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Abstract: In this paper, we are concerned with the one-dimensional porous medium system with sources{
ut − (um)xx = a11u

p + a12u
rvr+m, (x, t) ∈ J × I ⊂ R× R

vt − (vm)xx = a21u
r+mvr + a22v

p, (x, t) ∈ J × I ⊂ R× R,

where p = 2r + m , m > 1 , r > 0 . Under the conditions a12 ≥ 0, a21 ≥ 0 , a11 > 0 , and a22 > 0 , we prove that the
system does not possess any nontrivial nonnegative weak solution.
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1. Introduction
In recent years, the Liouville properties for elliptic and parabolic equations/systems have been much investigated
and emerged as one of the most powerful tools in the study of initial and boundary value problems. From
Liouville-type theorems, one can deduce a variety of results on qualitative properties of solutions such as:
universal, pointwise, a priori estimates of local solutions; universal and singularity estimates; decay estimates;
blow-up rate of solutions, see [25, 26, 29] and references therein.

Let us first go back to the pioneering work of Gidas and Spruck [14] where the existence and nonexistence
of a positive solution to the Lane-Emden equation

−∆u = up in RN

was completely established. The optimal range of the exponent p for the nonexistence of positive solutions is
1 < p < ps(N) := N+2

N−2 . However, a similar question for the Lane-Emden system{
−∆u = vp in RN

−∆v = uq in RN

has not been completely solved. It is conjectured that the Lane-Emden system has no positive solution if and
only if

1

p+ 1
+

1

q + 1
> 1− 2

N
.
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This conjecture has been confirmed in the low dimensions N ≤ 4 , see [19, 31, 32, 34]. In higher dimensions
N ≥ 5 , it has not been solved yet, see [34].

We next consider the parabolic model

ut −∆u = up in RN × I ⊂ RN × R, (1.1)

which has been extensively studied by many mathematicians. The well-known Fujita result ensures the
nonexistence of nontrivial nonnegative supersolutions in RN × (0,+∞) of (1.1) provided that 1 < p ≤ N+2

N ,
see [10], [20, Sec. 26], and [2, 15, 23] for generalized models. In the supercritical case p > N+2

N , problem (1.1)
possesses, see [16, Example 1], a nonnegative supersolution in RN × R of the form

u(x, t) =

{
kt−

1
p−1 e−γ

1+|x|2
t if t > 0, x ∈ RN

0 if t ≤ 0, x ∈ RN ,
(1.2)

where k, γ are suitably chosen, see also [8] for the system. The complete classification of solutions to (1.1) is
one of the most interesting and challenging problems, see [21, 27]. Very recently, the optimal Liouville type
theorem for solutions of (1.1) in any dimension has been completely proved by Quittner [28]. We also refer to
papers of Bidaut-Véron [4], Quittner [27] and the references [3, 9, 24, 26, 29] for related results.

We now consider the quasilinear parabolic equation

ut −∆um = up in RN × I ⊂ RN × R (1.3)

with m > 1 . For this equation, some local solvability and general regularity results of solutions of (1.3) can
be found in [1, 6, 11–13, 30, 33, 35]. In particular, the authors in [13, 30] proved that when p ≤ m + 2

N , the
solution u of (1.3) in RN × (0,+∞) with bounded, continuous initial data u0 ̸≡ 0 does not exist globally and
blow up in a finite time, i.e. there is T > 0 such that

sup
x∈RN

u(x, t) → +∞ as t → T.

Under the same condition p ≤ m+ 2
N , it was also established in [6] that any solution u of (1.3) in RN × (0, T )

satisfies the blow up estimate

u(x, t) ≤ C(N,m, p)
(
t−

1
p−1 + (T − t)−

1
p−1

)
. (1.4)

Furthermore, the range of the exponent p is extended in [1] such that the estimate (1.4) is still true. The
extended range is p < p0(m,N) where p0(m,N) is explicitly given by

p0(m,N) =

{
N(N+2)
2(N−1)2 (1 + θ +

√
1 + 2θ) if N ≥ 2,

∞ if N = 1

with θ = (N−1)(m−1)
N . Remark that when m = 1 ,

p0(1.N) = pB(N) =

{
N(N+2)
2(N−1)2 if N ≥ 2,

∞ if N = 1,
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which is called the Bidaux-Véron exponent.
The approach in [1] is based on establishing a Liouville type theorem on the whole space. In fact, the

authors showed that the equation (1.3) has no nontrivial nonnegative weak solution in the whole space RN ×R
when m < p < p0(m,N) . This nonexistence results in the full range m < p < mpS is still left open. Among
other things, it was shown in [1] that:
Theorem A. Let 1 < m < p . Then, the equation ut − (um)xx = up has no nontrivial nonnegative weak
solution in R× R .

