Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2023) 47: 1746 - 1760
© TÜBİTAK
doi:10.55730/1300-0098.3460

On the monoid of partial isometries of a cycle graph

Vítor Hugo FERNANDES* ${ }^{(1)}$, Tânia PAULISTA©
Center for Mathematics and Applications (NovaMath) and Department of Mathematics, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal

| Received: 21.05 .2023 | • Accepted/Published Online: 19.07 .2023 | Final Version: 25.09 .2023 |
| :--- | :--- | :--- | :--- |

Abstract

In this paper we consider the monoid $\mathcal{D P}_{\mathcal{P}}^{n}$ of all partial isometries of an n-cycle graph C_{n}. We show that $\mathcal{D P} \mathcal{C}_{n}$ is the submonoid of the monoid of all oriented partial permutations on an n-chain whose elements are precisely all restrictions of a dihedral group of order $2 n$. Our main aim is to exhibit a presentation of $\mathcal{D P C} \mathcal{C}_{n}$. We also describe Green's relations of $\mathcal{D P} \mathcal{C}_{n}$ and calculate its cardinality and rank.

Key words: Transformations, orientation, partial isometries, cycle graphs, rank, presentations

1. Introduction

Let Ω be a finite set. As usual, let us denote by $\mathcal{P} \mathcal{T}(\Omega)$ the monoid (under composition) of all partial transformations on Ω, by $\mathcal{T}(\Omega)$ the submonoid of $\mathcal{P} \mathcal{T}(\Omega)$ of all full transformations on Ω, by $\mathcal{I}(\Omega)$ the symmetric inverse monoid on Ω, i.e. the inverse submonoid of $\mathcal{P} \mathcal{T}(\Omega)$ of all partial permutations on Ω, and by $\mathcal{S}(\Omega)$ the symmetric group on Ω, i.e. the subgroup of $\mathcal{P} \mathcal{T}(\Omega)$ of all permutations on Ω.

Recall that the rank of a (finite) monoid M is the minimum size of all (finite) generating sets of M, i.e. the minimum of the set $\{|X|: X \subseteq M$ and X generates $M\}$.

Let Ω be a finite set with at least 3 elements. It is well-known that $\mathcal{S}(\Omega)$ has rank 2 (as a semigroup, a monoid, or a group) and $\mathcal{T}(\Omega), \mathcal{I}(\Omega)$, and $\mathcal{P} \mathcal{T}(\Omega)$ have ranks 3,3 , and 4 , respectively. The survey [13] presents these results and similar ones for other classes of transformation monoids, in particular, for monoids of order-preserving transformations and for some of their extensions. For example, the rank of the extensively studied monoid of all order-preserving transformations of an n-chain is n, which was proved by Gomes and Howie [23] in 1992. More recently, for instance, the papers [5, 16, 17, 19, 21] are dedicated to the computation of the ranks of certain classes of transformation semigroups or monoids.

A monoid presentation is an ordered pair $\langle A \mid R\rangle$, where A is a set, often called an alphabet, and $R \subseteq A^{*} \times A^{*}$ is a set of relations of the free monoid A^{*} generated by A. A monoid M is said to be defined by a presentation $\langle A \mid R\rangle$ if M is isomorphic to A^{*} / ρ_{R}, where ρ_{R} denotes the smallest congruence on A^{*} containing R.

Given a finite monoid, it is clear that we can always exhibit a presentation for it, at worst by enumerating all elements from its multiplication table, but clearly this is of no interest, in general. So, by determining a

[^0]presentation for a finite monoid, we mean to find in some sense a nice presentation (e.g., with a small number of generators and relations).

A presentation for the symmetric group $\mathcal{S}(\Omega)$ was determined by Moore [29] over a century ago (1897). For the full transformation monoid $\mathcal{T}(\Omega)$, a presentation was given in 1958 by Aizenštat [1] in terms of a certain type of two-generator presentation for the symmetric group $\mathcal{S}(\Omega)$, plus an extra generator and seven more relations. Presentations for the partial transformation monoid $\mathcal{P} \mathcal{T}(\Omega)$ and for the symmetric inverse monoid $\mathcal{I}(\Omega)$ were found by Popova [31] in 1961. In 1962, Aı̌zenštat [2] and Popova [32] exhibited presentations for the monoids of all order-preserving transformations and of all order-preserving partial transformations of a finite chain, respectively, and from the Sixties to the present day, several authors obtained presentations for many classes of monoids. See also [33], the survey [13], and, for example, [8-12, 14, 20, 25].

Now, let $G=(V, E)$ be a finite simple connected graph, where V is the set of vertices and E is the list of edges. The (geodesic) distance between two vertices x and y of G, denoted by $\mathrm{d}_{G}(x, y)$, is the length of a shortest path between x and y, i.e. the number of edges in a shortest path between x and y.

Let $\alpha \in \mathcal{P} \mathcal{T}(V)$. We say that α is a partial isometry or distance preserving partial transformation of G if

$$
\mathrm{d}_{G}(x \alpha, y \alpha)=\mathrm{d}_{G}(x, y)
$$

for all $x, y \in \operatorname{Dom}(\alpha)$. Denote by $\mathcal{D P}(G)$ the subset of $\mathcal{P} \mathcal{T}(V)$ of all partial isometries of G. Clearly, $\mathcal{D} \mathcal{P}(G)$ is a submonoid of $\mathcal{P} \mathcal{T}(V)$. Moreover, as a consequence of the property

$$
\mathrm{d}_{G}(x, y)=0 \quad \text { if and only if } \quad x=y
$$

for all $x, y \in V$, it immediately follows that $\mathcal{D P}(G) \subseteq \mathcal{I}(V)$. Furthermore, $\mathcal{D} \mathcal{P}(G)$ is an inverse submonoid of $\mathcal{I}(V)$ (see [18]).

Observe that if $G=(V, E)$ is a complete graph, i.e. $E=\{\{x, y\}: x, y \in V, x \neq y\}$, then $\mathcal{D} \mathcal{P}(G)=\mathcal{I}(V)$.
On the other hand, for $n \geqslant 2$, consider the undirected path graph P_{n} with n vertices, i.e.

$$
P_{n}=(\{1, \ldots, n\},\{\{i, i+1\}: i=1, \ldots, n-1\}) .
$$

Then, obviously, $\mathcal{D} \mathcal{P}\left(P_{n}\right)$ coincides with the monoid

$$
\mathcal{D} \mathcal{P}_{n}=\{\alpha \in \mathcal{I}(\{1,2, \ldots, n\}):|i \alpha-j \alpha|=|i-j| \text { for all } i, j \in \operatorname{Dom}(\alpha)\}
$$

of all partial isometries on $\{1,2, \ldots, n\}$.
The study of partial isometries on $\{1,2, \ldots, n\}$ was initiated by Al-Kharousi et al. in [3, 4]. The first of these two papers is dedicated to investigating some combinatorial properties of the monoid $\mathcal{D} \mathcal{P}_{n}$ and of its submonoid $\mathcal{O D} \mathcal{P}_{n}$ of all order-preserving (considering the usual order of \mathbb{N}) partial isometries, in particular, their cardinalities. The second paper presents the study of some of their algebraic properties, namely Green's structure and ranks. Presentations for both the monoids $\mathcal{D} \mathcal{P}_{n}$ and $\mathcal{O D} \mathcal{P}{ }_{n}$ were given by the first author and Quinteiro in [20]. Moreover, for $2 \leqslant r \leqslant n-1$, Bugay et al. in [6] obtained the ranks of the subsemigroups $\mathcal{D} \mathcal{P}_{n, r}=\left\{\alpha \in \mathcal{D} \mathcal{P}_{n}:|\operatorname{Im}(\alpha)| \leqslant r\right\}$ of $\mathcal{D P}{ }_{n}$ and $\mathcal{O D} \mathcal{P}_{n, r}=\left\{\alpha \in \mathcal{O} \mathcal{D} \mathcal{P}_{n}:|\operatorname{Im}(\alpha)| \leqslant r\right\}$ of $\mathcal{O D} \mathcal{P}_{n}$.

The monoid $\mathcal{D P} \mathcal{S}_{n}$ of all partial isometries of a star graph with n vertices ($n \geqslant 1$) was considered by the authors in [18]. They determined the rank and size of $\mathcal{D} \mathcal{P} \mathcal{S}_{n}$ and described its Green's relations. A presentation for $\mathcal{D P} \mathcal{S}_{n}$ was also exhibited in [18].

Now, for $n \geqslant 3$, consider the cycle graph

$$
C_{n}=(\{1,2, \ldots, n\},\{\{i, i+1\}: i=1,2, \ldots, n-1\} \cup\{\{1, n\}\})
$$

with n vertices. Notice that cycle graphs and cycle subgraphs play a fundamental role in Graph Theory.
This paper is devoted to studying the monoid $\mathcal{D} \mathcal{P}\left(C_{n}\right)$ of all partial isometries of C_{n}, which from now on we denote simply by $\mathcal{D} \mathcal{P} \mathcal{C}_{n}$. Observe that $\mathcal{D P} \mathcal{C}_{n}$ is an inverse submonoid of the symmetric inverse monoid \mathcal{I}_{n}.

