

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math (2023) 47: 1746 – 1760 © TÜBİTAK doi:10.55730/1300-0098.3460

On the monoid of partial isometries of a cycle graph

Vítor Hugo FERNANDES*®, Tânia PAULISTA®

Center for Mathematics and Applications (NovaMath) and Department of Mathematics, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal

Received: 21.05.2023 • Accepted/Published Online: 19.07.2023 • Final Version: 25.09.2023

Abstract: In this paper we consider the monoid \mathcal{DPC}_n of all partial isometries of an n-cycle graph C_n . We show that \mathcal{DPC}_n is the submonoid of the monoid of all oriented partial permutations on an n-chain whose elements are precisely all restrictions of a dihedral group of order 2n. Our main aim is to exhibit a presentation of \mathcal{DPC}_n . We also describe Green's relations of \mathcal{DPC}_n and calculate its cardinality and rank.

Key words: Transformations, orientation, partial isometries, cycle graphs, rank, presentations

1. Introduction

Let Ω be a finite set. As usual, let us denote by $\mathcal{PT}(\Omega)$ the monoid (under composition) of all partial transformations on Ω , by $\mathcal{T}(\Omega)$ the submonoid of $\mathcal{PT}(\Omega)$ of all full transformations on Ω , by $\mathcal{I}(\Omega)$ the symmetric inverse monoid on Ω , i.e. the inverse submonoid of $\mathcal{PT}(\Omega)$ of all partial permutations on Ω , and by $\mathcal{S}(\Omega)$ the symmetric group on Ω , i.e. the subgroup of $\mathcal{PT}(\Omega)$ of all permutations on Ω .

Recall that the rank of a (finite) monoid M is the minimum size of all (finite) generating sets of M, i.e. the minimum of the set $\{|X|: X \subseteq M \text{ and } X \text{ generates } M\}$.

Let Ω be a finite set with at least 3 elements. It is well-known that $\mathcal{S}(\Omega)$ has rank 2 (as a semigroup, a monoid, or a group) and $\mathcal{T}(\Omega)$, $\mathcal{I}(\Omega)$, and $\mathcal{PT}(\Omega)$ have ranks 3, 3, and 4, respectively. The survey [13] presents these results and similar ones for other classes of transformation monoids, in particular, for monoids of order-preserving transformations and for some of their extensions. For example, the rank of the extensively studied monoid of all order-preserving transformations of an n-chain is n, which was proved by Gomes and Howie [23] in 1992. More recently, for instance, the papers [5, 16, 17, 19, 21] are dedicated to the computation of the ranks of certain classes of transformation semigroups or monoids.

A monoid presentation is an ordered pair $\langle A \mid R \rangle$, where A is a set, often called an alphabet, and $R \subseteq A^* \times A^*$ is a set of relations of the free monoid A^* generated by A. A monoid M is said to be defined by a presentation $\langle A \mid R \rangle$ if M is isomorphic to A^*/ρ_R , where ρ_R denotes the smallest congruence on A^* containing R.

Given a finite monoid, it is clear that we can always exhibit a presentation for it, at worst by enumerating all elements from its multiplication table, but clearly this is of no interest, in general. So, by determining a

2010 AMS Mathematics Subject Classification: 20M20, 20M05, 05C12, 05C25

^{*}Correspondence: vhf@fct.unl.pt

presentation for a finite monoid, we mean to find in some sense a nice presentation (e.g., with a small number of generators and relations).

A presentation for the symmetric group $S(\Omega)$ was determined by Moore [29] over a century ago (1897). For the full transformation monoid $\mathcal{T}(\Omega)$, a presentation was given in 1958 by Aĭzenštat [1] in terms of a certain type of two-generator presentation for the symmetric group $S(\Omega)$, plus an extra generator and seven more relations. Presentations for the partial transformation monoid $\mathcal{PT}(\Omega)$ and for the symmetric inverse monoid $\mathcal{I}(\Omega)$ were found by Popova [31] in 1961. In 1962, Aĭzenštat [2] and Popova [32] exhibited presentations for the monoids of all order-preserving transformations and of all order-preserving partial transformations of a finite chain, respectively, and from the Sixties to the present day, several authors obtained presentations for many classes of monoids. See also [33], the survey [13], and, for example, [8–12, 14, 20, 25].

Now, let G = (V, E) be a finite simple connected graph, where V is the set of vertices and E is the list of edges. The (geodesic) distance between two vertices x and y of G, denoted by $d_G(x, y)$, is the length of a shortest path between x and y, i.e. the number of edges in a shortest path between x and y.

Let $\alpha \in \mathcal{PT}(V)$. We say that α is a partial isometry or distance preserving partial transformation of G if

$$d_G(x\alpha, y\alpha) = d_G(x, y)$$

for all $x, y \in \text{Dom}(\alpha)$. Denote by $\mathcal{DP}(G)$ the subset of $\mathcal{PT}(V)$ of all partial isometries of G. Clearly, $\mathcal{DP}(G)$ is a submonoid of $\mathcal{PT}(V)$. Moreover, as a consequence of the property

$$d_G(x, y) = 0$$
 if and only if $x = y$

for all $x, y \in V$, it immediately follows that $\mathcal{DP}(G) \subseteq \mathcal{I}(V)$. Furthermore, $\mathcal{DP}(G)$ is an inverse submonoid of $\mathcal{I}(V)$ (see [18]).

Observe that if G = (V, E) is a complete graph, i.e. $E = \{\{x, y\} : x, y \in V, x \neq y\}$, then $\mathcal{DP}(G) = \mathcal{I}(V)$. On the other hand, for $n \geq 2$, consider the undirected path graph P_n with n vertices, i.e.

$$P_n = (\{1, \dots, n\}, \{\{i, i+1\} : i = 1, \dots, n-1\}).$$

Then, obviously, $\mathcal{DP}(P_n)$ coincides with the monoid

$$\mathcal{DP}_n = \{ \alpha \in \mathcal{I}(\{1, 2, \dots, n\}) : |i\alpha - j\alpha| = |i - j| \text{ for all } i, j \in \text{Dom}(\alpha) \}$$

of all partial isometries on $\{1, 2, \dots, n\}$.

The study of partial isometries on $\{1, 2, ..., n\}$ was initiated by Al-Kharousi et al. in [3, 4]. The first of these two papers is dedicated to investigating some combinatorial properties of the monoid \mathcal{DP}_n and of its submonoid \mathcal{ODP}_n of all order-preserving (considering the usual order of \mathbb{N}) partial isometries, in particular, their cardinalities. The second paper presents the study of some of their algebraic properties, namely Green's structure and ranks. Presentations for both the monoids \mathcal{DP}_n and \mathcal{ODP}_n were given by the first author and Quinteiro in [20]. Moreover, for $2 \leq r \leq n-1$, Bugay et al. in [6] obtained the ranks of the subsemigroups $\mathcal{DP}_{n,r} = \{\alpha \in \mathcal{DP}_n : |\operatorname{Im}(\alpha)| \leq r\}$ of \mathcal{DP}_n and $\mathcal{ODP}_{n,r} = \{\alpha \in \mathcal{ODP}_n : |\operatorname{Im}(\alpha)| \leq r\}$ of \mathcal{ODP}_n .

The monoid \mathcal{DPS}_n of all partial isometries of a star graph with n vertices $(n \ge 1)$ was considered by the authors in [18]. They determined the rank and size of \mathcal{DPS}_n and described its Green's relations. A presentation for \mathcal{DPS}_n was also exhibited in [18].

Now, for $n \ge 3$, consider the cycle graph

$$C_n = (\{1, 2, \dots, n\}, \{\{i, i+1\} : i = 1, 2, \dots, n-1\} \cup \{\{1, n\}\})$$

with n vertices. Notice that cycle graphs and cycle subgraphs play a fundamental role in Graph Theory.