Let us next consider the semilinear cooperative parabolic system{
ut −∆u = a11u

p + a12u
rvr+1, (x, t) ∈ Ω× I ⊂ RN × R

vt −∆v = a21u
r+1vr + a22v

p, (x, t) ∈ Ω× I ⊂ RN × R,
(1.5)

where p = 2r+1 and r > 0 . This system has been studied in [7, 22, 27] in any dimension. Some Liouville type
theorems were established in the case a12 = a21 in [22] and in the general case a12 ̸= a21 in [7]. In particular,
the following result was proved in [27], see also [28].
Theorem B. Let N = 1 and a12, a21 ≥ 0; a11, a22 > 0. Then, the system (1.5) has no nontrivial nonnegative
solution in R× R .
The main tools in [27] are scaling argument and energy estimates. Noticing that, by a simple scaling, one can
reduce the system (1.5) to a parabolic system with gradient structure as in [27].

Our purpose in this paper is to study the following porous medium system{
ut − (um)xx = a11u

p + a12u
rvr+m, (x, t) ∈ J × I ⊂ R× R

vt − (vm)xx = a21u
r+mvr + a22v

p, (x, t) ∈ J × I ⊂ R× R,
(1.6)

where the exponents p,m, r and the coefficients aij satisfy

m > 1, r > 0, p = 2r +m,

a12, a21 ≥ 0; a11, a22 > 0.
(1.7)

As mentioned above, there are many contributions to the porous medium equations. Nevertheless, to the
best of our knowledge, there are a few results on porous medium system with sources, see [5, 17, 18, 36] for
the global existence and boundedness of solutions. In this paper, we propose to study the Liouville properties
of the porous medium system with sources. The first attempt is to establish a nonexistence result for the
one-dimensional porous medium system with sources (1.6). As in [1], by a nonnegative weak solution (u, v) of
(1.6) we mean u, v ∈ C(J × I) , u, v ≥ 0 , satisfying (1.6) in the distributional sense.

Our main result in this paper is the following.

Theorem 1.1 Under the assumption (1.7), the system (1.6) does not possess any nontrivial nonnegative weak
solution in R× R .

In order to prove Theorem 1.1, we shall develop the idea in [7, 22] where the main tool is a combination of
the Bochner formula, nonlinear integral estimates, the scaling invariance argument, and some idea from [4, 14].
Remark that our proof is not straightforward in comparison with that for the case m = 1 in [7, 22]. The
main difficulty arising in the proof is the presence of a quasilinear term (m > 1). Some key estimates for the
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semilinear case (m = 1) do not work for the case (m > 1) and the nonlinear integral estimates become more
delicate.

Before closing the introduction, we present a consequence of Theorem 1.1 without proof since it is totally
similar to [1, Theorem 2.1], see also [7, Proposition 1].

Proposition 1.2 Let p > m > 1 and J ⊂ R . Suppose that (1.7) holds. If (u, v) is a nonnegative weak solution
of (1.6) in J × (0, T ), then there holds

u(x, t) + v(x, t) ≤ C(t−
1

p−1 + (T − t)−
1

p−1 + dist−
2

p−m (x, J)), x ∈ J, t ∈ (0, T ).

The rest of this paper is devoted to the proof of Theorem 1.1.

2. Proof of Theorem 1.1
For the sake of simplicity, we denote by

∫
the integral

∫
(−1,1)×(−1,1)

dxdt . Denote by C a generic positive

constant whose value may change from line to line.
In order to prove Theorem 1.1, it is sufficient to prove that the following system{

(u
1
m )t − uxx = a11u

p
m + a12u

r
m v

r+m
m , (x, t) ∈ J × I ⊂ R× R

(v
1
m )t − vxx = a21u

r+m
m v

r
m + a22v

p
m , (x, t) ∈ J × I ⊂ R× R.