In Section 2, we start by giving a key characterization of $\mathcal{D P} \mathcal{C}_{n}$, which allows for significantly simpler proofs of various results presented later. Also in this section, a description of the Green's relations of $\mathcal{D P} \mathcal{C}_{n}$ is given and the rank and the cardinality of $\mathcal{D} \mathcal{P} \mathcal{C}_{n}$ are calculated. Finally, in Section 3, we determine a presentation for the monoid $\mathcal{D P} \mathcal{C}_{n}$ on $n+2$ generators, from which we deduce another presentation for $\mathcal{D P} \mathcal{C}_{n}$ on 3 generators.

For general background and standard notations, we refer to Howie's book [24] for Semigroup Theory, and [34] for Graph Theory.

We would like to point out that we made use of computational tools, namely GAP* $[22]$.

2. Some properties of $\mathcal{D P} \mathcal{C}_{n}$

We begin this section by introducing some concepts and notations.
For $n \in \mathbb{N}$, let Ω_{n} be a set with n elements. In general, without loss of generality, Ω_{n} is considered the chain $\Omega_{n}=\{1<2<\cdots<n\}$ and $\mathcal{P} \mathcal{T}\left(\Omega_{n}\right), \mathcal{I}\left(\Omega_{n}\right)$ and $\mathcal{S}\left(\Omega_{n}\right)$ are denoted simply by $\mathcal{P} \mathcal{T}_{n}$, \mathcal{I}_{n} and \mathcal{S}_{n}, respectively. For any $\alpha \in \mathcal{P} \mathcal{T}_{n}$, the domain and the image sets of α are denoted by $\operatorname{Dom}(\alpha)$ and $\operatorname{Im}(\alpha)$, respectively. Also, the cardinality of the set $\operatorname{Im}(\alpha)$ is called the rank of α.

A partial transformation $\alpha \in \mathcal{P} \mathcal{T}_{n}$ is called order-preserving [order-reversing] if $x \leqslant y$ implies $x \alpha \leqslant y \alpha$ $[x \alpha \geqslant y \alpha]$, for all $x, y \in \operatorname{Dom}(\alpha)$. It is clear that the product of two order-preserving or of two order-reversing transformations is order-preserving and the product of an order-preserving transformation by an order-reversing transformation, or vice-versa, is order-reversing. We denote by $\mathcal{P O} \mathcal{D}_{n}$ the submonoid of $\mathcal{P} \mathcal{T}_{n}$ whose elements are all order-preserving or order-reversing transformations.

Let $s=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ be a sequence of $t(t \geqslant 0)$ elements from the chain Ω_{n}. We say that s is cyclic [anticyclic] if there exists no more than one index $i \in\{1, \ldots, t\}$ such that $a_{i}>a_{i+1}\left[a_{i}<a_{i+1}\right.$], where a_{t+1} denotes a_{1}. Notice that, the sequence s is cyclic [anticyclic] if and only if s is empty or there exists $i \in\{0,1, \ldots, t-1\}$ such that $a_{i+1} \leqslant a_{i+2} \leqslant \cdots \leqslant a_{t} \leqslant a_{1} \leqslant \cdots \leqslant a_{i}\left[a_{i+1} \geqslant a_{i+2} \geqslant \cdots \geqslant a_{t} \geqslant a_{1} \geqslant \cdots \geqslant a_{i}\right]$ (the index $i \in\{0,1, \ldots, t-1\}$ is unique unless s is constant and $t \geqslant 2$). We also say that s is oriented if s is cyclic or s is anticyclic (see, for example, [7, 26, 28]). Given a partial transformation $\alpha \in \mathcal{P} \mathcal{T}_{n}$ such that $\operatorname{Dom}(\alpha)=\left\{a_{1}<\cdots<a_{t}\right\}$ with $t \geqslant 0$, we say that α is orientation-preserving [orientation-reversing, oriented] if the sequence of its images $\left(a_{1} \alpha, \ldots, a_{t} \alpha\right)$ is cyclic [anticyclic, oriented]. It is easy to show that the product of two orientation-preserving or of two orientation-reversing transformations is orientation-preserving and the product of an orientation-preserving transformation by an orientation-reversing transformation, or vice-versa, is orientation-reversing. We denote by $\mathcal{P O} \mathcal{R}_{n}$ the submonoid of $\mathcal{P} \mathcal{T}_{n}$ of all oriented transformations.

Notice that $\mathcal{P O} \mathcal{D}_{n} \cap \mathcal{I}_{n}$ and $\mathcal{P} \mathcal{O} \mathcal{R}_{n} \cap \mathcal{I}_{n}$ are inverse submonoids of \mathcal{I}_{n}.

[^1]Let us consider the following permutations of $\Omega_{n}($ for $n \geqslant 2)$ of order n and 2 , respectively:

$$
g=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
2 & 3 & \cdots & n & 1
\end{array}\right) \quad \text { and } \quad h=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
n & n-1 & \cdots & 2 & 1
\end{array}\right)
$$

It is clear that $g, h \in \mathcal{P} \mathcal{O} \mathcal{R}_{n} \cap \mathcal{I}_{n}$. Moreover, for $n \geqslant 3, g$ together with h generate the well-known dihedral group $\mathcal{D}_{2 n}$ of order $2 n$ (considered a subgroup of \mathcal{S}_{n}). In fact, for $n \geqslant 3$,

$$
\mathcal{D}_{2 n}=\left\langle g, h \mid g^{n}=1, h^{2}=1, h g=g^{n-1} h\right\rangle=\left\{1, g, g^{2}, \ldots, g^{n-1}, h, h g, h g^{2}, \ldots, h g^{n-1}\right\}
$$

and we have

$$
g^{k}=\left(\begin{array}{ccccccc}
1 & 2 & \cdots & n-k & n-k+1 & \cdots & n \\
1+k & 2+k & \cdots & n & 1 & \cdots & k
\end{array}\right), \quad \text { i.e. } \quad i g^{k}=\left\{\begin{array}{cc}
i+k & 1 \leqslant i \leqslant n-k \\
i+k-n & n-k+1 \leqslant i \leqslant n
\end{array}\right.
$$

and

$$
h g^{k}=\left(\begin{array}{cccccc}
1 & \cdots & k & k+1 & \cdots & n \\
k & \cdots & 1 & n & \cdots & k+1
\end{array}\right), \quad \text { i.e. } \quad i h g^{k}=\left\{\begin{array}{lc}
k-i+1 & 1 \leqslant i \leqslant k \\
n+k-i+1 & k+1 \leqslant i \leqslant n
\end{array}\right.
$$

for $0 \leqslant k \leqslant n-1$. Observe that, for $n \in\{1,2\}$, the dihedral group $\mathcal{D}_{2 n}=\left\langle g, h \mid g^{n}=1, h^{2}=1, h g=g^{n-1} h\right\rangle$ of order $2 n$ (also known as the Klein four-group for $n=2$) cannot be considered a subgroup of \mathcal{S}_{n}. Denote also by \mathcal{C}_{n} the cyclic group of order n generated by g, i.e. $\mathcal{C}_{n}=\left\{1, g, g^{2}, \ldots, g^{n-1}\right\}$.

Until the end of this paper, we will consider $n \geqslant 3$. Moreover, for convenience, we will denote $\alpha \in \mathcal{P} \mathcal{T}_{n}$ with $\operatorname{Dom}(\alpha)=\left\{i_{1}, \ldots, i_{k}\right\} \quad(k \geqslant 1)$ by $\alpha=\left(\begin{array}{ccc}i_{1} & \cdots & i_{k} \\ i_{1} \alpha & \cdots & i_{k} \alpha\end{array}\right)$.

Now, notice that,

$$
\mathrm{d}_{C_{n}}(x, y)=\min \{|x-y|, n-|x-y|\}= \begin{cases}|x-y| & \text { if }|x-y| \leqslant \frac{n}{2} \\ n-|x-y| & \text { if }|x-y|>\frac{n}{2}\end{cases}
$$

and so $0 \leqslant \mathrm{~d}_{C_{n}}(x, y) \leqslant \frac{n}{2}$ for all $x, y \in\{1,2, \ldots, n\}$.
From now on, for any two vertices x and y of C_{n}, we denote the distance $\mathrm{d}_{C_{n}}(x, y)$ simply by $\mathrm{d}(x, y)$. Observe for $x, y \in \Omega_{n}$ that

$$
\mathrm{d}(x, y)=\frac{n}{2} \quad \Leftrightarrow \quad|x-y|=\frac{n}{2} \quad \Leftrightarrow \quad n-|x-y|=\frac{n}{2} \quad \Leftrightarrow \quad|x-y|=n-|x-y|
$$

in which case n is even, and

$$
|\{z \in\{1,2, \ldots, n\}: \mathrm{d}(x, z)=d\}|= \begin{cases}1 & \text { if } d=\frac{n}{2} \tag{2.1}\\ 2 & \text { if } d<\frac{n}{2}\end{cases}
$$

for all $1 \leqslant d \leqslant \frac{n}{2}$. Moreover, it is a routine matter to show that

$$
D=\{z \in\{1,2, \ldots, n\}: \mathrm{d}(x, z)=d\}=\left\{z \in\{1,2, \ldots, n\}: \mathrm{d}(y, z)=d^{\prime}\right\}
$$

implies

$$
\mathrm{d}(x, y)= \begin{cases}0(\text { i.e. } x=y) & \text { if }|D|=1 \tag{2.2}\\ \frac{n}{2} & \text { if }|D|=2\end{cases}
$$

for all $1 \leqslant d, d^{\prime} \leqslant \frac{n}{2}$.
Recall that $\mathcal{D} \mathcal{P}_{n}$ is an inverse submonoid of $\mathcal{P O} \mathcal{D}_{n} \cap \mathcal{I}_{n}$. This is an easy fact to prove and was observed by Al-Kharousi et al. in [3, 4]. A similar result is also valid for $\mathcal{D} \mathcal{P} \mathcal{C}_{n}$ and $\mathcal{P} \mathcal{O} \mathcal{R}_{n} \cap \mathcal{I}_{n}$, as we will deduce below.

