)∥2L2 ≤ 4

ν

(
∥∇w0∥2L2 +

4

ν
∥∇ × f∥2L2(0,T ;L2)

+
2ν ∥∇g∥2∞

m2
0

K4 +
c

ν3
K3K1K4 +

4c ∥∇g∥2∞
νm2

0

K3K4

)

= K11 (59)

where K10 and K11 are the positive constants. From above estimates,

um ∈ L∞(0, T ;Vg) ∩ L2(0, T ;D(Ag)),

wm ∈ L∞(0, T ;Vg) ∩ L2(0, T ;D(Ag)).

Now we note that

T∫
0

∥Dtum(t)∥2L2 dt ≤
T∫

0

∥wm(t)× um(t)∥2L2 dt+ ν

T∫
0

∥Agum(t)∥2L2 dt+ ν

T∫
0

∥Cgum(t)∥2L2 dt+

T∫
0

∥f(t)∥2L2 dt
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and
T∫

0

∥Dtwm(t)∥2L2 dt ≤
T∫

0

∥Bg(um(t), wm(t))∥2L2 dt+ ν

T∫
0

∥Agwm(t)∥2L2 dt

+ ν

T∫
0

∥Cgwm(t)∥2L2 dt+

T∫
0

∥∥∥∥wm(t)

(
∇g
g

· um(t)

)∥∥∥∥2
L2

dt+

T∫
0

∥∇ × f(t)∥2L2 dt.

The boundedness of the terms in the right hand side of the inequalities is shown below using Cauchy-Schwarz
and (9) and (11) .

T∫
0

∥wm(t)× um(t)∥2L2 dt ≤ c

T∫
0

∥um(t)∥L2 ∥∇um(t)∥L2 ∥wm(t)∥L2 ∥∇um(t)∥L2 dt

≤ c

 sup
t∈[0,T ]

∥um(t)∥2L2

T∫
0

∥∇um(t)∥2L2 dt


1
2
 sup

t∈[0,T ]

∥wm(t)∥2L2

T∫
0

∥∇wm(t)∥2L2 dt


1
2

≤ c
√
K1K3

√
K2K4 = K12.

Therefore, wm(t)× um(t) belongs to the space L2(0, T ;Hg) .

T∫
0

∥Cgum(t)∥2L2 dt ≤ c ∥∇g∥2∞

T∫
0

∥∇um(t)∥2L2 dt ≤ c ∥∇g∥2∞K3 = K13.

Hence, Cgum(t) also belongs to the space L2(0, T ;Hg) . As a result,

dum
dt

belongs to L2(0, T ;Hg). (60)

Similarly,
T∫

0

∥Bg(um(t), wm(t)∥2L2 dt ≤ c

T∫
0

∥um(t)∥L2 ∥Agum(t)∥L2 ∥∇wm(t)∥2L2 dt

≤ c

 sup
t∈[0,T ]

∥um(t)∥2L2

T∫
0

∥Agum(t)∥2L2 dt


1
2
 sup

t∈[0,T ]

∥∇wm(t)∥2L2

T∫
0

∥∇wm(t)∥2L2 dt


1
2

≤ c
√
K1K10

√
K9K4 = K14.
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Therefore, Bg (um(t), wm(t)) belongs to L2(0, T ;Hg) .

T∫
0

∥∥∥wm(t)
(

∇g
g · um(t)

)∥∥∥2
L2
dt ≤ c ∥∇g∥2∞

T∫
0

∥wm(t)∥L2 ∥∇wm(t)∥L2 ∥um(t)∥L2 ∥∇um(t)∥L2 dt

≤ c ∥∇g∥2∞

(
sup

t∈[0,T ]

∥wm(t)∥2L2

T∫
0

∥∇wm(t)∥2L2 dt

) 1
2
(

sup
t∈[0,T ]

∥um(t)∥2L2

T∫
0

∥∇um(t)∥2L2 dt

) 1
2

≤ c ∥∇g∥2∞
√
K2K4

√
K1K3 = K16.

Hence, wm(t)
(

∇g
g · um(t)

)
also belongs to the space L2(0, T ;Hg) . As a result,

dwm

dt
belongs to L2(0, T ;Hg). (61)

Thus, using standard techniques in [26], from the above estimates, we conclude that there exist a subsequence
of um and wm which are convergent to u and w such that

u ∈ L∞(0, T ;Vg) ∩ L2(0, T ;D(Ag)),

w ∈ L∞(0, T ;Vg) ∩ L2(0, T ;D(Ag)).

Using (60) , (61) , and the last two results u ∈ C([0, T ] ;Vg) and w ∈ C([0, T ] ;Vg) (by [22, theorem 7.7]) which
makes the initial conditions meaningful. Therefore, we prove the existence of strong solutions.