This paper is devoted to studying the monoid $\mathcal{DP}(C_n)$ of all partial isometries of C_n , which from now on we denote simply by \mathcal{DPC}_n . Observe that \mathcal{DPC}_n is an inverse submonoid of the symmetric inverse monoid \mathcal{I}_n .

In Section 2, we start by giving a key characterization of \mathcal{DPC}_n , which allows for significantly simpler proofs of various results presented later. Also in this section, a description of the Green's relations of \mathcal{DPC}_n is given and the rank and the cardinality of \mathcal{DPC}_n are calculated. Finally, in Section 3, we determine a presentation for the monoid \mathcal{DPC}_n on n+2 generators, from which we deduce another presentation for \mathcal{DPC}_n on 3 generators.

For general background and standard notations, we refer to Howie's book [24] for Semigroup Theory, and [34] for Graph Theory.

We would like to point out that we made use of computational tools, namely GAP*[22].

2. Some properties of \mathcal{DPC}_n

We begin this section by introducing some concepts and notations.

For $n \in \mathbb{N}$, let Ω_n be a set with n elements. In general, without loss of generality, Ω_n is considered the chain $\Omega_n = \{1 < 2 < \dots < n\}$ and $\mathcal{PT}(\Omega_n)$, $\mathcal{I}(\Omega_n)$ and $\mathcal{S}(\Omega_n)$ are denoted simply by \mathcal{PT}_n , \mathcal{I}_n and \mathcal{S}_n , respectively. For any $\alpha \in \mathcal{PT}_n$, the domain and the image sets of α are denoted by $\mathrm{Dom}(\alpha)$ and $\mathrm{Im}(\alpha)$, respectively. Also, the cardinality of the set $\mathrm{Im}(\alpha)$ is called the rank of α .

A partial transformation $\alpha \in \mathcal{PT}_n$ is called order-preserving [order-reversing] if $x \leqslant y$ implies $x\alpha \leqslant y\alpha$ [$x\alpha \geqslant y\alpha$], for all $x, y \in \text{Dom}(\alpha)$. It is clear that the product of two order-preserving or of two order-reversing transformations is order-preserving and the product of an order-preserving transformation by an order-reversing transformation, or vice-versa, is order-reversing. We denote by \mathcal{POD}_n the submonoid of \mathcal{PT}_n whose elements are all order-preserving or order-reversing transformations.

Let $s=(a_1,a_2,\ldots,a_t)$ be a sequence of t ($t\geqslant 0$) elements from the chain Ω_n . We say that s is cyclic [anticyclic] if there exists no more than one index $i\in\{1,\ldots,t\}$ such that $a_i>a_{i+1}$ [$a_i< a_{i+1}$], where a_{t+1} denotes a_1 . Notice that, the sequence s is cyclic [anticyclic] if and only if s is empty or there exists $i\in\{0,1,\ldots,t-1\}$ such that $a_{i+1}\leqslant a_{i+2}\leqslant \cdots\leqslant a_t\leqslant a_1\leqslant \cdots\leqslant a_i$ [$a_{i+1}\geqslant a_{i+2}\geqslant \cdots\geqslant a_t\geqslant a_1\geqslant \cdots\geqslant a_i$] (the index $i\in\{0,1,\ldots,t-1\}$ is unique unless s is constant and $t\geqslant 2$). We also say that s is oriented if s is cyclic or s is anticyclic (see, for example, [7, 26, 28]). Given a partial transformation $\alpha\in\mathcal{PT}_n$ such that $\mathrm{Dom}(\alpha)=\{a_1<\cdots< a_t\}$ with $t\geqslant 0$, we say that α is orientation-preserving [orientation-reversing, oriented] if the sequence of its images $(a_1\alpha,\ldots,a_t\alpha)$ is cyclic [anticyclic, oriented]. It is easy to show that the product of two orientation-preserving transformation by an orientation-reversing transformation, or vice-versa, is orientation-reversing. We denote by \mathcal{POR}_n the submonoid of \mathcal{PT}_n of all oriented transformations.

Notice that $\mathcal{POD}_n \cap \mathcal{I}_n$ and $\mathcal{POR}_n \cap \mathcal{I}_n$ are inverse submonoids of \mathcal{I}_n .

^{*} https://www.gap-system.org

Let us consider the following permutations of Ω_n (for $n \ge 2$) of order n and 2, respectively:

$$g = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1 \end{pmatrix} \quad \text{and} \quad h = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix}.$$

It is clear that $g, h \in \mathcal{POR}_n \cap \mathcal{I}_n$. Moreover, for $n \geq 3$, g together with h generate the well-known dihedral group \mathcal{D}_{2n} of order 2n (considered a subgroup of \mathcal{S}_n). In fact, for $n \geq 3$,

$$\mathcal{D}_{2n} = \langle g, h \mid g^n = 1, h^2 = 1, hg = g^{n-1}h \rangle = \{1, g, g^2, \dots, g^{n-1}, h, hg, hg^2, \dots, hg^{n-1}\}$$

and we have

$$g^k = \begin{pmatrix} 1 & 2 & \cdots & n-k & n-k+1 & \cdots & n \\ 1+k & 2+k & \cdots & n & 1 & \cdots & k \end{pmatrix}, \text{ i.e. } ig^k = \begin{cases} i+k & 1 \leqslant i \leqslant n-k \\ i+k-n & n-k+1 \leqslant i \leqslant n, \end{cases}$$

and

$$hg^k = \begin{pmatrix} 1 & \cdots & k & k+1 & \cdots & n \\ k & \cdots & 1 & n & \cdots & k+1 \end{pmatrix}, \text{ i.e. } ihg^k = \begin{cases} k-i+1 & 1 \leqslant i \leqslant k \\ n+k-i+1 & k+1 \leqslant i \leqslant n, \end{cases}$$

for $0 \le k \le n-1$. Observe that, for $n \in \{1,2\}$, the dihedral group $\mathcal{D}_{2n} = \langle g,h \mid g^n = 1, h^2 = 1, hg = g^{n-1}h \rangle$ of order 2n (also known as the Klein four-group for n=2) cannot be considered a subgroup of \mathcal{S}_n . Denote also by \mathcal{C}_n the cyclic group of order n generated by g, i.e. $\mathcal{C}_n = \{1, g, g^2, \dots, g^{n-1}\}$.

Until the end of this paper, we will consider $n \ge 3$. Moreover, for convenience, we will denote $\alpha \in \mathcal{PT}_n$ with $\mathrm{Dom}(\alpha) = \{i_1, \dots, i_k\}$ $(k \ge 1)$ by $\alpha = \begin{pmatrix} i_1 & \cdots & i_k \\ i_1 \alpha & \cdots & i_k \alpha \end{pmatrix}$.

Now, notice that,

$$d_{C_n}(x,y) = \min\{|x-y|, n-|x-y|\} = \begin{cases} |x-y| & \text{if } |x-y| \leqslant \frac{n}{2} \\ n-|x-y| & \text{if } |x-y| > \frac{n}{2}, \end{cases}$$

and so $0 \leqslant d_{C_n}(x, y) \leqslant \frac{n}{2}$ for all $x, y \in \{1, 2, \dots, n\}$.

From now on, for any two vertices x and y of C_n , we denote the distance $d_{C_n}(x,y)$ simply by d(x,y). Observe for $x,y\in\Omega_n$ that

$$\mathrm{d}(x,y) = \frac{n}{2} \quad \Leftrightarrow \quad |x-y| = \frac{n}{2} \quad \Leftrightarrow \quad n-|x-y| = \frac{n}{2} \quad \Leftrightarrow \quad |x-y| = n-|x-y|,$$

in which case n is even, and

$$|\{z \in \{1, 2, \dots, n\} : d(x, z) = d\}| = \begin{cases} 1 & \text{if } d = \frac{n}{2} \\ 2 & \text{if } d < \frac{n}{2} \end{cases}$$
 (2.1)

for all $1 \leq d \leq \frac{n}{2}$. Moreover, it is a routine matter to show that

$$D = \{z \in \{1, 2, \dots, n\} : d(x, z) = d\} = \{z \in \{1, 2, \dots, n\} : d(y, z) = d'\}$$

implies

$$d(x,y) = \begin{cases} 0 \text{ (i.e. } x = y) & \text{if } |D| = 1\\ \frac{n}{2} & \text{if } |D| = 2, \end{cases}$$
 (2.2)

for all $1 \leqslant d, d' \leqslant \frac{n}{2}$.