First, notice that it is easy to show that both permutations g and h of Ω_{n} belong to $\mathcal{D} \mathcal{P} \mathcal{C}_{n}$ and so the dihedral group $\mathcal{D}_{2 n}$ is contained in $\mathcal{D} \mathcal{P} \mathcal{C}_{n}$. Furthermore, as we prove next, the elements of $\mathcal{D} \mathcal{P} \mathcal{C}_{n}$ are precisely the restrictions of the permutations of the dihedral group $\mathcal{D}_{2 n}$. This is a key characterization of $\mathcal{D P} \mathcal{C}_{n}$ that will allow us to prove in a simpler way some of the results that we present later in this paper. Observe that

$$
\alpha=\left.\sigma\right|_{\operatorname{Dom}(\alpha)} \quad \Leftrightarrow \quad \alpha=\operatorname{id}_{\operatorname{Dom}(\alpha)} \sigma \quad \Leftrightarrow \quad \alpha=\sigma \operatorname{id}_{\operatorname{Im}(\alpha)},
$$

for any $\alpha \in \mathcal{P} \mathcal{T}_{n}$ and $\sigma \in \mathcal{I}_{n}$, where $\left.\sigma\right|_{\operatorname{Dom}(\alpha)}$ denotes the restriction mapping of σ to $\operatorname{Dom}(\alpha)$ and id_{U}, with $U \subseteq \Omega_{n}$, denotes the restriction map of the identity mapping id of Ω_{n} to U.

Lemma 2.1 For any $\alpha \in \mathcal{P} \mathcal{T}_{n}, \alpha \in \mathcal{D P} \mathcal{C}_{n}$ if and only if there exists $\sigma \in \mathcal{D}_{2 n}$ such that $\alpha=\left.\sigma\right|_{\operatorname{Dom}(\alpha)}$. Furthermore, for $\alpha \in \mathcal{D} \mathcal{P C}_{n}$:

1. if either $|\operatorname{Dom}(\alpha)|=1$ or $|\operatorname{Dom}(\alpha)|=2$ and $\mathrm{d}(\min \operatorname{Dom}(\alpha), \max \operatorname{Dom}(\alpha))=\frac{n}{2}$ (in which case n is even), then there exist exactly two (distinct) permutations $\sigma, \sigma^{\prime} \in \mathcal{D}_{2 n}$ such that $\alpha=\left.\sigma\right|_{\operatorname{Dom}(\alpha)}=\left.\sigma^{\prime}\right|_{\operatorname{Dom}(\alpha)}$;
2. if either $|\operatorname{Dom}(\alpha)|=2$ and $\mathrm{d}(\min \operatorname{Dom}(\alpha)$, max $\operatorname{Dom}(\alpha)) \neq \frac{n}{2}$ or $|\operatorname{Dom}(\alpha)| \geqslant 3$, then there exists exactly one permutation $\sigma \in \mathcal{D}_{2 n}$ such that $\alpha=\left.\sigma\right|_{\operatorname{Dom}(\alpha)}$.

Proof For any $\alpha \in \mathcal{P} \mathcal{T}_{n}$, if $\alpha=\left.\sigma\right|_{\operatorname{Dom}(\alpha)}$, for some $\sigma \in \mathcal{D}_{2 n}$, then $\alpha \in \mathcal{D} \mathcal{P} \mathcal{C}_{n}$ since $\mathcal{D}_{2 n} \subseteq \mathcal{D P \mathcal { C }}{ }_{n}$ and, clearly, any restriction of an element of $\mathcal{D P} \mathcal{C}_{n}$ also belongs to $\mathcal{D P} \mathcal{C}_{n}$.

Conversely, let us suppose that $\alpha \in \mathcal{D} \mathcal{P} \mathcal{C}_{n}$. First, observe that, for each pair $1 \leqslant i, j \leqslant n$, there exists a unique $k \in\{0,1, \ldots, n-1\}$ such that $i g^{k}=j$ and there exists a unique $\ell \in\{0,1, \ldots, n-1\}$ such that $i h g^{\ell}=j$, where g and h are the permutations defined above. In fact, for $1 \leqslant i, j \leqslant n$ and $k, \ell \in\{0,1, \ldots, n-1\}$, it is easy to show that

1. if $i \leqslant j$ then $i g^{k}=j$ if and only if $k=j-i$;
2. if $i>j$ then $i g^{k}=j$ if and only if $k=n+j-i$;
3. if $i+j \leqslant n$ then $i h g^{\ell}=j$ if and only if $\ell=i+j-1$;
4. if $i+j>n$ then $i h g^{\ell}=j$ if and only if $\ell=i+j-1-n$.

Therefore, we may conclude immediately that:

1. any nonempty transformation of $\mathcal{D} \mathcal{P} \mathcal{C}_{n}$ has at most two distinct extensions in $\mathcal{D}_{2 n}$ and, if there are two distinct, one must be an orientation-preserving transformation and the other an orientation-reversing transformation;
2. any transformation of $\mathcal{D} \mathcal{P} \mathcal{C}_{n}$ with rank 1 has two distinct extensions in $\mathcal{D}_{2 n}$ (one is an orientationpreserving transformation and the other is an orientation-reversing transformation).

Notice that, as $g^{n}=g^{-n}=1$, we also have $i g^{j-i}=j$ and $i h g^{i+j-1}=j$, for all $1 \leqslant i, j \leqslant n$.
Next, suppose that $\operatorname{Dom}(\alpha)=\left\{i_{1}<i_{2}\right\}$. Then, there exist $\sigma \in \mathcal{C}_{n}$ and $\xi \in \mathcal{D}_{2 n} \backslash \mathcal{C}_{n}$ (both unique) such that $i_{1} \sigma=i_{1} \alpha=i_{1} \xi$. Take $D=\left\{z \in\{1,2, \ldots, n\}: \mathrm{d}\left(i_{1} \alpha, z\right)=\mathrm{d}\left(i_{1}, i_{2}\right)\right\}$. Then $1 \leqslant|D| \leqslant 2$ and $i_{2} \alpha, i_{2} \sigma, i_{2} \xi \in D$.

Suppose that $i_{2} \sigma=i_{2} \xi$ and let $j_{1}=i_{1} \sigma$ and $j_{2}=i_{2} \sigma$. Then $\sigma=g^{j_{1}-i_{1}}=g^{j_{2}-i_{2}}$ and $\xi=h g^{i_{1}+j_{1}-1}=$ $h g^{i_{2}+j_{2}-1}$. Hence, we have $j_{1}-i_{1}=j_{2}-i_{2}$ or $j_{1}-i_{1}=j_{2}-i_{2} \pm n$ from the first equality, and $i_{1}+j_{1}=i_{2}+j_{2}$ or $i_{1}+j_{1}=i_{2}+j_{2} \pm n$ from the second. Since $i_{1} \neq i_{2}$ and $i_{2}-i_{1} \neq n$, it is a routine matter to conclude that the only possibility is to have $i_{2}-i_{1}=\frac{n}{2}$ (in which case n is even). Thus, $\mathrm{d}\left(i_{1}, i_{2}\right)=\frac{n}{2}$. By (2.1), it follows that $|D|=1$ and so $i_{2} \alpha=i_{2} \sigma=i_{2} \xi$, i.e. α is extended by both σ and ξ.

If $i_{2} \sigma \neq i_{2} \xi$, then $|D|=2$ (whence $\left.\mathrm{d}\left(i_{1}, i_{2}\right)<\frac{n}{2}\right)$, and so either $i_{2} \alpha=i_{2} \sigma$ or $i_{2} \alpha=i_{2} \xi$. In this case, α is extended by exactly one permutation of $\mathcal{D}_{2 n}$.