(2.1)

has no nontrivial nonnegative weak solution. In what follows, we shall prove this assertion.
An integral estimate, which plays a crucial role in the proof of Theorem 1.1, is given in the following

lemma.

Lemma 2.1 Assume that (1.7) holds. Let (u, v) be a positive regular solution of (2.1) on (−1, 1) × (−1, 1) .
Fix χ ∈ C∞

0 ((−1, 1)× (−1, 1)) and put

I := a21

∫
χu−1− 1

m |ux|4 + a12

∫
χv−1− 1

m |vx|4

and

L := a21

∫
χu1− 1

m

(
a11u

p
m + a12u

r
m v

r
m+1

)2
+ a12

∫
χv1−

1
m

(
a21u

r
m+1v

r
m + a22v

p
m

)2
.

Then, there exists C > 0 independent of u, v and χ such that

I + L ≤C

∫
χ
(
|(u 1

m )t|u− 1
m |ux|2 + |(v 1

m )t|v−
1
m |vx|2

)
+ C

∫
u1− 1

m |χxux|
(
u

p
m + u

r
m v

r
m+1 + |(u 1

m )t|+ u−1|ux|2
)

+ C

∫
v1−

1
m |χxvx|

(
v

p
m + v

r
mu

r
m+1 + |(v 1

m )t|+ v−1|vx|2
)

+ C

∫
|χxx|

(
u1− 1

m |ux|2 + v1−
1
m |vx|2

)
+ C

∫
|χt|

(
u

p
m+1 + v

p
m+1

)
+ C

∫
χ
(
u1− 1

m |(u 1
m )t|2 + v1−

1
m |(v 1

m )t|2
)
.

(2.2)

1736



DUONG/Turk J Math

Proof Define

I1 =

∫
χu−1− 1

m |ux|4, I2 =

∫
χv−1− 1

m |vx|4

and J = a21J1 + a12J2 with

J1 =

∫
χu− 1

m |ux|2uxx, J2 =

∫
χv−

1
m |vx|2vxx.

Then, we have
I = a21I1 + a12I2.

Applying [1, Lemma 4.1] with q = 1− 1
m , N = 1 and k ∈ R , we obtain(

− k

m
+

m− 1

2m2

)
I1 + 3

(
k − m− 1

2m

)
J1

≤ 1

2

∫
u1− 1

m |ux|2χxx +

∫
u1− 1

m

(
uxx +

(
m− 1

m
− k

)
u−1|ux|2

)
uxχx

and (
− k

m
+

m− 1

2m2

)
I2 + 3

(
k − m− 1

2m

)
J2

≤ 1

2

∫
v1−

1
m |vx|2χxx +

∫
v1−

1
m

(
vxx +

(
m− 1

m
− k

)
v−1|vx|2

)
vxχx.

Multiplying the first inequality by a21 , the second one by a12 , we deduce that(
− k

m
+

m− 1

2m2

)
I+3

(
k − m− 1

2m

)
J ≤ C

∫ (
u1− 1

m |ux|2 + v1−
1
m |vx|2

)
|χxx|

+ C

∫
u1− 1

m

∣∣∣∣(uxx +

(
m− 1

m
− k

)
u−1|ux|2

)
uxχx

∣∣∣∣
+ C

∫
v1−

1
m

∣∣∣∣(vxx +

(
m− 1

m
− k

)
v−1|vx|2

)
vxχx

∣∣∣∣ .
(2.3)

Since (u, v) is a positive regular solution of (2.1), we have

−J =a21

∫
χu− 1

m |ux|2(−uxx) + a12

∫
χv−

1
m |vx|2(−vxx)