Recall that \mathcal{DP}_n is an inverse submonoid of $\mathcal{POD}_n \cap \mathcal{I}_n$. This is an easy fact to prove and was observed by Al-Kharousi et al. in [3, 4]. A similar result is also valid for \mathcal{DPC}_n and $\mathcal{POR}_n \cap \mathcal{I}_n$, as we will deduce below.

First, notice that it is easy to show that both permutations g and h of Ω_n belong to \mathcal{DPC}_n and so the dihedral group \mathcal{D}_{2n} is contained in \mathcal{DPC}_n . Furthermore, as we prove next, the elements of \mathcal{DPC}_n are precisely the restrictions of the permutations of the dihedral group \mathcal{D}_{2n} . This is a key characterization of \mathcal{DPC}_n that will allow us to prove in a simpler way some of the results that we present later in this paper. Observe that

$$\alpha = \sigma|_{\mathrm{Dom}(\alpha)} \Leftrightarrow \alpha = \mathrm{id}_{\mathrm{Dom}(\alpha)}\sigma \Leftrightarrow \alpha = \sigma\mathrm{id}_{\mathrm{Im}(\alpha)},$$

for any $\alpha \in \mathcal{PT}_n$ and $\sigma \in \mathcal{I}_n$, where $\sigma|_{\mathrm{Dom}(\alpha)}$ denotes the restriction mapping of σ to $\mathrm{Dom}(\alpha)$ and id_U , with $U \subseteq \Omega_n$, denotes the restriction map of the identity mapping id of Ω_n to U.

Lemma 2.1 For any $\alpha \in \mathcal{PT}_n$, $\alpha \in \mathcal{DPC}_n$ if and only if there exists $\sigma \in \mathcal{D}_{2n}$ such that $\alpha = \sigma|_{\text{Dom}(\alpha)}$. Furthermore, for $\alpha \in \mathcal{DPC}_n$:

- 1. if either $|\operatorname{Dom}(\alpha)| = 1$ or $|\operatorname{Dom}(\alpha)| = 2$ and $\operatorname{d}(\min \operatorname{Dom}(\alpha), \max \operatorname{Dom}(\alpha)) = \frac{n}{2}$ (in which case n is even), then there exist exactly two (distinct) permutations $\sigma, \sigma' \in \mathcal{D}_{2n}$ such that $\alpha = \sigma|_{\operatorname{Dom}(\alpha)} = \sigma'|_{\operatorname{Dom}(\alpha)}$;
- 2. if either $|\operatorname{Dom}(\alpha)| = 2$ and $\operatorname{d}(\min\operatorname{Dom}(\alpha), \max\operatorname{Dom}(\alpha)) \neq \frac{n}{2}$ or $|\operatorname{Dom}(\alpha)| \geqslant 3$, then there exists exactly one permutation $\sigma \in \mathcal{D}_{2n}$ such that $\alpha = \sigma|_{\operatorname{Dom}(\alpha)}$.

Proof For any $\alpha \in \mathcal{PT}_n$, if $\alpha = \sigma|_{Dom(\alpha)}$, for some $\sigma \in \mathcal{D}_{2n}$, then $\alpha \in \mathcal{DPC}_n$ since $\mathcal{D}_{2n} \subseteq \mathcal{DPC}_n$ and, clearly, any restriction of an element of \mathcal{DPC}_n also belongs to \mathcal{DPC}_n .

Conversely, let us suppose that $\alpha \in \mathcal{DPC}_n$. First, observe that, for each pair $1 \leq i, j \leq n$, there exists a unique $k \in \{0, 1, \dots, n-1\}$ such that $ig^k = j$ and there exists a unique $\ell \in \{0, 1, \dots, n-1\}$ such that $ihg^\ell = j$, where g and h are the permutations defined above. In fact, for $1 \leq i, j \leq n$ and $k, \ell \in \{0, 1, \dots, n-1\}$, it is easy to show that

- 1. if $i \leq j$ then $iq^k = j$ if and only if k = j i;
- 2. if i > j then $ig^k = j$ if and only if k = n + j i;
- 3. if $i+j \leq n$ then $ihg^{\ell} = j$ if and only if $\ell = i+j-1$;
- 4. if i+j>n then $ihg^{\ell}=j$ if and only if $\ell=i+j-1-n$.

Therefore, we may conclude immediately that:

- 1. any nonempty transformation of \mathcal{DPC}_n has at most two distinct extensions in \mathcal{D}_{2n} and, if there are two distinct, one must be an orientation-preserving transformation and the other an orientation-reversing transformation;
- 2. any transformation of \mathcal{DPC}_n with rank 1 has two distinct extensions in \mathcal{D}_{2n} (one is an orientation-preserving transformation and the other is an orientation-reversing transformation).

Notice that, as $g^n = g^{-n} = 1$, we also have $ig^{j-i} = j$ and $ihg^{i+j-1} = j$, for all $1 \le i, j \le n$.

Next, suppose that $\mathrm{Dom}(\alpha) = \{i_1 < i_2\}$. Then, there exist $\sigma \in \mathcal{C}_n$ and $\xi \in \mathcal{D}_{2n} \setminus \mathcal{C}_n$ (both unique) such that $i_1\sigma = i_1\alpha = i_1\xi$. Take $D = \{z \in \{1, 2, \dots, n\} : \mathrm{d}(i_1\alpha, z) = \mathrm{d}(i_1, i_2)\}$. Then $1 \leq |D| \leq 2$ and $i_2\alpha, i_2\sigma, i_2\xi \in D$.

Suppose that $i_2\sigma=i_2\xi$ and let $j_1=i_1\sigma$ and $j_2=i_2\sigma$. Then $\sigma=g^{j_1-i_1}=g^{j_2-i_2}$ and $\xi=hg^{i_1+j_1-1}=hg^{i_2+j_2-1}$. Hence, we have $j_1-i_1=j_2-i_2$ or $j_1-i_1=j_2-i_2\pm n$ from the first equality, and $i_1+j_1=i_2+j_2$ or $i_1+j_1=i_2+j_2\pm n$ from the second. Since $i_1\neq i_2$ and $i_2-i_1\neq n$, it is a routine matter to conclude that the only possibility is to have $i_2-i_1=\frac{n}{2}$ (in which case n is even). Thus, $d(i_1,i_2)=\frac{n}{2}$. By (2.1), it follows that |D|=1 and so $i_2\alpha=i_2\sigma=i_2\xi$, i.e. α is extended by both σ and ξ .

If $i_2\sigma \neq i_2\xi$, then |D|=2 (whence $d(i_1,i_2)<\frac{n}{2}$), and so either $i_2\alpha=i_2\sigma$ or $i_2\alpha=i_2\xi$. In this case, α is extended by exactly one permutation of \mathcal{D}_{2n} .