Now, suppose that $\operatorname{Dom}(\alpha)=\left\{i_{1}<i_{2}<\cdots<i_{k}\right\}$ for some $3 \leqslant k \leqslant n-1$. Since $\sum_{p=1}^{k-1}\left(i_{p+1}-i_{p}\right)=$ $i_{k}-i_{1}<n$, then there exists at most one index $1 \leqslant p \leqslant k-1$ such that $i_{p+1}-i_{p} \geqslant \frac{n}{2}$. Therefore, we may take $i, j \in \operatorname{Dom}(\alpha)$ such that $i \neq j$ and $\mathrm{d}(i, j) \neq \frac{n}{2}$ and so, as $\left.\alpha\right|_{\{i, j\}} \in \mathcal{D} \mathcal{P} \mathcal{C}_{n}$, by the above deductions, there exists a unique $\sigma \in \mathcal{D}_{2 n}$ such that $\left.\sigma\right|_{\{i, j\}}=\left.\alpha\right|_{\{i, j\}}$. Let $\ell \in \operatorname{Dom}(\alpha) \backslash\{i, j\}$. Then

$$
\ell \alpha, \ell \sigma \in\{z \in\{1,2, \ldots, n\}: \mathrm{d}(i \alpha, z)=\mathrm{d}(i, \ell)\} \cap\{z \in\{1,2, \ldots, n\}: \mathrm{d}(j \alpha, z)=\mathrm{d}(j, \ell)\}
$$

In order to obtain a contradiction, suppose that $\ell \alpha \neq \ell \sigma$. Therefore, by (2.1), we have

$$
\{z \in\{1,2, \ldots, n\}: \mathrm{d}(i \alpha, z)=\mathrm{d}(i, \ell)\}=\{\ell \alpha, \ell \sigma\}=\{z \in\{1,2, \ldots, n\}: \mathrm{d}(j \alpha, z)=\mathrm{d}(j, \ell)\}
$$

and so, by $(2.2), \mathrm{d}(i, j)=\mathrm{d}(i \alpha, j \alpha)=\frac{n}{2}$, which is a contradiction. Hence, $\ell \alpha=\ell \sigma$. Thus, σ is the unique permutation of $\mathcal{D}_{2 n}$ such that $\alpha=\left.\sigma\right|_{\operatorname{Dom}(\alpha)}$, as required.

Bearing in mind the previous lemma, it seems appropriate to designate $\mathcal{D} \mathcal{P} \mathcal{C}_{n}$ by dihedral inverse monoid on Ω_{n}.

Since $\mathcal{D}_{2 n} \subseteq \mathcal{P} \mathcal{O} \mathcal{R}_{n} \cap \mathcal{I}_{n}$, which contains all the restrictions of its elements, we have immediately the following corollary.

Corollary 2.2 The monoid $\mathcal{D P C}_{n}$ is contained in $\mathcal{P O} \mathcal{R}_{n} \cap \mathcal{I}_{n}$.
Observe that, as $\mathcal{D}_{2 n}$ is the group of units of $\mathcal{P} \mathcal{O} \mathcal{R}_{n} \cap \mathcal{I}_{n}$ (see [14, 15]), then $\mathcal{D}_{2 n}$ also has to be the group of units of $\mathcal{D P C} \mathcal{C}_{n}$.

Next, recall that, given an inverse submonoid M of \mathcal{I}_{n}, it is well known that the Green's relations \mathscr{L}, \mathscr{R}, and \mathscr{H} of M can be described as follows: for $\alpha, \beta \in M$,

- $\alpha \mathscr{L} \beta$ if and only if $\operatorname{Im}(\alpha)=\operatorname{Im}(\beta)$;
- $\alpha \mathscr{R} \beta$ if and only if $\operatorname{Dom}(\alpha)=\operatorname{Dom}(\beta)$;
- $\alpha \mathscr{H} \beta$ if and only if $\operatorname{Im}(\alpha)=\operatorname{Im}(\beta)$ and $\operatorname{Dom}(\alpha)=\operatorname{Dom}(\beta)$.

In \mathcal{I}_{n}, we also have

- $\alpha \mathscr{J} \beta$ if and only if $|\operatorname{Dom}(\alpha)|=|\operatorname{Dom}(\beta)|$ (if and only if $|\operatorname{Im}(\alpha)|=|\operatorname{Im}(\beta)|$).

Since $\mathcal{D P C} \mathcal{C}_{n}$ is an inverse submonoid of \mathcal{I}_{n}, it remains to describe its Green's relation \mathscr{J}. In fact, it is a routine matter to prove the following proposition.

Proposition 2.3 Let $\alpha, \beta \in \mathcal{D P C}_{n}$. Then $\alpha \mathscr{J} \beta$ if and only if one of the following properties is satisfied:

1. $|\operatorname{Dom}(\alpha)|=|\operatorname{Dom}(\beta)| \leqslant 1$;
2. $|\operatorname{Dom}(\alpha)|=|\operatorname{Dom}(\beta)|=2$ and $\mathrm{d}\left(i_{1}, i_{2}\right)=\mathrm{d}\left(i_{1}^{\prime}, i_{2}^{\prime}\right)$ where $\operatorname{Dom}(\alpha)=\left\{i_{1}, i_{2}\right\}$ and $\operatorname{Dom}(\beta)=\left\{i_{1}^{\prime}, i_{2}^{\prime}\right\}$;
3. $|\operatorname{Dom}(\alpha)|=|\operatorname{Dom}(\beta)|=k \geqslant 3$ and there exists $\sigma \in \mathcal{D}_{2 k}$ such that $\left(\begin{array}{cccc}i_{1}^{\prime} & i_{2}^{\prime} & \cdots & i_{k}^{\prime} \\ i_{1 \sigma} & i_{2 \sigma} & \cdots & i_{k \sigma}\end{array}\right) \in \mathcal{D P C}_{n}$ where $\operatorname{Dom}(\alpha)=\left\{i_{1}<i_{2}<\cdots<i_{k}\right\}$ and $\operatorname{Dom}(\beta)=\left\{i_{1}^{\prime}<i_{2}^{\prime}<\cdots<i_{k}^{\prime}\right\}$.

An alternative description of \mathscr{J} can be found in the second author's MSc thesis [30].
Next, we count the number of elements of $\mathcal{D P C}_{n}$.
Theorem 2.4 One has $\left|\mathcal{D P} \mathcal{C}_{n}\right|=n 2^{n+1}-\frac{(-1)^{n}+5}{4} n^{2}-2 n+1$.
Proof Let $\mathcal{A}_{i}=\left\{\alpha \in \mathcal{D P} \mathcal{C}_{n}:|\operatorname{Dom}(\alpha)|=i\right\}$ for $i=0,1, \ldots, n$. Since the sets $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ are pairwise disjoints, we get $\left|\mathcal{D P C}_{n}\right|=\sum_{i=0}^{n}\left|\mathcal{A}_{i}\right|$.

Clearly, $\mathcal{A}_{0}=\{\emptyset\}$, where \emptyset denotes the empty mapping on Ω_{n}, and $\left.\mathcal{A}_{1}=\left\{\begin{array}{l}i \\ j\end{array}\right): 1 \leqslant i, j \leqslant n\right\}$, whence $\left|\mathcal{A}_{0}\right|=1$ and $\left|\mathcal{A}_{1}\right|=n^{2}$. Moreover, for $i \geqslant 3$, by Lemma 2.1, we have as many elements in \mathcal{A}_{i} as there are restrictions of rank i of permutations of $\mathcal{D}_{2 n}$, i.e. we have $\binom{n}{i}$ distinct elements of \mathcal{A}_{i} for each permutation of $\mathcal{D}_{2 n}$, whence $\left|\mathcal{A}_{i}\right|=2 n\binom{n}{i}$. Similarly, for an odd n, by Lemma 2.1, we have $\left|\mathcal{A}_{2}\right|=2 n\binom{n}{2}$. On the other hand, if n is even, also by Lemma 2.1, we have as many elements in \mathcal{A}_{2} as there are restrictions of rank 2 of permutations of $\mathcal{D}_{2 n}$ minus the number of elements of \mathcal{A}_{2} that have two distinct extensions in $\mathcal{D}_{2 n}$, i.e. $\left|\mathcal{A}_{2}\right|=2 n\binom{n}{2}-\left|\mathcal{B}_{2}\right|$, where

$$
\mathcal{B}_{2}=\left\{\alpha \in \mathcal{D P C}_{n}:|\operatorname{Dom}(\alpha)|=2 \text { and } \mathrm{d}(\min \operatorname{Dom}(\alpha), \max \operatorname{Dom}(\alpha))=\frac{n}{2}\right\} .
$$

It is easy to check that

$$
\mathcal{B}_{2}=\left\{\left(\begin{array}{ll}
i & i+\frac{n}{2} \\
j & j+\frac{n}{2}
\end{array}\right),\left(\begin{array}{cc}
i & i+\frac{n}{2} \\
j+\frac{n}{2} & j
\end{array}\right): 1 \leqslant i, j \leqslant \frac{n}{2}\right\},
$$

whence $\left|\mathcal{B}_{2}\right|=2\left(\frac{n}{2}\right)^{2}=\frac{1}{2} n^{2}$. Therefore,

$$
\left|\mathcal{D P} \mathcal{C}_{n}\right|=\left\{\begin{array}{ll}
1+n^{2}+2 n \sum_{i=2}^{n}\binom{n}{i} & \text { if } n \text { is odd } \\
1+n^{2}+2 n \sum_{i=2}^{n}\binom{n}{i}-\frac{1}{2} n^{2} & \text { if } n \text { is even }
\end{array}= \begin{cases}n 2^{n+1}-n^{2}-2 n+1 & \text { if } n \text { is odd } \\
n 2^{n+1}-\frac{3}{2} n^{2}-2 n+1 & \text { if } n \text { is even },\end{cases}\right.
$$ as required.

We finish this section by deducing that $\mathcal{D P C}_{n}$ has rank 3 .