=a21

∫
χa11u

p−1
m |ux|2 + a12

∫
χa22v

p−1
m |vx|2

+ a12a21

(∫
χ|ux|2u

r−1
m v

r
m+1 +

∫
χ|vx|2v

r−1
m u

r
m+1

)
− a21

∫
χu− 1

m |ux|2(u
1
m )t − a12

∫
χv−

1
m |vx|2(v

1
m )t. (2.4)
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It follows from an integration by parts that∫
χ|ux|2u

r−1
m v

r
m+1 =

m

r +m− 1

∫
χv

r
m+1ux

(
u

r+m−1
m

)
x

= − m

r +m− 1

∫
χu

r+m−1
m v

r
m+1uxx − r +m

r +m− 1

∫
χu

r+m−1
m v

r
muxvx

− m

r +m− 1

∫
u

r+m−1
m v

r
m+1χxux

(2.5)

and ∫
χ|vx|2v

r−1
m u

r
m+1 =

m

r +m− 1

∫
χu

r
m+1vx

(
v

r+m−1
m

)
x

= − m

r +m− 1

∫
χv

r+m−1
m u

r
m+1vxx − r +m

r +m− 1

∫
χv

r+m−1
m u

r
m vxux

− m

r +m− 1

∫
v

r+m−1
m u

r
m+1χxvx.

(2.6)

By combining (2.5) and (2.6), we arrive at∫
χ|ux|2u

r−1
m v

r
m+1 +

∫
χ|vx|2v

r−1
m u

r
m+1

= − m

r +m− 1

∫
χu

r+m−1
m v

r
m+1uxx − m

r +m− 1

∫
χv

r+m−1
m u

r
m+1vxx

− r +m

r +m− 1

∫
χ
(
u

r+m−1
m v

r
m + v

r+m−1
m u

r
m

)
uxvx

− m

r +m− 1

∫
u

r+m−1
m v

r
m+1χxux − m

r +m− 1

∫
v

r+m−1
m u

r
m+1χxvx.

(2.7)

On the other hand, by using the Young inequality and some elementary computations, it holds

2(u
r+m−1

m v
r
m + v

r+m−1
m u

r
m )uxvx ≤ |ux|2(u

r−1
m v

r
m+1 + u

p−1
m ) + |vx|2(v

r−1
m u

r
m+1 + v

p−1
m ).

This together with (2.7) implies that

(
1 +

r +m

2(r +m− 1)

)(∫
χ|ux|2u

r−1
m v

r
m+1 +

∫
χ|vx|2v

r−1
m u

r
m+1

)
+

r +m

2(r +m− 1)

(∫
χ(|ux|2u

p−1
m + |vx|2v

p−1
m

)
≥ − m

r +m− 1

∫
χu

r+m−1
m v

r
m+1uxx − m

(r +m− 1)

∫
χv

r+m−1
m u

r
m+1vxx

− m

r +m− 1

∫
u

r+m−1
m v

r
m+1χxux − m

r +m− 1

∫
v

r+m−1
m u

r
m+1χxvx.
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Consequently,

∫
χ|ux|2u

r−1
m v

r
m+1 +

∫
χ|vx|2v

r−1
m u

r
m+1

+
r +m

3(r +m)− 2

(∫
χ(|ux|2u

p−1
m + |vx|2v

p−1
m

)
≥ − 2m

3(r +m)− 2

(∫
χu

r+m−1
m v

r
m+1uxx +

∫
χv

r+m−1
m u

r
m+1vxx

)
− 2m

3(r +m)− 2

(∫
u

r+m−1
m v

r
m+1χxux +

∫
v

r+m−1
m u

r
m+1χxvx

)
.

(2.8)

We next use an integration by parts to get

∫
χu

p−1
m |ux|2 =

m

p+m− 1

∫
χux

(
u

p−1
m +1

)
x

= − m

p+m− 1

∫
χu

p−1
m +1uxx − m

p+m− 1

∫
u

p−1
m +1χxux

(2.9)

and ∫
χv

p−1
m |vx|2 =

m

p+m− 1

∫
χvx

(
v

p−1
m +1

)
x

= − m

p+m− 1

∫
χv

p−1
m +1vxx − m

p+m− 1

∫
v

p−1
m +1χxvx.