Now we show that strong solutions continuously depend on the initial conditions and the given data
as well as the uniqueness of the strong solutions. We suppose (u1, w1) and (u2, w2) are two strong solutions
to system (3) − (6) with (u1(0), w1(0)) and (u2(0), w2(0)) initial conditions and forcing terms f1, f2 . Let
u = u1 − u2 , w = w1 −w2 . u(0) = u1(0)− u2(0) , w(0) = w1(0)−w2(0) and f = f1− f2. Then we obtain the
following system:

du

dt
+ νAgu+ νCgu+ w × u1 + w2 × u = f, (62)

dw

dt
+ νAgw + νCgw +Bg(u1, w)−Bg(u,w2) = ∇× f + w

(
∇g
g

· u1
)
− w2

(
∇g
g

· u
)
. (63)

Now (62) and (63) are multiplied by Agu(t) and Agw(t) respectively, we get

d

dt
∥∇u(t)∥2L2 + 2ν ∥Agu(t)∥2L2 ≤ 2ν

∣∣∣∣bg (∇g
g
, u(t), Agu(t)

)∣∣∣∣+ |2(w(t)× u1(t), Agu(t))g|

+ |2(w2(t)× u(t), Agu(t))g|+ 2(f(t), Agu(t))g
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and

d

dt
∥∇w(t)∥2L2 + 2ν ∥Agw(t)∥2L2 + 2νbg

(
∇g
g
, w(t), Agw(t)

)
+ 2bg (u1(t), w(t), Agw(t))− 2bg (u(t), w2(t), Agw(t))

= (∇× f,Agwm(t))g +

(
w(t)

(
∇g
g

· u1(t)
)
, Agw(t)

)
g

−
(
w2(t)

(
∇g
g

· u(t)
)
, Agw(t)

)
g

.

Here Cauchy-Schwarz and Young inequalities are applied for each term in the right hand side of these equations,
we write

d

dt
∥∇u(t)∥2L2 ≤

(
ν ∥∇g∥2∞
m2

0

+
2c

ν
∥∇w2(t)∥2L2

)
∥∇u(t)∥2L2

+
2c

ν
∥∇u1(t)∥2L2 ∥∇w(t)∥2L2 +

2

ν
∥f∥2L2 (64)

and

d

dt
∥∇w(t)∥2L2 +

ν

2
∥Agw(t)∥2L2 ≤

(
4c

ν
∥Agw2(t)∥2L2 +

4c ∥∇g∥2∞
ν

∥∇w2(t)∥2L2

)
∥∇u(t)∥2L2

+

(
4ν ∥∇g∥2∞

m2
0

+
c

ν3
∥u1(t)∥2L2 ∥∇u1(t)∥2L2

+
4c ∥∇g∥2∞

ν
∥∇u1(t)∥2L2

)
∥∇w(t)∥2L2 +

4

ν
∥∇ × f∥2L2 . (65)

Adding (64) and (65) and also making necessary arrangements, we obtain

d

dt

(
∥∇u(t)∥2L2 + ∥∇w(t)∥2L2

)
≤ L

(
∥∇u(t)∥2L2 + ∥∇u(t)∥2L2

)
+

2

ν
∥f∥2L2 +

4

ν
∥∇ × f∥2L2

where

L = max

{
4c

ν
∥Agw2(t)∥2L2 +

4c ∥∇g∥2∞
ν

∥∇w2(t)∥2L2 +
ν ∥∇g∥2∞
m2

0

+
2c

ν
∥∇w2(t)∥2L2 ,

4ν ∥∇g∥2∞
m2

0

+
c

ν3
∥u1(t)∥2L2 ∥∇u1(t)∥2L2 +

4c ∥∇g∥2∞
ν

∥∇u1(t)∥2L2 +
2c

ν
∥∇u1(t)∥2L2

}
.
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By using Gronwall inequality, we conclude that

∥∇u(T )∥2L2 + ∥∇w(T )∥2L2 ≤ exp

 T∫
0

L(τ)dτ

(∥∇u(0)∥2L2 + ∥∇w(0)∥2L2

)

+

(
2T

ν
∥f∥2L2 +

4T

ν
∥∇ × f∥2L2

)
exp

 T∫
0

L(τ)dτ

 .

Here if f1, f2 ∈ L2(0, T ;Hcurl
g ), u1(0), u2(0) ∈ Vg, w1(0), w2(0) ∈ Vg, then we can conclude that strong

solutions continuously depend on the initial conditions and the given data. Moreover, the strong solutions are
unique when u1(0) = u2(0), w1(0) = w2(0) and f1 = f2. 2
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