Let

$$
e_{i}=\operatorname{id}_{\Omega_{n} \backslash\{i\}}=\left(\begin{array}{llllll}
1 & \cdots & i-1 & i+1 & \cdots & n \\
1 & \cdots & i-1 & i+1 & \cdots & n
\end{array}\right) \in \mathcal{D} \mathcal{P} \mathcal{C}_{n}
$$

for $i=1,2, \ldots, n$. Clearly, for $1 \leqslant i, j \leqslant n$, we have $e_{i}^{2}=e_{i}$ and $e_{i} e_{j}=\operatorname{id}_{\Omega_{n} \backslash\{i, j\}}=e_{j} e_{i}$. More generally, for any $X \subseteq \Omega_{n}$, we get $\Pi_{i \in X} e_{i}=\operatorname{id}_{\Omega_{n} \backslash X}$.

Now, take $\alpha \in \mathcal{D P C}_{n}$. Then, by Lemma 2.1, $\alpha=\left.h^{i} g^{j}\right|_{\operatorname{Dom}(\alpha)}$ for some $i \in\{0,1\}$ and $j \in\{0, \ldots, n-1\}$. Hence, $\alpha=h^{i} g^{j} \operatorname{id}_{\operatorname{Im}(\alpha)}=h^{i} g^{j} \Pi_{k \in \Omega_{n} \backslash \operatorname{Im}(\alpha)} e_{k}$. Therefore, $\left\{g, h, e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a generating set of $\mathcal{D P} \mathcal{C}_{n}$. Since $e_{i}=g^{n-i} e_{n} g^{i}$ for all $i \in\{1,2, \ldots, n\}$, it follows that $\left\{g, h, e_{n}\right\}$ is also a generating set of $\mathcal{D P \mathcal { P }}{ }_{n}$. As $\mathcal{D}_{2 n}$ is the group of units of $\mathcal{D P} \mathcal{C}_{n}$, which is a group with rank 2 , the monoid $\mathcal{D P} \mathcal{C}_{n}$ cannot be generated by less than three elements. So, we have the following theorem.

Theorem 2.5 The rank of the monoid $\mathcal{D P C}_{n}$ is 3 .

3. Presentations for $\mathcal{D P C}{ }_{n}$

In this section, we aim to determine a presentation for $\mathcal{D P} \mathcal{C}_{n}$. In fact, we first determine a presentation of $\mathcal{D} \mathcal{P C}_{n}$ on $n+2$ generators and then, by applying Tietze transformations, we deduce a presentation for $\mathcal{D P} \mathcal{C}_{n}$ on 3 generators.

We begin this section by recalling some notions related to the concept of a monoid presentation.
Let A be an alphabet and consider the free monoid A^{*} generated by A. The elements of A and of A^{*} are called letters and words, respectively. The empty word is denoted by 1 and we write A^{+}to express $A^{*} \backslash\{1\}$. A pair (u, v) of $A^{*} \times A^{*}$ is called a relation of A^{*} and it is usually represented by $u=v$. To avoid confusion, given $u, v \in A^{*}$, we will write $u \equiv v$ instead of $u=v$, whenever we want to state precisely that u and v are identical words of A^{*}. A relation $u=v$ of A^{*} is said to be a consequence of R if $u \rho_{R} v$, where $R \subseteq A^{*} \times A^{*}$ is a set of relations and recall that ρ_{R} denotes the smallest congruence on A^{*} containing R.

Let X be a generating set of a monoid M and let $\phi: A \longrightarrow M$ be an injective mapping such that $A \phi=X$. Let $\varphi: A^{*} \longrightarrow M$ be the (surjective) homomorphism of monoids that extends ϕ to A^{*}. We say that X satisfies (via φ) a relation $u=v$ of A^{*} if $u \varphi=v \varphi$. For more details see, for example, [27, 33].

A direct method to find a presentation for a monoid is described by the following well-known result (see, for example, [33, Proposition 1.2.3]).

Proposition 3.1 Let M be a monoid generated by a set X, let A be an alphabet and let $\phi: A \longrightarrow M$ be an injective mapping such that $A \phi=X$. Let $\varphi: A^{*} \longrightarrow M$ be the (surjective) homomorphism that extends ϕ to A^{*} and let $R \subseteq A^{*} \times A^{*}$. Then $\langle A \mid R\rangle$ is a presentation for M if and only if the following two conditions are satisfied:

1. The generating set X of M satisfies (via φ) all the relations from R;
2. If $u, v \in A^{*}$ are any two words such that the generating set X of M satisfies (via φ) the relation $u=v$ then $u=v$ is a consequence of R.

Given a presentation for a monoid, another method to find a new presentation consists in applying Tietze transformations. For a monoid presentation $\langle A \mid R\rangle$, the four elementary Tietze transformations are:
(T1) Adding a new relation $u=v$ to $\langle A \mid R\rangle$, provided that $u=v$ is a consequence of R;
(T2) Deleting a relation $u=v$ from $\langle A \mid R\rangle$, provided that $u=v$ is a consequence of $R \backslash\{u=v\}$;
(T3) Adding a new generating symbol b and a new relation $b=w$, where $w \in A^{*}$;
(T4) If $\langle A \mid R\rangle$ possesses a relation of the form $b=w$, where $b \in A$, and $w \in(A \backslash\{b\})^{*}$, then deleting b from the list of generating symbols, deleting the relation $b=w$, and replacing all remaining appearances of b by w.

The next result is well-known (see, for example, [33]):

Proposition 3.2 Two finite presentations define the same monoid if and only if one can be obtained from the other by a finite number of elementary Tietze transformations (T1), (T2), (T3), and (T4).

Now, consider the alphabet $A=\left\{g, h, e_{1}, e_{2}, \ldots, e_{n}\right\}$ and the set R formed by the following $\frac{n^{2}+5 n+9+(-1)^{n}}{2}$ monoid relations:
$\left(R_{1}\right) g^{n}=1, h^{2}=1$ and $h g=g^{n-1} h ;$
$\left(R_{2}\right) e_{i}^{2}=e_{i}$ for $1 \leqslant i \leqslant n ;$
$\left(R_{3}\right) e_{i} e_{j}=e_{j} e_{i}$ for $1 \leqslant i<j \leqslant n ;$
$\left(R_{4}\right) g e_{1}=e_{n} g$ and $g e_{i+1}=e_{i} g$ for $1 \leqslant i \leqslant n-1 ;$
$\left(R_{5}\right) h e_{i}=e_{n-i+1} h$ for $1 \leqslant i \leqslant n ;$
$\left(R_{6}^{\mathrm{o}}\right) \mathrm{hge}_{2} e_{3} \cdots e_{n}=e_{2} e_{3} \cdots e_{n}$ if n is odd;
$\left(R_{6}^{\mathrm{e}}\right) h g e_{2} \cdots e_{\frac{n}{2}} e_{\frac{n}{2}+2} \cdots e_{n}=e_{2} \cdots e_{\frac{n}{2}} e_{\frac{n}{2}+2} \cdots e_{n}$ and $h e_{1} e_{2} \cdots e_{n}=e_{1} e_{2} \cdots e_{n}$ if n is even.

We aim to show that the monoid $\mathcal{D P} \mathcal{C}_{n}$ is defined by the presentation $\langle A \mid R\rangle$.
Let $\phi: A \longrightarrow \mathcal{D P \mathcal { C }}{ }_{n}$ be the mapping defined by $g \phi=g, h \phi=h$ and $e_{i} \phi=e_{i}$, for $1 \leqslant i \leqslant n$, and let $\varphi: A^{*} \longrightarrow \mathcal{D} \mathcal{P} \mathcal{C}_{n}$ be the homomorphism of monoids that extends ϕ to A^{*}. Notice that we are using the same symbols for the letters of the alphabet A and for the generating set of $\mathcal{D P} \mathcal{C}_{n}$, which simplifies notation and, within the context, will not cause ambiguity.

It is a routine matter to check the following lemma.

Lemma 3.3 The set of generators $\left\{g, h, e_{1}, e_{2}, \ldots, e_{n}\right\}$ of $\mathcal{D P}_{n}$ satisfies (via φ) all the relations from R.
Observe that this result assures us that, if $u, v \in A^{*}$ are two words such that the relation $u=v$ is a consequence of R, then $u \varphi=v \varphi$.

Next, in order to prove that any relation satisfied by the generating set of $\mathcal{D P} \mathcal{C}_{n}$ is a consequence of R, we first present a series of three lemmas. In what follows, we denote the congruence ρ_{R} of A^{*} simply by ρ.