(2.10)

By taking into account (2.4), (2.8), (2.9), (2.10) and the fact that m
p+m−1 < r+m

3(r+m)−2 , we have

−
(
1 +

(
a12a21
a11

+
a12a21
a22

)
r +m

3(r +m)− 2

)
J

≥ r +m

3(m+ r)− 2
a21

∫
χ(a11u

p−1
m +1 + a12u

1+ r−1
m v

r
m+1)(−uxx)

+
r +m

3(m+ r)− 2
a12

∫
χ(a21v

1+ r−1
m u

r
m+1 + a22v

p−1
m +1)(−vxx)

− C

∫ (
χ|(u 1

m )t|u− 1
m |ux|2 + χ|(v 1

m )t|v−
1
m |vx|2

)
− C

∫ (
(u

p−1
m +1 + u

r−1
m +1v

r
m+1)|χxux|+ (v

p−1
m +1 + v

r−1
m +1u

r
m+1)|χxvx|

)
. (2.11)

In (2.11) we use {
−uxx = a11u

p
m + a12u

r
m v

r
m+1 − (u

1
m )t

−vxx = a21v
r
mu

r
m+1 + a22v

p
m − (v

1
m )t
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and an integrating by parts in t to obtain

−J ≥ ε

(
a21

∫
χu1− 1

m (a11u
p
m + a12u

r
m v

r
m+1)2 + a12

∫
χv1−

1
m (a21v

r
mu

r
m+1 + a22v

p
m )2

)
− C

∫ (
χ|(u 1

m )t|u− 1
m |ux|2 + χ|(v 1

m )t|v−
1
m |vx|2

)
− C

∫ (
(u

p−1
m +1 + u

r−1
m +1v

r
m+1)|χxux|+ (v

p−1
m +1 + v

r−1
m +1u

r
m+1)|χxvx|

)
− C

∫
|χt|(u

p
m+1 + v

p
m+1) (2.12)

− C

∫
χ(u1+ r−1

m v
r
m+1(u

1
m )t + v1+

r−1
m u

r
m+1(v

1
m )t).

Here ε > 0 is some small positive constant and is independent of u, v and χ . Applying an integration by parts,
the last term in (2.12) becomes∫

χ(u1+ r−1
m v

r
m+1(u

1
m )t + v1+

r−1
m u

r
m+1(v

1
m )t) = − 1

r + 1

∫
χtu

r
m+1v

r
m+1.

This equality combined with (2.12) and the Young inequality u
r
m+1v

r
m+1 ≤ C(u

p
m+1 + v

p
m+1) yield

−J ≥ εL− C

∫ (
χ|(u 1

m )t|u− 1
m |ux|2 + χ|(v 1

m )t|v−
1
m |vx|2

)
− C

∫ (
(u

p−1
m +1 + u

r−1
m +1v

r
m+1)|χx.ux|+ (v

p−1
m +1 + v

r−1
m +1u

r
m+1)|χxvx|

)
− C

∫
|χt|(u

p
m+1 + v

p
m+1). (2.13)

By plugging (2.13) into (2.3) and choosing k such that k− m−1
2m < 0 , we obtain (2.2). Lemma 2.1 is proved. 2

Lemma 2.2 In addition to (1.7), assume that a12, a21 > 0 . Let (u, v) be a nonnegative weak solution of (2.1)
in (−1, 1)× (−1, 1) . Then, there exists C > 0 independent of u, v such that∫

(− 1
2 ,

1
2 )×(− 1

2 ,
1
2 )

(
u

2p+m−1
m + v

2p+m−1
m

)
dxdt ≤ C. (2.14)

Proof The proof is based on the idea in [1]. We first assume that (u, v) is a positive regular solution of the
system (2.1) in (−1, 1)× (−1, 1) .

Let ξ ∈ C∞
0 ((−1, 1) × (−1, 1)) be a test function such that ξ = 1 in (− 1

2 ,
1
2 ) × (− 1

2 ,
1
2 ) and 0 ≤ ξ ≤ 1 .

Put χ = ξ
2(2p+m−1)

p−m . Then, it is easy to see that

|χx| ≤ Cχ
1
2 ,

|χxx| ≤ Cχ
p+2m−1
2p+m−1 ,

|χt| ≤ Cχ
p+2m−1
2p+m−1 .