Now, suppose that $\mathrm{Dom}(\alpha) = \{i_1 < i_2 < \dots < i_k\}$ for some $3 \leqslant k \leqslant n-1$. Since $\sum_{p=1}^{k-1} (i_{p+1} - i_p) = i_k - i_1 < n$, then there exists at most one index $1 \leqslant p \leqslant k-1$ such that $i_{p+1} - i_p \geqslant \frac{n}{2}$. Therefore, we may take $i, j \in \mathrm{Dom}(\alpha)$ such that $i \neq j$ and $\mathrm{d}(i, j) \neq \frac{n}{2}$ and so, as $\alpha|_{\{i, j\}} \in \mathcal{DPC}_n$, by the above deductions, there exists a unique $\sigma \in \mathcal{D}_{2n}$ such that $\sigma|_{\{i, j\}} = \alpha|_{\{i, j\}}$. Let $\ell \in \mathrm{Dom}(\alpha) \setminus \{i, j\}$. Then

$$\ell\alpha, \ell\sigma \in \{z \in \{1, 2, \dots, n\} : d(i\alpha, z) = d(i, \ell)\} \cap \{z \in \{1, 2, \dots, n\} : d(i\alpha, z) = d(i, \ell)\}.$$

In order to obtain a contradiction, suppose that $\ell \alpha \neq \ell \sigma$. Therefore, by (2.1), we have

$$\{z \in \{1, 2, \dots, n\} : d(i\alpha, z) = d(i, \ell)\} = \{\ell\alpha, \ell\sigma\} = \{z \in \{1, 2, \dots, n\} : d(j\alpha, z) = d(j, \ell)\}$$

and so, by (2.2), $d(i,j) = d(i\alpha,j\alpha) = \frac{n}{2}$, which is a contradiction. Hence, $\ell\alpha = \ell\sigma$. Thus, σ is the unique permutation of \mathcal{D}_{2n} such that $\alpha = \sigma|_{\text{Dom}(\alpha)}$, as required.

Bearing in mind the previous lemma, it seems appropriate to designate \mathcal{DPC}_n by dihedral inverse monoid on Ω_n .

Since $\mathcal{D}_{2n} \subseteq \mathcal{POR}_n \cap \mathcal{I}_n$, which contains all the restrictions of its elements, we have immediately the following corollary.

Corollary 2.2 The monoid \mathcal{DPC}_n is contained in $\mathcal{POR}_n \cap \mathcal{I}_n$.

Observe that, as \mathcal{D}_{2n} is the group of units of $\mathcal{POR}_n \cap \mathcal{I}_n$ (see [14, 15]), then \mathcal{D}_{2n} also has to be the group of units of \mathcal{PPC}_n .

Next, recall that, given an inverse submonoid M of \mathcal{I}_n , it is well known that the Green's relations \mathscr{L} , \mathscr{R} , and \mathscr{H} of M can be described as follows: for $\alpha, \beta \in M$,

- $\alpha \mathcal{L}\beta$ if and only if $\operatorname{Im}(\alpha) = \operatorname{Im}(\beta)$;
- $\alpha \mathcal{R} \beta$ if and only if $Dom(\alpha) = Dom(\beta)$;
- $\alpha \mathcal{H} \beta$ if and only if $\operatorname{Im}(\alpha) = \operatorname{Im}(\beta)$ and $\operatorname{Dom}(\alpha) = \operatorname{Dom}(\beta)$.

In \mathcal{I}_n , we also have

• $\alpha \mathcal{J}\beta$ if and only if $|\operatorname{Dom}(\alpha)| = |\operatorname{Dom}(\beta)|$ (if and only if $|\operatorname{Im}(\alpha)| = |\operatorname{Im}(\beta)|$).

Since \mathcal{DPC}_n is an inverse submonoid of \mathcal{I}_n , it remains to describe its Green's relation \mathscr{J} . In fact, it is a routine matter to prove the following proposition.

Proposition 2.3 Let $\alpha, \beta \in \mathcal{DPC}_n$. Then $\alpha \mathcal{J}\beta$ if and only if one of the following properties is satisfied:

- 1. $|\operatorname{Dom}(\alpha)| = |\operatorname{Dom}(\beta)| \leq 1$;
- 2. $|\operatorname{Dom}(\alpha)| = |\operatorname{Dom}(\beta)| = 2$ and $d(i_1, i_2) = d(i'_1, i'_2)$ where $\operatorname{Dom}(\alpha) = \{i_1, i_2\}$ and $\operatorname{Dom}(\beta) = \{i'_1, i'_2\}$;
- 3. $|\operatorname{Dom}(\alpha)| = |\operatorname{Dom}(\beta)| = k \geqslant 3$ and there exists $\sigma \in \mathcal{D}_{2k}$ such that $\begin{pmatrix} i'_1 & i'_2 & \cdots & i'_k \\ i_{1\sigma} & i_{2\sigma} & \cdots & i_{k\sigma} \end{pmatrix} \in \mathcal{DPC}_n$ where $\operatorname{Dom}(\alpha) = \{i_1 < i_2 < \cdots < i_k\}$ and $\operatorname{Dom}(\beta) = \{i'_1 < i'_2 < \cdots < i'_k\}$.

An alternative description of \mathcal{J} can be found in the second author's MSc thesis [30].

Next, we count the number of elements of \mathcal{DPC}_n .

Theorem 2.4 One has $|\mathcal{DPC}_n| = n2^{n+1} - \frac{(-1)^n + 5}{4}n^2 - 2n + 1$.

Proof Let $A_i = \{\alpha \in \mathcal{DPC}_n : |\operatorname{Dom}(\alpha)| = i\}$ for $i = 0, 1, \dots, n$. Since the sets A_0, A_1, \dots, A_n are pairwise disjoints, we get $|\mathcal{DPC}_n| = \sum_{i=0}^n |A_i|$.

Clearly, $\mathcal{A}_0 = \{\emptyset\}$, where \emptyset denotes the empty mapping on Ω_n , and $\mathcal{A}_1 = \{\binom{i}{j} : 1 \leq i, j \leq n\}$, whence $|\mathcal{A}_0| = 1$ and $|\mathcal{A}_1| = n^2$. Moreover, for $i \geq 3$, by Lemma 2.1, we have as many elements in \mathcal{A}_i as there are restrictions of rank i of permutations of \mathcal{D}_{2n} , i.e. we have $\binom{n}{i}$ distinct elements of \mathcal{A}_i for each permutation of \mathcal{D}_{2n} , whence $|\mathcal{A}_i| = 2n\binom{n}{i}$. Similarly, for an odd n, by Lemma 2.1, we have $|\mathcal{A}_2| = 2n\binom{n}{2}$. On the other hand, if n is even, also by Lemma 2.1, we have as many elements in \mathcal{A}_2 as there are restrictions of rank 2 of permutations of \mathcal{D}_{2n} minus the number of elements of \mathcal{A}_2 that have two distinct extensions in \mathcal{D}_{2n} , i.e. $|\mathcal{A}_2| = 2n\binom{n}{2} - |\mathcal{B}_2|$, where

$$\mathcal{B}_2 = \{ \alpha \in \mathcal{DPC}_n : |\mathrm{Dom}(\alpha)| = 2 \text{ and } \mathrm{d}(\min \mathrm{Dom}(\alpha), \max \mathrm{Dom}(\alpha)) = \frac{n}{2} \}.$$

It is easy to check that

$$\mathcal{B}_2 = \left\{ \begin{pmatrix} i & i + \frac{n}{2} \\ j & j + \frac{n}{2} \end{pmatrix}, \begin{pmatrix} i & i + \frac{n}{2} \\ j + \frac{n}{2} & j \end{pmatrix} : 1 \leqslant i, j \leqslant \frac{n}{2} \right\},\,$$

whence $|\mathcal{B}_2| = 2(\frac{n}{2})^2 = \frac{1}{2}n^2$. Therefore,

$$|\mathcal{DPC}_n| = \begin{cases} 1 + n^2 + 2n \sum_{i=2}^n \binom{n}{i} & \text{if } n \text{ is odd} \\ 1 + n^2 + 2n \sum_{i=2}^n \binom{n}{i} - \frac{1}{2}n^2 & \text{if } n \text{ is even} \end{cases} = \begin{cases} n2^{n+1} - n^2 - 2n + 1 & \text{if } n \text{ is odd} \\ n2^{n+1} - \frac{3}{2}n^2 - 2n + 1 & \text{if } n \text{ is even,} \end{cases}$$

as required.

We finish this section by deducing that \mathcal{DPC}_n has rank 3.