Lemma 3.4 If n is even, then the relation

$$
h g^{2 j-1} e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_{n}=e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_{n}
$$

is a consequence of R for $1 \leqslant j \leqslant \frac{n}{2}$.
Proof We proceed by induction on j.
Let $j=1$. Then $h g e_{2} \cdots e_{\frac{n}{2}} e_{\frac{n}{2}+2} \cdots e_{n}=e_{2} \cdots e_{\frac{n}{2}} e_{\frac{n}{2}+2} \cdots e_{n}$ is a relation of R. Next, suppose that $h g^{2 j-1} e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_{n}=e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_{n}$ for some $1 \leqslant j \leqslant \frac{n}{2}-1$.
Then

$$
\begin{array}{rll}
& h g^{2(j+1)-1} e_{1} \cdots e_{j} e_{j+2} \cdots e_{j+\frac{n}{2}} e_{j+\frac{n}{2}+2} \cdots e_{n} & \\
\equiv & h g^{2 j+1} e_{1} \cdots e_{j} e_{j+2} \cdots e_{j+\frac{n}{2}} e_{j+\frac{n}{2}+2} \cdots e_{n} & \\
\rho & h g^{2 j} e_{n} g e_{2} \cdots e_{j} e_{j+2} \cdots e_{j+\frac{n}{2}} e_{j+\frac{n}{2}+2} \cdots e_{n} & \left(\text { by } R_{4}\right) \\
\rho & h g g^{2 j-1} e_{n} e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_{n-1} g & \text { (by } \left.R_{4}\right) \\
\rho & g^{n-1} h g^{2 j-1} e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_{n} g & \text { (by } R_{1} \text { and } R_{3} \text {) } \\
\rho & g^{n-1} e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_{n} g & \text { (by the induction hyphotesis) } \\
\rho & g^{n-1} e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_{n-1} g e_{1} & \text { (by } R_{4} \text {) } \\
\rho & g^{n-1} g e_{2} \cdots e_{j} e_{j+2} \cdots e_{j+\frac{n}{2}} e_{j+\frac{n}{2}+2} \cdots e_{n} e_{1} & \text { (by } R_{4} \text {) } \\
\rho & e_{1} \cdots e_{j} e_{j+2} \cdots e_{j+\frac{n}{2}} e_{j+\frac{n}{2}+2} \cdots e_{n} & \text { (by } R_{1} \text { and } R_{3} \text {), }
\end{array}
$$

as required.

Lemma 3.5 The relation $h g^{2 i-1} e_{1} \cdots e_{i-1} e_{i+1} \cdots e_{n}=e_{1} \cdots e_{i-1} e_{i+1} \cdots e_{n}$ is a consequence of R, for $1 \leqslant i \leqslant n$.
Proof We proceed by induction on i.
Let $i=1$. If n is odd then $h g e_{2} e_{3} \cdots e_{n}=e_{2} e_{3} \cdots e_{n}$ is a relation of R. So, suppose that n is even. Then $h g e_{2} \cdots e_{\frac{n}{2}} e_{\frac{n}{2}+2} \cdots e_{n}=e_{2} \cdots e_{\frac{n}{2}} e_{\frac{n}{2}+2} \cdots e_{n}$ is a relation of R, whence

$$
h g e_{2} \cdots e_{\frac{n}{2}} e_{\frac{n}{2}+2} \cdots e_{n} e_{\frac{n}{2}+1} \rho e_{2} \cdots e_{\frac{n}{2}} e_{\frac{n}{2}+2} \cdots e_{n} e_{\frac{n}{2}+1}
$$

and so $h g e_{2} e_{3} \cdots e_{n}=e_{2} e_{3} \cdots e_{n}$, by R_{3}.
Now, suppose that $h g^{2 i-1} e_{1} \cdots e_{i-1} e_{i+1} \cdots e_{n} \rho e_{1} \cdots e_{i-1} e_{i+1} \cdots e_{n}$ for some $1 \leqslant i \leqslant n-1$. Then (with steps similar to the previous proof), we have

$$
\begin{array}{rlll}
h g^{2(i+1)-1} e_{1} \cdots e_{i} e_{i+2} \cdots e_{n} & \equiv & h g^{2 i+1} e_{1} \cdots e_{i} e_{i+2} \cdots e_{n} & \\
& \rho & h g^{2 i} e_{n} g e_{2} \cdots e_{i} e_{i+2} \cdots e_{n} & \left(\text { by } R_{4}\right) \\
& \rho & h g g^{2 i-1} e_{n} e_{1} \cdots e_{i-1} e_{i+1} \cdots e_{n-1} g & \text { (by } R_{4} \text {) } \\
& \rho & g^{n-1} h g^{2 i-1} e_{1} \cdots e_{i-1} e_{i+1} \cdots e_{n} g & \text { (by } R_{1} \text { and } R_{3} \text {) } \\
& \rho & g^{n-1} e_{1} \cdots e_{i-1} e_{i+1} \cdots e_{n} g & \text { (by the induction hyphotesis) } \\
& \rho & g^{n-1} e_{1} \cdots e_{i-1} e_{i+1} \cdots e_{n-1} g e_{1} & \text { (by } R_{4} \text {) } \\
& \rho & g^{n-1} g e_{2} \cdots e_{i} e_{i+2} \cdots e_{n} e_{1} & \text { (by } R_{4} \text {) } \\
& \rho & e_{1} \cdots e_{i} e_{i+2} \cdots e_{n} & \text { (by } R_{1} \text { and } R_{3} \text {), }
\end{array}
$$

as required.

Lemma 3.6 The relation $h^{\ell} g^{m} e_{1} e_{2} \cdots e_{n}=e_{1} e_{2} \cdots e_{n}$ is a consequence of R for $\ell, m \geqslant 0$.

Proof First, we prove that the relation $h e_{1} e_{2} \cdots e_{n}=e_{1} e_{2} \cdots e_{n}$ is a consequence of R. Since this relation belongs to R when n is even, it remains to show that $h e_{1} e_{2} \cdots e_{n} \rho e_{1} e_{2} \cdots e_{n}$ when n is odd.

Suppose that n is odd. Hence, by $R_{6}^{\text {o }}$, we have $h g e_{2} e_{3} \cdots e_{n} e_{1} \rho e_{2} e_{3} \cdots e_{n} e_{1}$, so $h g e_{1} e_{2} \cdots e_{n} \rho e_{1} e_{2} \cdots e_{n}$ (by R_{3}), whence $g e_{1} e_{2} \cdots e_{n} \rho h e_{1} e_{2} \cdots e_{n}$ (by R_{1}) and then $\left(g e_{1} e_{2} \cdots e_{n}\right)^{n} \rho\left(h e_{1} e_{2} \cdots e_{n}\right)^{n}$. Now, by R_{4} and R_{3}, we have $g e_{1} e_{2} \cdots e_{n} \rho e_{n} g e_{2} \cdots e_{n} \rho e_{n} e_{1} \cdots e_{n-1} g \rho e_{1} e_{2} \cdots e_{n} g$ and so, by relations R_{1}, R_{3}, and R_{2}, it follows that $\left(g e_{1} e_{2} \cdots e_{n}\right)^{n} \rho g^{n}\left(e_{1} e_{2} \cdots e_{n}\right)^{n} \rho e_{1} e_{2} \cdots e_{n}$. On the other hand, by R_{5} and R_{3}, we have $h e_{1} e_{2} \cdots e_{n} \rho e_{n} e_{n-1} \cdots e_{1} h \rho e_{1} e_{2} \cdots e_{n} h$, whence $\left(h e_{1} e_{2} \cdots e_{n}\right)^{n} \rho h^{n}\left(e_{1} e_{2} \cdots e_{n}\right)^{n} \rho h e_{1} e_{2} \cdots e_{n}$ by relations R_{1}, R_{3}, and R_{2}, since n is odd. Therefore, $h e_{1} e_{2} \cdots e_{n} \rho e_{1} e_{2} \cdots e_{n}$.

Secondly, we prove that the relation $g e_{1} e_{2} \cdots e_{n}=e_{1} e_{2} \cdots e_{n}$ is a consequence of R. In fact, we have

$$
\begin{array}{llll}
g e_{1} e_{2} \cdots e_{n} & \rho & g e_{1} h g e_{2} \cdots e_{n} & (\text { by Lemma 3.5) } \\
& \rho & e_{n} g h g e_{2} \cdots e_{n} & \left(\text { by } R_{4}\right) \\
& \rho & e_{n} g g^{n-1} h e_{2} \cdots e_{n} & \left(\text { by } R_{1}\right) \\
& \rho & e_{n} h e_{2} \cdots e_{n} & \left(\text { by } R_{1}\right) \\
& \rho & h e_{1} e_{2} \cdots e_{n} & \left(\text { by } R_{5}\right) \\
& \rho & e_{1} e_{2} \cdots e_{n} & \text { (by the first part). }
\end{array}
$$

Now, clearly, for $\ell, m \geqslant 0, h^{\ell} g^{m} e_{1} e_{2} \cdots e_{n} \rho e_{1} e_{2} \cdots e_{n}$ follows immediately from $g e_{1} e_{2} \cdots e_{n} \rho e_{1} e_{2} \cdots e_{n}$ and $h e_{1} e_{2} \cdots e_{n} \rho e_{1} e_{2} \cdots e_{n}$, which concludes the proof of the lemma.

We are now in a position to prove the following result.

Theorem 3.7 The monoid $\mathcal{D P \mathcal { C }}_{n}$ is defined by the presentation $\langle A \mid R\rangle$ on $n+2$ generators.

Proof In view of Proposition 3.1 and Lemma 3.3, it remains to prove that any relation satisfied by the generating set $\left\{g, h, e_{1}, e_{2}, \ldots, e_{n}\right\}$ of $\mathcal{D P} \mathcal{C}_{n}$ is a consequence of R.