1740



DUONG/Turk J Math

We use again the notation
∫

which stands for
∫
(−1,1)×(−1,1)

dxdt for simplicity. From [1, Formula (4.11)], given

any constant η > 0 and any positive function w ∈ C2,1((−1, 1)× (−1, 1)) , we have∫
w1− 1

m |wx|2
(
|χxx|+ χ−1|χx|2 + |χt|

)
≤ η

∫
χ
(
w−1− 1

m |wx|4 + w
2p−1
m +1

)
+ C(η). (2.15)

Here, C(η) is a positive constant depending on η . Using (2.15) and the Young inequality ab ≤ εa2+ 1
4ε , ε > 0 ,

we control the terms corresponding to u on the right hand side of (2.2) as follows∫
χ|(u 1

m )t|u− 1
m |ux|2 ≤ ε

∫
χu−1− 1

m |ux|4 +
1

4ε

∫
χu1− 1

m |(u 1
m )t|2,

∫
|χxux|(u

p−1
m +1 + u

r−1
m +1v

r
m+1) ≤ ε

∫
χu1− 1

m (u
p
m + u

r
m v

r
m+1)2 +

1

4ε

∫
u1− 1

mχ−1|χxux|2

≤ ε

∫
χu1− 1

m (u
p
m + u

r
m v

r
m+1)2 + ε

∫
χ
(
u−1− 1

m |ux|4 + u
2p−1
m +1

)
+ C(ε),

∫
|χxux|u− 1

m |ux|2 ≤ ε

∫
χu−1− 1

m |ux|4 +
1

4ε

∫
u1− 1

mχ−1|χxux|2

≤ ε

∫
χu−1− 1

m |ux|4 + ε

∫
χ
(
u−1− 1

m |ux|4 + u
2p−1
m +1

)
+ C(ε),

∫
u1− 1

m |χxux||(u
1
m )t| ≤

∫
u1− 1

mχ|(u 1
m )t|2 +

1

4

∫
u1− 1

mχ−1|χxux|2

≤
∫

u1− 1
mχ|(u 1

m )t|2 + ε

∫
χ
(
u−1− 1

m |ux|4 + u
2p−1
m +1

)
+ C(ε),∫

u1− 1
m |χxx||ux|2 ≤ ε

∫
χ
(
u−1− 1

m |ux|4 + u
2p−1
m +1

)
+ C(ε),∫

|χt|u
p
m+1 ≤ ε

∫
χu

2p−1
m +1 + C(ε)

∫
χ− p+m

p−1 |χt|
2p+m−1

p−1

≤ ε

∫
χu

2p−1
m +1 + C(ε).

(2.16)

Similarly, we obtain the estimates corresponding to v . Combining these estimates and Lemma 2.1, we arrive at

I + L ≤εC

∫
χu1− 1

m

(
(u

p
m + u

r
m v

r
m+1)2 + (v

p
m + v

r
mu

r
m+1)2 + u−2|ux|4 + v−2|vx|4

)
+ C

(
1 +

1

ε

)∫
χ
(
u1− 1

m |(u 1
m )t|2 + v1−

1
m |(v 1

m )t|2
)
+ C(ε).

This inequality and the assumption that aij > 0 for all i, j = 1, 2 give

I + L ≤εC(I + L) + C

(
1 +

1

ε

)∫
χ
(
u1− 1

m |(u 1
m )t|2 + v1−

1
m |(v 1

m )t|2
)
+ C(ε). (2.17)
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We next have∫
χ
(
a21u

1− 1
m |(u 1

m )t|2 + a12v
1− 1

m |(v 1
m )t|2

)
=

∫
χa21u

1− 1
m (u

1
m )t

(
uxx + a11u

p
m + a12u

r
m v

r
m+1

)
+

∫
χa12v

1− 1
m (v

1
m )t(vxx + a22v

p
m + a21u

r
m+1v

r
m )

=
1

m

∫
χa21ut(uxx + a11u

p
m + a12u

r
m v

r
m+1) +

1

m

∫
χa12vt(vxx + a22v

p
m + a21u

r
m+1v

r
m )

=− 1

2m

∫
χ∂t

(
a21|ux|2 + a12|vx|2

)
+

1

p+m

∫
χ∂t

(
a21a11u

p
m+1 + a12a22v

p
m+1

)
+

a21a12
r +m

∫
χ∂t(u

r
m+1v

r
m+1)− 1

m

∫
(a21utχxux + a12vtχxvx) .