Let

$$e_i = \mathrm{id}_{\Omega_n \setminus \{i\}} = \begin{pmatrix} 1 & \cdots & i-1 & i+1 & \cdots & n \\ 1 & \cdots & i-1 & i+1 & \cdots & n \end{pmatrix} \in \mathcal{DPC}_n,$$

for $i=1,2,\ldots,n$. Clearly, for $1 \le i,j \le n$, we have $e_i^2=e_i$ and $e_ie_j=\mathrm{id}_{\Omega_n\setminus\{i,j\}}=e_je_i$. More generally, for any $X\subseteq\Omega_n$, we get $\Pi_{i\in X}e_i=\mathrm{id}_{\Omega_n\setminus X}$.

Now, take $\alpha \in \mathcal{DPC}_n$. Then, by Lemma 2.1, $\alpha = h^i g^j|_{\mathrm{Dom}(\alpha)}$ for some $i \in \{0,1\}$ and $j \in \{0,\ldots,n-1\}$. Hence, $\alpha = h^i g^j \mathrm{id}_{\mathrm{Im}(\alpha)} = h^i g^j \Pi_{k \in \Omega_n \setminus \mathrm{Im}(\alpha)} e_k$. Therefore, $\{g,h,e_1,e_2,\ldots,e_n\}$ is a generating set of \mathcal{DPC}_n . Since $e_i = g^{n-i} e_n g^i$ for all $i \in \{1,2,\ldots,n\}$, it follows that $\{g,h,e_n\}$ is also a generating set of \mathcal{DPC}_n . As \mathcal{D}_{2n} is the group of units of \mathcal{DPC}_n , which is a group with rank 2, the monoid \mathcal{DPC}_n cannot be generated by less than three elements. So, we have the following theorem.

Theorem 2.5 The rank of the monoid \mathcal{DPC}_n is 3.

3. Presentations for \mathcal{DPC}_n

In this section, we aim to determine a presentation for \mathcal{DPC}_n . In fact, we first determine a presentation of \mathcal{DPC}_n on n+2 generators and then, by applying Tietze transformations, we deduce a presentation for \mathcal{DPC}_n on 3 generators.

We begin this section by recalling some notions related to the concept of a monoid presentation.

Let A be an alphabet and consider the free monoid A^* generated by A. The elements of A and of A^* are called letters and words, respectively. The empty word is denoted by 1 and we write A^+ to express $A^* \setminus \{1\}$. A pair (u,v) of $A^* \times A^*$ is called a relation of A^* and it is usually represented by u=v. To avoid confusion, given $u,v \in A^*$, we will write $u \equiv v$ instead of u=v, whenever we want to state precisely that u and v are identical words of A^* . A relation u=v of A^* is said to be a consequence of R if $u \rho_R v$, where $R \subseteq A^* \times A^*$ is a set of relations and recall that ρ_R denotes the smallest congruence on A^* containing R.

Let X be a generating set of a monoid M and let $\phi: A \longrightarrow M$ be an injective mapping such that $A\phi = X$. Let $\varphi: A^* \longrightarrow M$ be the (surjective) homomorphism of monoids that extends ϕ to A^* . We say that X satisfies (via φ) a relation u = v of A^* if $u\varphi = v\varphi$. For more details see, for example, [27, 33].

A direct method to find a presentation for a monoid is described by the following well-known result (see, for example, [33, Proposition 1.2.3]).

Proposition 3.1 Let M be a monoid generated by a set X, let A be an alphabet and let $\phi: A \longrightarrow M$ be an injective mapping such that $A\phi = X$. Let $\varphi: A^* \longrightarrow M$ be the (surjective) homomorphism that extends ϕ to A^* and let $R \subseteq A^* \times A^*$. Then $\langle A \mid R \rangle$ is a presentation for M if and only if the following two conditions are satisfied:

- 1. The generating set X of M satisfies (via φ) all the relations from R;
- 2. If $u, v \in A^*$ are any two words such that the generating set X of M satisfies (via φ) the relation u = v then u = v is a consequence of R.

Given a presentation for a monoid, another method to find a new presentation consists in applying Tietze transformations. For a monoid presentation $\langle A \mid R \rangle$, the four *elementary Tietze transformations* are:

FERNANDES and PAULISTA/Turk J Math

- (T1) Adding a new relation u = v to $\langle A \mid R \rangle$, provided that u = v is a consequence of R;
- (T2) Deleting a relation u = v from $\langle A \mid R \rangle$, provided that u = v is a consequence of $R \setminus \{u = v\}$;
- (T3) Adding a new generating symbol b and a new relation b = w, where $w \in A^*$;
- (T4) If $\langle A \mid R \rangle$ possesses a relation of the form b = w, where $b \in A$, and $w \in (A \setminus \{b\})^*$, then deleting b from the list of generating symbols, deleting the relation b = w, and replacing all remaining appearances of b by w.

The next result is well-known (see, for example, [33]):

Proposition 3.2 Two finite presentations define the same monoid if and only if one can be obtained from the other by a finite number of elementary Tietze transformations (T1), (T2), (T3), and (T4).

Now, consider the alphabet $A = \{g, h, e_1, e_2, \dots, e_n\}$ and the set R formed by the following $\frac{n^2 + 5n + 9 + (-1)^n}{2}$ monoid relations:

- (R_1) $g^n = 1$, $h^2 = 1$ and $hg = g^{n-1}h$;
- (R_2) $e_i^2 = e_i$ for $1 \le i \le n$;
- (R_3) $e_i e_j = e_j e_i$ for $1 \leqslant i < j \leqslant n$;
- $(R_4) \ ge_1 = e_n g \ \text{and} \ ge_{i+1} = e_i g \ \text{for} \ 1 \leqslant i \leqslant n-1;$
- $(R_5) he_i = e_{n-i+1}h \text{ for } 1 \le i \le n;$
- (R_6^{o}) $hge_2e_3\cdots e_n=e_2e_3\cdots e_n$ if n is odd;
- $(R_6^{\mathrm{e}}) \ hge_2 \cdots e_{\frac{n}{2}} e_{\frac{n}{2}+2} \cdots e_n = e_2 \cdots e_{\frac{n}{2}} e_{\frac{n}{2}+2} \cdots e_n \text{ and } he_1 e_2 \cdots e_n = e_1 e_2 \cdots e_n \text{ if } n \text{ is even.}$

We aim to show that the monoid \mathcal{DPC}_n is defined by the presentation $\langle A \mid R \rangle$.

Let $\phi: A \longrightarrow \mathcal{DPC}_n$ be the mapping defined by $g\phi = g$, $h\phi = h$ and $e_i\phi = e_i$, for $1 \le i \le n$, and let $\varphi: A^* \longrightarrow \mathcal{DPC}_n$ be the homomorphism of monoids that extends ϕ to A^* . Notice that we are using the same symbols for the letters of the alphabet A and for the generating set of \mathcal{DPC}_n , which simplifies notation and, within the context, will not cause ambiguity.

It is a routine matter to check the following lemma.

Lemma 3.3 The set of generators $\{g, h, e_1, e_2, \dots, e_n\}$ of \mathcal{DPC}_n satisfies (via φ) all the relations from R. \square

Observe that this result assures us that, if $u, v \in A^*$ are two words such that the relation u = v is a consequence of R, then $u\varphi = v\varphi$.

Next, in order to prove that any relation satisfied by the generating set of \mathcal{DPC}_n is a consequence of R, we first present a series of three lemmas. In what follows, we denote the congruence ρ_R of A^* simply by ρ .

Lemma 3.4 If n is even, then the relation

$$hg^{2j-1}e_1\cdots e_{j-1}e_{j+1}\cdots e_{j+\frac{n}{2}-1}e_{j+\frac{n}{2}+1}\cdots e_n=e_1\cdots e_{j-1}e_{j+1}\cdots e_{j+\frac{n}{2}-1}e_{j+\frac{n}{2}+1}\cdots e_n$$

is a consequence of R for $1 \leq j \leq \frac{n}{2}$.