Let $u, v \in A^{*}$ be two words such that $u \varphi=v \varphi$. We aim to show that $u \rho v$. Take $\alpha=u \varphi$.
It is clear that relations R_{1} to R_{5} allow us to deduce that $u \rho h^{\ell} g^{m} e_{i_{1}} \cdots e_{i_{k}}$ for some $\ell \in\{0,1\}$, $m \in\{0,1, \ldots, n-1\}, 1 \leqslant i_{1}<\cdots<i_{k} \leqslant n$ and $0 \leqslant k \leqslant n$. Similarly, we have $v \rho h^{\ell^{\prime}} g^{m^{\prime}} e_{i_{1}^{\prime}} \cdots e_{i_{k^{\prime}}^{\prime}}$ for some $\ell^{\prime} \in\{0,1\}, m^{\prime} \in\{0,1, \ldots, n-1\}, 1 \leqslant i_{1}^{\prime}<\cdots<i_{k^{\prime}}^{\prime} \leqslant n$ and $0 \leqslant k^{\prime} \leqslant n$.

Since $\alpha=h^{\ell} g^{m} e_{i_{1}} \cdots e_{i_{k}}$, it follows that $\operatorname{Im}(\alpha)=\Omega_{n} \backslash\left\{i_{1}, \ldots, i_{k}\right\}$ and $\alpha=\left.h^{\ell} g^{m}\right|_{\text {Dom }(\alpha)}$. Similarly, as also $\alpha=v \varphi$, from $\alpha=h^{\ell^{\prime}} g^{m^{\prime}} e_{i_{1}^{\prime}} \cdots e_{i_{k^{\prime}}^{\prime}}$, we get $\operatorname{Im}(\alpha)=\Omega_{n} \backslash\left\{i_{1}^{\prime}, \ldots, i_{k^{\prime}}^{\prime}\right\}$ and $\alpha=\left.h^{\ell^{\prime}} g^{m^{\prime}}\right|_{\operatorname{Dom}(\alpha)}$. Hence, $k^{\prime}=k$ and $\left\{i_{1}^{\prime}, \ldots, i_{k}^{\prime}\right\}=\left\{i_{1}, \ldots, i_{k}\right\}$. Furthermore, if either $k=n-2$ and $\mathrm{d}(\min \operatorname{Dom}(\alpha), \max \operatorname{Dom}(\alpha)) \neq \frac{n}{2}$ or $k \leqslant n-3$, by Lemma 2.1, we obtain $\ell^{\prime}=\ell$ and $m^{\prime}=m$, and so $u \rho h^{\ell} g^{m} e_{i_{1}} \cdots e_{i_{k}} \rho v$.

If $h^{\ell^{\prime}} g^{m^{\prime}}=h^{\ell} g^{m}$ (including as elements of $\mathcal{D}_{2 n}$) then $\ell^{\prime}=\ell$ and $m^{\prime}=m$, and so we get again $u \rho h^{\ell} g^{m} e_{i_{1}} \cdots e_{i_{k}} \rho v$.

Therefore, let us suppose that $h^{\ell^{\prime}} g^{m^{\prime}} \neq h^{\ell} g^{m}$. Hence, by Lemma 2.1, we may conclude that $\alpha=\emptyset$ or $\ell^{\prime}=\ell-1$ or $\ell^{\prime}=\ell+1$. If $\alpha=\emptyset$, i.e. $k=n$, then $u \rho h^{\ell} g^{m} e_{1} e_{2} \cdots e_{n} \rho e_{1} e_{2} \cdots e_{n} \rho h^{\ell^{\prime}} g^{m^{\prime}} e_{1} e_{2} \cdots e_{n} \rho v$ by Lemma 3.6.

Thus, we may suppose that $\alpha \neq \emptyset$ and, without loss of generality, also that $\ell^{\prime}=\ell+1$, i.e. $\ell=0$ and $\ell^{\prime}=1$. Let $k=n-2$ and admit that $\mathrm{d}(\min \operatorname{Dom}(\alpha), \max \operatorname{Dom}(\alpha))=\frac{n}{2}($ in which case n is even).

Let $\alpha=\left(\begin{array}{ll}i_{1} & i_{2} \\ j_{1} & j_{2}\end{array}\right)$ with $1 \leqslant i_{1}<i_{2} \leqslant n$. Then $i_{2}-i_{1}=\frac{n}{2}=\mathrm{d}\left(i_{1}, i_{2}\right)=\mathrm{d}\left(j_{1}, j_{2}\right)=\left|j_{2}-j_{1}\right|$, and so $j_{2} \in\left\{j_{1}-\frac{n}{2}, j_{1}+\frac{n}{2}\right\}$. Let $j=\min \left\{j_{1}, j_{2}\right\}$ (notice that $1 \leqslant j \leqslant \frac{n}{2}$) and $i=j \alpha^{-1}$. Hence, $\operatorname{Im}(\alpha)=\left\{j, j+\frac{n}{2}\right\}$ and $\alpha=\left.g^{n+j-i}\right|_{\operatorname{Dom}(\alpha)}=\left.h g^{i+j-1-n}\right|_{\operatorname{Dom}(\alpha)}$ (cf. proof of Lemma 2.1). So, we have

$$
u \rho g^{m} e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_{n} \quad \text { and } \quad v \rho h g^{m^{\prime}} e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_{n}
$$

and, by Lemma 2.1, $m=r n+j-i$ for some $r \in\{0,1\}$, and $m^{\prime}=i+j-1-r^{\prime} n$ for some $r^{\prime} \in\{0,1\}$. Thus, we get

$$
\begin{array}{llll}
u & \rho & g^{m} e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_{n} & \\
& \rho & g^{m} h g^{2 j-1} e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+2}^{2}-1 e_{j+\frac{n}{2}+1} \cdots e_{n} & \text { (by Lemma 3.4) } \\
& \rho & g^{m} h g^{2 j-1+\left(r-r^{\prime}\right) n} e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_{n} & \text { (by } R_{1} \text {) } \\
& h & h g^{n-m} g^{m+m^{\prime}} e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_{n} & \text { (by } \left.R_{1}\right) \\
& \rho & h g^{m^{\prime}} e_{1} \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_{n} & \text { (by } \left.R_{1}\right) \\
& \rho & v . &
\end{array}
$$

Finally, consider that $k=n-1$. Let $i \in \Omega_{n}$ be such that $\Omega_{n} \backslash\left\{i_{1}, \ldots, i_{n-1}\right\}=\{i\}$. Then $\operatorname{Im}(\alpha)=\{i\}$ and $\left\{i_{1}, \ldots, i_{n-1}\right\}=\{1, \ldots, i-1, i+1, \ldots, n\}$. Take $a=i \alpha^{-1}$. Then $a g^{m}=i=a h g^{m^{\prime}}$. Since $a g^{m}=a+m-r n$ for some $r \in\{0,1\}$, and ahg $^{m^{\prime}}=(n-a+1) g^{m^{\prime}}=r^{\prime} n-a+1+m^{\prime}$ for some $r^{\prime} \in\{0,1\}$, in a similar way to what we proved before, we have

$$
\begin{array}{llll}
u & \rho & g^{m} e_{1} \cdots e_{i-1} e_{i+1} \cdots e_{n} & \\
& \rho & g^{m} h g^{2 i-1} e_{1} \cdots e_{i-1} e_{i+1} \cdots e_{n} & \text { (by Lemma 3.5) } \\
\rho & g^{m} h g^{2 i-1+\left(r-r^{\prime}\right) n} e_{1} \cdots e_{i-1} e_{i+1} \cdots e_{n} & \left(\text { by } R_{1}\right) \\
& h & h g^{n-m} g^{m+m^{\prime}} e_{1} \cdots e_{i-1} e_{i+1} \cdots e_{n} & \left(\text { by } R_{1}\right) \\
& h g^{m^{\prime}} e_{1} \cdots e_{i-1} e_{i+1} \cdots e_{n} & \left(\text { by } R_{1}\right) \\
& \rho & v, &
\end{array}
$$

as required.
Notice that, taking into account the relation $h^{2}=1$ of R_{1}, we could have taken only half of the relations R_{5}, namely the relations $h e_{i}=e_{n-i+1} h$ with $1 \leqslant i \leqslant\left\lceil\frac{n}{2}\right\rceil$, where $\left\lceil\frac{n}{2}\right\rceil$ denotes the least integer greater than or equal to $\frac{n}{2}$.

Our next and final goal is, by using Tietze transformations, to deduce a new presentation on 3 generators from the previous presentation for $\mathcal{D P C}_{n}$.