Integrating by parts in t and using again the Young inequality, we arrive at∫
χ
(
a21u

1− 1
m |(u 1

m )t|2 + a12v
1− 1

m |(v 1
m )t|2

)
=

1

2m

∫
χt

(
a21|ux|2 + a12|vx|2

)
− 1

p+m

∫
χt

(
a21a11u

p
m+1 + a12a22v

p
m+1

)
− a12a21

r +m

∫
χtu

r
m+1v

r
m+1 − 1

m

∫
(a21utχxux + a12vtχxvx)

≤C

∫
|χt|

(
|ux|2 + |vx|2 + u

p
m+1 + v

p
m+1

)
+

1

2

∫
χ
(
a21u

1− 1
m (u

1
m )2t + a12v

1− 1
m (v

1
m )2t

)
+ C

∫
χ−1|χx|2(u1− 1

m |ux|2 + v1−
1
m |vx|2).

Consequently, this estimate yields∫
χ
(
a21u

1− 1
m (u

1
m )2t + a12v

1− 1
m (v

1
m )2t

)
≤ C

∫
|χt|

(
|ux|2 + |vx|2 + u

p
m+1 + v

p
m+1

)
+ C

∫
χ−1|χx|2(u1− 1

m |ux|2 + v1−
1
m |vx|2). (2.18)

Using a12, a21 > 0 , for any η > 0 , we deduce from (2.15), (2.16), (2.18) and the Young inequality that∫
χ
(
a21u

1− 1
m (u

1
m )2t + a12v

1− 1
m (v

1
m )2t

)
≤ Cη(I + L) + C(η). (2.19)

Therefore, it follows from (2.17) and (2.19) that

I + L ≤ Cε(I + L) + C(ε) + C
(
1 +

1

ε

)(
Cη(I + L) + C(η)

)
.

By taking η = ε2 and choosing ε sufficiently small, we obtain I + L ≤ C and this ends proof of Lemma for
positive regular solutions.
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We now consider the case where (u, v) is a nonnegative weak solutions of the system in (−1, 1)× (−1, 1) .
By using the similar argument as in [33, Proposition 2.4], there is a sequence (uk, vk)k of positive regular
solutions of the system in (−1, 1) × (−1, 1) such that (uk, vk) → (u, v) locally uniformly in (−1, 1) × (−1, 1) .
By combining the above argument and the Fatou lemma, we get∫

(− 1
2 ,

1
2 )×(− 1

2 ,
1
2 )

(u
2p+m−1

m + v
2p+m−1

m )dxdt ≤ lim
k→+∞

inf

∫
(− 1

2 ,
1
2 )×(− 1

2 ,
1
2 )

(u
2p+m−1

m

k + v
2p+m−1

m

k )dxdt ≤ C.

Lemma 2.2 is proved. 2

With the above preparation at hand, we are now in position to prove Theorem 1.1.
Proof of Theorem 1.1. Theorem 1.1 is followed from Theorem A if a12 = 0 or a21 = 0 since the system is
reduced to scalar equation. We then assume that a12 > 0 , a21 > 0 . Suppose that (u, v) is a nonnegative weak
solution of (2.1) in R× R . We are going to prove that u ≡ v ≡ 0 .

For any R > 0 , by the scaling invariance of the system (2.1), we rescale

uR(x, t) = R
2m

p−mu
(
Rx,R

2(p−1)
p−m t

)
, vR(x, t) = R

2m
p−m v

(
Rx,R

2(p−1)
p−m t

)
.

Then, it is not difficult to check that (uR, vR) is also a nonnegative weak solution to (2.1). By Lemma 2.2, we
have ∫

|y|< 1
2R

∫
|s|< 1

2R
2(p−1)
p−m

(
u

2p+m−1
m + v

2p+m−1
m

)
(y, s)dyds

= R1+
2(p−1)
p−m − 2(2p+m−1)

p−m

∫
|x|< 1

2

∫
|t|< 1

2

(
u

2p+m−1
m

R + v
2p+m−1

m

R

)
(x, t)dxdt

≤ CR1+
2(p−1)
p−m − 2(2p+m−1)

p−m = CR− p+3m
p−m .

Letting R → ∞ and noting that the exponent on the right hand side is negative, we deduce that u ≡ v ≡ 0 .
The proof is complete.
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