Proof We proceed by induction on j.

Let j = 1. Then $hge_2 \cdots e_{\frac{n}{2}} e_{\frac{n}{2}+2} \cdots e_n = e_2 \cdots e_{\frac{n}{2}} e_{\frac{n}{2}+2} \cdots e_n$ is a relation of R. Next, suppose that $hg^{2j-1}e_1 \cdots e_{j-1}e_{j+1} \cdots e_{j+\frac{n}{2}-1}e_{j+\frac{n}{2}+1} \cdots e_n = e_1 \cdots e_{j-1}e_{j+1} \cdots e_{j+\frac{n}{2}-1}e_{j+\frac{n}{2}+1} \cdots e_n$ for some $1 \leq j \leq \frac{n}{2} - 1$. Then

$$\begin{array}{ll} hg^{2(j+1)-1}e_1\cdots e_je_{j+2}\cdots e_{j+\frac{n}{2}}e_{j+\frac{n}{2}+2}\cdots e_n\\ & \equiv hg^{2j+1}e_1\cdots e_je_{j+2}\cdots e_{j+\frac{n}{2}}e_{j+\frac{n}{2}+2}\cdots e_n\\ \rho & hg^{2j}e_nge_2\cdots e_je_{j+2}\cdots e_{j+\frac{n}{2}}e_{j+\frac{n}{2}+2}\cdots e_n\\ \rho & hgg^{2j-1}e_ne_1\cdots e_{j-1}e_{j+1}\cdots e_{j+\frac{n}{2}-1}e_{j+\frac{n}{2}+1}\cdots e_{n-1}g\\ \rho & g^{n-1}hg^{2j-1}e_1\cdots e_{j-1}e_{j+1}\cdots e_{j+\frac{n}{2}-1}e_{j+\frac{n}{2}+1}\cdots e_ng\\ \rho & g^{n-1}e_1\cdots e_{j-1}e_{j+1}\cdots e_{j+\frac{n}{2}-1}e_{j+\frac{n}{2}+1}\cdots e_ng\\ \rho & g^{n-1}e_1\cdots e_{j-1}e_{j+1}\cdots e_{j+\frac{n}{2}-1}e_{j+\frac{n}{2}+1}\cdots e_ng\\ \rho & g^{n-1}e_1\cdots e_{j-1}e_{j+1}\cdots e_{j+\frac{n}{2}-1}e_{j+\frac{n}{2}+1}\cdots e_{n-1}ge_1\\ \rho & g^{n-1}ge_2\cdots e_je_{j+2}\cdots e_{j+\frac{n}{2}}e_{j+\frac{n}{2}+2}\cdots e_ne_1\\ \rho & e_1\cdots e_je_{j+2}\cdots e_{j+\frac{n}{2}}e_{j+\frac{n}{2}+2}\cdots e_ne_1\\ \end{array} \qquad \text{(by R_4)}\\ \rho & e_1\cdots e_je_{j+2}\cdots e_{j+\frac{n}{2}}e_{j+\frac{n}{2}+2}\cdots e_n\\ \text{(by R_4)}\\ \end{array}$$

as required. \Box

Lemma 3.5 The relation $hg^{2i-1}e_1\cdots e_{i-1}e_{i+1}\cdots e_n=e_1\cdots e_{i-1}e_{i+1}\cdots e_n$ is a consequence of R, for $1\leqslant i\leqslant n$.

Proof We proceed by induction on i.

Let i=1. If n is odd then $hge_2e_3\cdots e_n=e_2e_3\cdots e_n$ is a relation of R. So, suppose that n is even. Then $hge_2\cdots e_{\frac{n}{2}}e_{\frac{n}{2}+2}\cdots e_n=e_2\cdots e_{\frac{n}{2}}e_{\frac{n}{2}+2}\cdots e_n$ is a relation of R, whence

$$hge_2\cdots e_{\frac{n}{2}}e_{\frac{n}{2}+2}\cdots e_ne_{\frac{n}{2}+1}\,\rho\,e_2\cdots e_{\frac{n}{2}}e_{\frac{n}{2}+2}\cdots e_ne_{\frac{n}{2}+1}$$

and so $hge_2e_3\cdots e_n=e_2e_3\cdots e_n$, by R_3 .

Now, suppose that $hg^{2i-1}e_1 \cdots e_{i-1}e_{i+1} \cdots e_n \rho e_1 \cdots e_{i-1}e_{i+1} \cdots e_n$ for some $1 \leq i \leq n-1$. Then (with steps similar to the previous proof), we have

as required. \Box

Lemma 3.6 The relation $h^{\ell}g^{m}e_{1}e_{2}\cdots e_{n}=e_{1}e_{2}\cdots e_{n}$ is a consequence of R for $\ell,m\geqslant 0$.

Proof First, we prove that the relation $he_1e_2\cdots e_n=e_1e_2\cdots e_n$ is a consequence of R. Since this relation belongs to R when n is even, it remains to show that $he_1e_2\cdots e_n$ ρ $e_1e_2\cdots e_n$ when n is odd.

Suppose that n is odd. Hence, by R_6^o , we have $hge_2e_3\cdots e_ne_1 \rho e_2e_3\cdots e_ne_1$, so $hge_1e_2\cdots e_n \rho e_1e_2\cdots e_n$ (by R_3), whence $ge_1e_2\cdots e_n \rho he_1e_2\cdots e_n$ (by R_1) and then $(ge_1e_2\cdots e_n)^n \rho (he_1e_2\cdots e_n)^n$. Now, by R_4 and R_3 , we have $ge_1e_2\cdots e_n \rho e_nge_2\cdots e_n \rho e_ne_1\cdots e_{n-1}g \rho e_1e_2\cdots e_ng$ and so, by relations R_1 , R_3 , and R_2 , it follows that $(ge_1e_2\cdots e_n)^n \rho g^n (e_1e_2\cdots e_n)^n \rho e_1e_2\cdots e_n$. On the other hand, by R_5 and R_3 , we have $he_1e_2\cdots e_n \rho e_ne_{n-1}\cdots e_1h \rho e_1e_2\cdots e_nh$, whence $(he_1e_2\cdots e_n)^n \rho h^n (e_1e_2\cdots e_n)^n \rho he_1e_2\cdots e_n$ by relations R_1 , R_3 , and R_2 , since n is odd. Therefore, $he_1e_2\cdots e_n \rho e_1e_2\cdots e_n$.

Secondly, we prove that the relation $ge_1e_2\cdots e_n=e_1e_2\cdots e_n$ is a consequence of R. In fact, we have

```
ge_1e_2\cdots e_n \rho ge_1hge_2\cdots e_n (by Lemma 3.5)

\rho e_nghge_2\cdots e_n (by R_4)

\rho e_ngg^{n-1}he_2\cdots e_n (by R_1)

\rho e_nhe_2\cdots e_n (by R_1)

\rho he_1e_2\cdots e_n (by R_5)

\rho e_1e_2\cdots e_n (by the first part).
```

Now, clearly, for $\ell, m \geqslant 0$, $h^{\ell}g^{m}e_{1}e_{2}\cdots e_{n}$ $\rho\,e_{1}e_{2}\cdots e_{n}$ follows immediately from $ge_{1}e_{2}\cdots e_{n}$ $\rho\,e_{1}e_{2}\cdots e_{n}$ and $he_{1}e_{2}\cdots e_{n}\rho e_{1}e_{2}\cdots e_{n}$, which concludes the proof of the lemma.

We are now in a position to prove the following result.

Theorem 3.7 The monoid \mathcal{DPC}_n is defined by the presentation $\langle A \mid R \rangle$ on n+2 generators.

Proof In view of Proposition 3.1 and Lemma 3.3, it remains to prove that any relation satisfied by the generating set $\{g, h, e_1, e_2, \ldots, e_n\}$ of \mathcal{DPC}_n is a consequence of R.