Since we have $e_{i}=h g^{i-1} e_{n} h g^{i-1}$ (as transformations) for all $i \in\{1,2, \ldots, n\}$, we will proceed as follows: first, by applying T1, we add the relations $e_{i}=h g^{i-1} e_{n} h g^{i-1}$ for $1 \leqslant i \leqslant n$; secondly, we apply T4 to each of the relations $e_{i}=h g^{i-1} e_{n} h g^{i-1}$ with $i \in\{1,2, \ldots, n-1\}$ and, in some cases, by convenience, we also replace e_{n} by $h g^{n-1} e_{n} h g^{n-1}$; finally, by using the relations R_{1}, we simplify the new relations obtained, eliminating the trivial ones or those that are deduced from others. Performing this procedure for each of the sets of relations R_{1} to $R_{6}^{\mathrm{o}} / R_{6}^{\mathrm{e}}$, and renaming e_{n} by e, we may routinely obtain the following set Q of $\frac{n^{2}-n+13+(-1)^{n}}{2}$ many monoid relations on the alphabet $B=\{g, h, e\}$:

$$
\left(Q_{1}\right) g^{n}=1, h^{2}=1 \text { and } h g=g^{n-1} h ;
$$

$\left(Q_{2}\right) e^{2}=e$ and ghegh $=e ;$
$\left(Q_{3}\right) e g^{j-i} e g^{n-j+i}=g^{j-i} e g^{n-j+i} e$ for $1 \leqslant i<j \leqslant n$;
$\left(Q_{4}\right) h g(e g)^{n-2} e=(e g)^{n-2} e$ if n is odd;
$\left(Q_{5}\right) h g(e g)^{\frac{n}{2}-1} g(e g)^{\frac{n}{2}-2} e=(e g)^{\frac{n}{2}-1} g(e g)^{\frac{n}{2}-2} e$ and $h(e g)^{n-1} e=(e g)^{n-1} e$ if n is even.

Notice that, the use of the expressions $e_{i}=h g^{i-1} e_{n} h g^{i-1}$ for all $i \in\{1,2, \ldots, n\}$, instead of those observed at the end of Section 2, i.e. $e_{i}=g^{n-i} e_{n} g^{i}$ for all $i \in\{1,2, \ldots, n\}$, allowed us to obtain simpler relations.

Now, in view of Proposition 3.2, we have the following theorem.

Theorem 3.8 The monoid $\mathcal{D P C}_{n}$ is defined by the presentation $\langle B \mid Q\rangle$ on 3 generators.

Acknowledgments

This work is funded by national funds through the Foundation for Science and Technology (FCT), I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (NovaMath - Center for Mathematics and Applications).

We would like to thank the anonymous referees for their valuable comments and suggestions that allowed us to improve this paper.

References

[1] Ă̌zenštat AYa. Opredeljajushchie sootnoshenija konechnykh simmetricheskikh polugrupp. Matematicheskiŭ Sbornik 1958; 45 (87): 261-280 (in Russian).
[2] Ǎ̆zenštat AYa. Opredeljajushchie sootnoshenija polugruppy endomorfizmov konechnogo linejno uporjadochennogo mnozhestva. Sibirskoe Otdelenie. Sibirskiĭ Matematičeskiĭ Žurnal 1962; 3: 161-169 (in Russian).
[3] Al-Kharousi F, Kehinde R, Umar A. Combinatorial results for certain semigroups of partial isometries of a finite chain. The Australasian Journal of Combinatorics 2014; 58: 365-375.
[4] Al-Kharousi F, Kehinde R, Umar A. On the semigroup of partial isometries of a finite chain. Communications in Algebra 2016; 44 (2): 639-647. https://doi.org/10.1080/00927872.2014.984838
[5] Araújo J, Bentz W, Mitchell JD, Schneider C. The rank of the semigroup of transformations stabilising a partition of a finite set. Mathematical Proceedings of the Cambridge Philosophical Society 2015; 159 (2): 339-353. https://doi.org/10.1017/S0305004115000389
[6] Bugay L, Yağcı M, Ayık H. The ranks of certain semigroups of partial isometries. Semigroup Forum 2018; 97(2): 214-222. https://doi.org/10.1007/s00233-018-9954-1
[7] Catarino PM, Higgins PM. The monoid of orientation-preserving mappings on a chain. Semigroup Forum 1999; 58 (2): 190-206. https://doi.org/10.1007/s002339900014
[8] Cicalò S, Fernandes VH, Schneider C. Partial transformation monoids preserving a uniform partition. Semigroup Forum 2015; 90 (2): 532-544. https://doi.org/10.1007/s00233-014-9629-5
[9] East J. Generators and relations for partition monoids and algebras. Journal of Algebra 2011; 339 (1): 1-26. https://doi.org/10.1016/j.jalgebra.2011.04.008
[10] Feng Y-Y, Al-Aadhami A, Dolinka I, East J, Gould V. Presentations for singular wreath products. Journal of Pure and Applied Algebra 2019; 223 (12): 5106-5146. https://doi.org/10.1016/j.jpaa.2019.03.013
[11] Fernandes VH. The monoid of all injective orientation preserving partial transformations on a finite chain. Communications in Algebra 2000; 28 (7): 3401-3426. https://doi.org/10.1080/00927870008827033
[12] Fernandes VH. The monoid of all injective order preserving partial transformations on a finite chain. Semigroup Forum 2001; 62 (2): 178-204. https://doi.org/10.1007/s002330010056
[13] Fernandes VH. Presentations for some monoids of partial transformations on a finite chain: a survey. In: Semigroups, Algorithms, Automata and Languages; World Scientific; 2002. pp. 363-378.
[14] Fernandes VH, Gomes GMS, Jesus MM. Presentations for some monoids of injective partial transformations on a finite chain. Southeast Asian Bulletin of Mathematics 2004; 28 (5): 903-918.
[15] Fernandes VH, Gomes GMS, Jesus MM. Congruences on monoids of transformations preserving the orientation of a finite chain. Journal of Algebra 2009; 321 (3): 743-757. https://doi.org/10.1016/j.jalgebra.2008.11.005
[16] Fernandes VH, Honyam P, Quinteiro TM, Singha B. On semigroups of endomorphisms of a chain with restricted range. Semigroup Forum 2014; 89 (1): 77-104. https://doi.org/10.1007/s00233-013-9548-x
[17] Fernandes VH, Koppitz J, Musunthia T. The rank of the semigroup of all order-preserving transformations on a finite fence. Bulletin of the Malaysian Mathematical Sciences Society 2019; 42 (5): 2191-2211. https://doi.org/10.1007/s40840-017-0598-1
[18] Fernandes VH, Paulista T. On the monoid of partial isometries of a finite star graph. Communications in Algebra 2023; 51 (3): 1028-1048. https://doi.org/10.1080/00927872.2022.2121404
[19] Fernandes VH, Quinteiro TM. On the ranks of certain monoids of transformations that preserve a uniform partition. Communications in Algebra 2014; 42 (2): 615-636. https://doi.org/10.1080/00927872.2012.720322
[20] Fernandes VH, Quinteiro TM. Presentations for monoids of finite partial isometries. Semigroup Forum 2016; 93 (1): 97-110. https://doi.org/10.1007/s00233-015-9759-4
[21] Fernandes VH, Sanwong J. On the rank of semigroups of transformations on a finite set with restricted range. Algebra Colloquium 2014; 21 (3): 497-510. https://doi.org/10.1142/S1005386714000431
[22] The GAP Group. GAP - Groups, Algorithms, and Programming, v. 4.11.1; 2021.
[23] Gomes GMS, Howie JM. On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum 1992 (3); 45: 272-282. https://doi.org/10.1007/BF03025769
[24] Howie JM. Fundamentals of Semigroup Theory. Oxford: Oxford University Press, 1995.
[25] Howie JM, Ruškuc N. Constructions and presentations for monoids. Communications in Algebra 1994; 22 (15): 6209-6224. https://doi.org/10.1080/00927879408825184
[26] Higgins PM, Vernitski A. Orientation-preserving and orientation-reversing mappings: a new description. Semigroup Forum 2022; 104 (2): 509-514. https://doi.org/10.1007/s00233-022-10256-8
[27] Lallement G. Semigroups and Combinatorial Applications. New York: John Wiley \& Sons, 1979.
[28] McAlister D. Semigroups generated by a group and an idempotent. Communications in Algebra 1998; 26 (2): 515-547. https://doi.org/10.1080/00927879808826145
[29] Moore EH. Concerning the abstract groups of order k ! and $\frac{1}{2} k$! holohedrically isomorphic with the symmetric and the alternating substitution groups on k letters. Proceedings of the London Mathematical Society 1897; 28: 357-366.
[30] Paulista T. Partial Isometries of Some Simple Connected Graphs. MSc Thesis, School of Science and Technology of NOVA University Lisbon, 2022.
[31] Popova LM. Opredeljajushchie sootnoshenija nekotorykh polugrupp chastichnykh preobrazovanij konechnogo mnozhestva. Leningradskiĭ Gosudarstvennyı̆ Pedagogičeskiĭ Institut imeni A. I. Gercena. Učenye Zapiski 1961; 218: 191-212 (in Russian).
[32] Popova LM. Opredeljajushchie sootnoshenija polugruppy chastichnykh endomorfizmov konechnogo linejno uporjadochennogo mnozhestva. Leningradskiĭ Gosudarstvennyĭ Pedagogičeskiĭ Institut imeni A. I. Gercena. Učenye Zapiski 1962; 238: 78-88 (in Russian).
[33] Ruškuc N. Semigroup Presentations. Ph.D. Thesis, University of St-Andrews, 1995.
[34] Wilson RJ, Watkins JJ. Graphs: An Introductory Approach, A First Course in Discrete Mathematics. Singapore: Jon Wiley \& Sons Inc., 1990.

[^0]: *Correspondence: vhf@fct.unl.pt
 2010 AMS Mathematics Subject Classification: 20M20, 20M05, 05C12, 05C25

[^1]: *https://www.gap-system.org