Let $u, v \in A^*$ be two words such that $u\varphi = v\varphi$. We aim to show that $u \rho v$. Take $\alpha = u\varphi$.

It is clear that relations R_1 to R_5 allow us to deduce that $u \rho h^{\ell} g^m e_{i_1} \cdots e_{i_k}$ for some $\ell \in \{0, 1\}$, $m \in \{0, 1, \dots, n-1\}$, $1 \leq i_1 < \dots < i_k \leq n$ and $0 \leq k \leq n$. Similarly, we have $v \rho h^{\ell'} g^{m'} e_{i'_1} \cdots e_{i'_{k'}}$ for some $\ell' \in \{0, 1\}$, $m' \in \{0, 1, \dots, n-1\}$, $1 \leq i'_1 < \dots < i'_{k'} \leq n$ and $0 \leq k' \leq n$.

Since $\alpha = h^{\ell}g^{m}e_{i_{1}}\cdots e_{i_{k}}$, it follows that $\operatorname{Im}(\alpha) = \Omega_{n} \setminus \{i_{1},\ldots,i_{k}\}$ and $\alpha = h^{\ell}g^{m}|_{\operatorname{Dom}(\alpha)}$. Similarly, as also $\alpha = v\varphi$, from $\alpha = h^{\ell'}g^{m'}e_{i'_{1}}\cdots e_{i'_{k'}}$, we get $\operatorname{Im}(\alpha) = \Omega_{n} \setminus \{i'_{1},\ldots,i'_{k'}\}$ and $\alpha = h^{\ell'}g^{m'}|_{\operatorname{Dom}(\alpha)}$. Hence, k' = k and $\{i'_{1},\ldots,i'_{k}\} = \{i_{1},\ldots,i_{k}\}$. Furthermore, if either k = n - 2 and $\operatorname{d}(\min\operatorname{Dom}(\alpha),\max\operatorname{Dom}(\alpha)) \neq \frac{n}{2}$ or $k \leq n - 3$, by Lemma 2.1, we obtain $\ell' = \ell$ and m' = m, and so $u \rho h^{\ell}g^{m}e_{i_{1}}\cdots e_{i_{k}}\rho v$.

If $h^{\ell'}g^{m'}=h^{\ell}g^m$ (including as elements of \mathcal{D}_{2n}) then $\ell'=\ell$ and m'=m, and so we get again $u\,\rho\,h^{\ell}g^me_{i_1}\cdots e_{i_k}\,\rho\,v$.

Therefore, let us suppose that $h^{\ell'}g^{m'} \neq h^{\ell}g^m$. Hence, by Lemma 2.1, we may conclude that $\alpha = \emptyset$ or $\ell' = \ell - 1$ or $\ell' = \ell + 1$. If $\alpha = \emptyset$, i.e. k = n, then $u \rho h^{\ell}g^m e_1 e_2 \cdots e_n \rho e_1 e_2 \cdots e_n \rho h^{\ell'}g^{m'}e_1 e_2 \cdots e_n \rho v$ by Lemma 3.6.

Thus, we may suppose that $\alpha \neq \emptyset$ and, without loss of generality, also that $\ell' = \ell + 1$, i.e. $\ell = 0$ and $\ell' = 1$. Let k = n - 2 and admit that $d(\min \text{Dom}(\alpha), \max \text{Dom}(\alpha)) = \frac{n}{2}$ (in which case n is even).

Let $\alpha = \begin{pmatrix} i_1 & i_2 \\ j_1 & j_2 \end{pmatrix}$ with $1 \leqslant i_1 < i_2 \leqslant n$. Then $i_2 - i_1 = \frac{n}{2} = \mathrm{d}(i_1, i_2) = \mathrm{d}(j_1, j_2) = |j_2 - j_1|$, and so $j_2 \in \{j_1 - \frac{n}{2}, j_1 + \frac{n}{2}\}$. Let $j = \min\{j_1, j_2\}$ (notice that $1 \leqslant j \leqslant \frac{n}{2}$) and $i = j\alpha^{-1}$. Hence, $\mathrm{Im}(\alpha) = \{j, j + \frac{n}{2}\}$ and $\alpha = g^{n+j-i}|_{\mathrm{Dom}(\alpha)} = hg^{i+j-1-n}|_{\mathrm{Dom}(\alpha)}$ (cf. proof of Lemma 2.1). So, we have

$$u \rho g^m e_1 \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_n$$
 and $v \rho h g^{m'} e_1 \cdots e_{j-1} e_{j+1} \cdots e_{j+\frac{n}{2}-1} e_{j+\frac{n}{2}+1} \cdots e_n$

and, by Lemma 2.1, m = rn + j - i for some $r \in \{0, 1\}$, and m' = i + j - 1 - r'n for some $r' \in \{0, 1\}$. Thus, we get

Finally, consider that k = n - 1. Let $i \in \Omega_n$ be such that $\Omega_n \setminus \{i_1, \ldots, i_{n-1}\} = \{i\}$. Then $\operatorname{Im}(\alpha) = \{i\}$ and $\{i_1, \ldots, i_{n-1}\} = \{1, \ldots, i-1, i+1, \ldots, n\}$. Take $a = i\alpha^{-1}$. Then $ag^m = i = ahg^{m'}$. Since $ag^m = a+m-rn$ for some $r \in \{0, 1\}$, and $ahg^{m'} = (n - a + 1)g^{m'} = r'n - a + 1 + m'$ for some $r' \in \{0, 1\}$, in a similar way to what we proved before, we have

as required. \Box

Notice that, taking into account the relation $h^2=1$ of R_1 , we could have taken only half of the relations R_5 , namely the relations $he_i=e_{n-i+1}h$ with $1\leqslant i\leqslant \lceil\frac{n}{2}\rceil$, where $\lceil\frac{n}{2}\rceil$ denotes the least integer greater than or equal to $\frac{n}{2}$.

Our next and final goal is, by using Tietze transformations, to deduce a new presentation on 3 generators from the previous presentation for \mathcal{DPC}_n .

Since we have $e_i = hg^{i-1}e_nhg^{i-1}$ (as transformations) for all $i \in \{1, 2, ..., n\}$, we will proceed as follows: first, by applying T1, we add the relations $e_i = hg^{i-1}e_nhg^{i-1}$ for $1 \le i \le n$; secondly, we apply T4 to each of the relations $e_i = hg^{i-1}e_nhg^{i-1}$ with $i \in \{1, 2, ..., n-1\}$ and, in some cases, by convenience, we also replace e_n by $hg^{n-1}e_nhg^{n-1}$; finally, by using the relations R_1 , we simplify the new relations obtained, eliminating the trivial ones or those that are deduced from others. Performing this procedure for each of the sets of relations R_1 to R_6^o/R_6^e , and renaming e_n by e, we may routinely obtain the following set Q of $\frac{n^2-n+13+(-1)^n}{2}$ many monoid relations on the alphabet $B = \{g, h, e\}$:

$$(Q_1)$$
 $g^n = 1$, $h^2 = 1$ and $hg = g^{n-1}h$;

- (Q_2) $e^2 = e$ and ghegh = e;
- $(Q_3) \ eg^{j-i}eg^{n-j+i} = g^{j-i}eg^{n-j+i}e \text{ for } 1 \le i < j \le n;$
- $(Q_4) hg(eg)^{n-2}e = (eg)^{n-2}e \text{ if } n \text{ is odd};$
- (Q_5) $hg(eg)^{\frac{n}{2}-1}g(eg)^{\frac{n}{2}-2}e = (eg)^{\frac{n}{2}-1}g(eg)^{\frac{n}{2}-2}e$ and $h(eg)^{n-1}e = (eg)^{n-1}e$ if n is even.

Notice that, the use of the expressions $e_i = hg^{i-1}e_nhg^{i-1}$ for all $i \in \{1, 2, ..., n\}$, instead of those observed at the end of Section 2, i.e. $e_i = g^{n-i}e_ng^i$ for all $i \in \{1, 2, ..., n\}$, allowed us to obtain simpler relations.

Now, in view of Proposition 3.2, we have the following theorem.

Theorem 3.8 The monoid \mathcal{DPC}_n is defined by the presentation $\langle B \mid Q \rangle$ on 3 generators.

Acknowledgments

This work is funded by national funds through the Foundation for Science and Technology (FCT), I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (NovaMath - Center for Mathematics and Applications).

We would like to thank the anonymous referees for their valuable comments and suggestions that allowed us to improve this paper.

References

- [1] Aĭzenštat AYa. Opredeljajushchie sootnoshenija konechnykh simmetricheskikh polugrupp. Matematicheskiĭ Sbornik 1958; 45 (87): 261-280 (in Russian).
- [2] Aĭzenštat AYa. Opredeljajushchie sootnoshenija polugruppy endomorfizmov konechnogo linejno uporjadochennogo mnozhestva. Sibirskoe Otdelenie. Sibirskiĭ Matematičeskiĭ Žurnal 1962; 3: 161-169 (in Russian).
- [3] Al-Kharousi F, Kehinde R, Umar A. Combinatorial results for certain semigroups of partial isometries of a finite chain. The Australasian Journal of Combinatorics 2014; 58: 365-375.
- [4] Al-Kharousi F, Kehinde R, Umar A. On the semigroup of partial isometries of a finite chain. Communications in Algebra 2016; 44 (2): 639-647. https://doi.org/10.1080/00927872.2014.984838
- [5] Araújo J, Bentz W, Mitchell JD, Schneider C. The rank of the semigroup of transformations stabilising a partition of a finite set. Mathematical Proceedings of the Cambridge Philosophical Society 2015; 159 (2): 339-353. https://doi.org/10.1017/S0305004115000389
- [6] Bugay L, Yağcı M, Ayık H. The ranks of certain semigroups of partial isometries. Semigroup Forum 2018; 97(2): 214-222. https://doi.org/10.1007/s00233-018-9954-1
- [7] Catarino PM, Higgins PM. The monoid of orientation-preserving mappings on a chain. Semigroup Forum 1999; 58 (2): 190-206. https://doi.org/10.1007/s002339900014
- [8] Cicalò S, Fernandes VH, Schneider C. Partial transformation monoids preserving a uniform partition. Semigroup Forum 2015; 90 (2): 532-544. https://doi.org/10.1007/s00233-014-9629-5
- [9] East J. Generators and relations for partition monoids and algebras. Journal of Algebra 2011; 339 (1): 1-26. https://doi.org/10.1016/j.jalgebra.2011.04.008

FERNANDES and PAULISTA/Turk J Math

- [10] Feng Y-Y, Al-Aadhami A, Dolinka I, East J, Gould V. Presentations for singular wreath products. Journal of Pure and Applied Algebra 2019; 223 (12): 5106-5146. https://doi.org/10.1016/j.jpaa.2019.03.013
- [11] Fernandes VH. The monoid of all injective orientation preserving partial transformations on a finite chain. Communications in Algebra 2000; 28 (7): 3401-3426. https://doi.org/10.1080/00927870008827033
- [12] Fernandes VH. The monoid of all injective order preserving partial transformations on a finite chain. Semigroup Forum 2001; 62 (2): 178-204. https://doi.org/10.1007/s002330010056
- [13] Fernandes VH. Presentations for some monoids of partial transformations on a finite chain: a survey. In: Semigroups, Algorithms, Automata and Languages; World Scientific; 2002. pp. 363-378.
- [14] Fernandes VH, Gomes GMS, Jesus MM. Presentations for some monoids of injective partial transformations on a finite chain. Southeast Asian Bulletin of Mathematics 2004; 28 (5): 903-918.
- [15] Fernandes VH, Gomes GMS, Jesus MM. Congruences on monoids of transformations preserving the orientation of a finite chain. Journal of Algebra 2009; 321 (3): 743-757. https://doi.org/10.1016/j.jalgebra.2008.11.005
- [16] Fernandes VH, Honyam P, Quinteiro TM, Singha B. On semigroups of endomorphisms of a chain with restricted range. Semigroup Forum 2014; 89 (1): 77-104. https://doi.org/10.1007/s00233-013-9548-x
- [17] Fernandes VH, Koppitz J, Musunthia T. The rank of the semigroup of all order-preserving transformations on a finite fence. Bulletin of the Malaysian Mathematical Sciences Society 2019; 42 (5): 2191-2211. https://doi.org/10.1007/s40840-017-0598-1
- [18] Fernandes VH, Paulista T. On the monoid of partial isometries of a finite star graph. Communications in Algebra 2023; 51 (3): 1028-1048. https://doi.org/10.1080/00927872.2022.2121404
- [19] Fernandes VH, Quinteiro TM. On the ranks of certain monoids of transformations that preserve a uniform partition. Communications in Algebra 2014; 42 (2): 615-636. https://doi.org/10.1080/00927872.2012.720322
- [20] Fernandes VH, Quinteiro TM. Presentations for monoids of finite partial isometries. Semigroup Forum 2016; 93 (1): 97-110. https://doi.org/10.1007/s00233-015-9759-4
- [21] Fernandes VH, Sanwong J. On the rank of semigroups of transformations on a finite set with restricted range. Algebra Colloquium 2014; 21 (3): 497-510. https://doi.org/10.1142/S1005386714000431
- [22] The GAP Group. GAP Groups, Algorithms, and Programming, v. 4.11.1; 2021.
- [23] Gomes GMS, Howie JM. On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum 1992 (3); 45: 272-282. https://doi.org/10.1007/BF03025769
- [24] Howie JM. Fundamentals of Semigroup Theory. Oxford: Oxford University Press, 1995.
- [25] Howie JM, Ruškuc N. Constructions and presentations for monoids. Communications in Algebra 1994; 22 (15): 6209-6224. https://doi.org/10.1080/00927879408825184
- [26] Higgins PM, Vernitski A. Orientation-preserving and orientation-reversing mappings: a new description. Semigroup Forum 2022; 104 (2): 509-514. https://doi.org/10.1007/s00233-022-10256-8
- [27] Lallement G. Semigroups and Combinatorial Applications. New York: John Wiley & Sons, 1979.
- [28] McAlister D. Semigroups generated by a group and an idempotent. Communications in Algebra 1998; 26 (2): 515-547. https://doi.org/10.1080/00927879808826145
- [29] Moore EH. Concerning the abstract groups of order k! and $\frac{1}{2}k!$ holohedrically isomorphic with the symmetric and the alternating substitution groups on k letters. Proceedings of the London Mathematical Society 1897; 28: 357-366.
- [30] Paulista T. Partial Isometries of Some Simple Connected Graphs. MSc Thesis, School of Science and Technology of NOVA University Lisbon, 2022.

FERNANDES and PAULISTA/Turk J Math

- [31] Popova LM. Opredeljajushchie sootnoshenija nekotorykh polugrupp chastichnykh preobrazovanij konechnogo mnozhestva. Leningradskiĭ Gosudarstvennyĭ Pedagogičeskiĭ Institut imeni A. I. Gercena. Učenye Zapiski 1961; 218: 191-212 (in Russian).
- [32] Popova LM. Opredeljajushchie sootnoshenija polugruppy chastichnykh endomorfizmov konechnogo linejno uporjadochennogo mnozhestva. Leningradskii Gosudarstvennyi Pedagogičeskii Institut imeni A. I. Gercena. Učenye Zapiski 1962; 238: 78-88 (in Russian).
- [33] Ruškuc N. Semigroup Presentations. Ph.D. Thesis, University of St-Andrews, 1995.
- [34] Wilson RJ, Watkins JJ. Graphs: An Introductory Approach, A First Course in Discrete Mathematics. Singapore: Jon Wiley & Sons Inc., 1990.