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Abstract: Given an indexed family {(Si, ·i,≤i) , i ∈ I} of disjoint ordered semigroups, we construct an ordered
semigroup having (Si, ·i,≤i) , i ∈ I as subsemigroups (with respect to the operation and order relation of each (Si, ·i,≤i) ,
i ∈ I ). This ordered semigroup is the free ordered product Π

i∈I

∗Si of the family {Si, i ∈ I} and we give the crucial

property which essentially characterizes the free products. Next we study the same problem in the case that the family
{(Si, ·i,≤i) , i ∈ I} of ordered semigroups has as intersection the ordered semigroup (U, ·U ,≤U ) which is a subsemigroup
of (Si, ·i,≤i) for every i ∈ I (with respect to the operation and order relation of each (Si, ·i,≤i) , i ∈ I ). To do this,
we first consider the ordered semigroup amalgam A = [{(Si, ·i,≤i) , i ∈ I} ; (U, ·U ,≤U ) ; {φi : U → Si, i ∈ I}] (where
{φi : U → Si, i ∈ I} is a family of monomorphisms) and then we construct the free ordered product Π∗

U
i∈I

Si of the

ordered semigroup amalgam A considering the ordered quotient of the free ordered product Π
i∈I

∗Si by an appropriate

pseudoorder of Π
i∈I

∗Si through which for each i, j ∈ I and for each u ∈ U , φi (u) ∈ Si is identified (by means of

monomorphisms) with φj (u) ∈ Sj . We give a sufficient and necessary condition so that an ordered semigroup amalgam
is embedded in an ordered semigroup. At the end of the paper, we introduce the notion of ordered dominions. An
element d of an ordered semigroup S is dominated by a subsemigroup U of S if for all ordered semigroups (T, ·,≤)

and for all homomorphisms β, γ : S → T such that β (u) = γ (u) for each u ∈ U , we have [β (d))T≤ ∩ [γ (d))T≤ ̸= ∅ .
In the last Theorem of the paper, we give an expression of the set of elements of S dominated by U based on ordered
semigroup amalgams.

Key words: Ordered semigroup, pseudoorder on an ordered semigroup, ordered quotient of an ordered semigroup by
a pseudoorder, free ordered product of ordered semigroups, ordered semigroup amalgam, free ordered product of an
ordered semigroup amalgam, ordered dominions

1. Introduction
A semigroup amalgam A may conveniently be thought of as a family {(Si, ·i) , i ∈ I} of semigroups intersecting
pairwise in a common subsemigroup (U, ·U ) (i.e. Si ∩ Sj = U for i, j ∈ I with i ̸= j and ·U = ·i ∩ (U × U)

for every i ∈ I ). In general the set
⋃
i∈I

Si is not a semigroup with respect to the operations of Si (i ∈ I ). The
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main question concerning a semigroup amalgam is whether or not the set
⋃
i∈I

Si is embeddable in a semigroup

(T, ·T ) with respect to the operations of Si , i ∈ I , that is, whether or not there exists an one-one mapping
f :

⋃
i∈I

Si → T with the property that for each i ∈ I and for all α, b ∈ Si , f (α·ib) = f (α) ·T f (b) . We can

answer the above question considering the free product of the semigroup amalgam A (see [2, §9.4] and [3,
§VII.1]). The aim of the paper is to study ”similar concepts” in the case of ordered semigroups, also taking into
account the order relation of Si , i ∈ I . We follow the same steps as in the case of semigroups, that is, if

A = [{(Si, ·i,≤i) , i ∈ I} ; (U, ·U ,≤U ) ; {φi : U → Si, i ∈ I}]

(where {φi : U → Si, i ∈ I} is a family of monomorphisms) is an ordered semigroup amalgam, we first construct
the free ordered product Π

i∈I
∗Si of the family {Si, i ∈ I} and then the free ordered product Π∗U

i∈I
Si of the ordered

semigroup amalgam A which is the ordered quotient of Π
i∈I
∗Si by the pseudoorder of Π

i∈I
∗Si generated by the

set of those words of Π
i∈I
∗Si that need to be “identified”. In particular, in Π∗U

i∈I
Si for each i, j ∈ I the image

φi (u) of an element u ∈ U in Si is identified (by means of monomorphisms) with its image φj (u) in Sj . Then,
based on the previous identification, we construct the new equality relation and order relation of Π

i∈I
∗Si . We

prove that an ordered semigroup amalgam is embeddable in an ordered semigroup if and only if it is naturally
embedded in its free ordered product. The concepts of free ordered product and of free ordered product of
an ordered semigroup amalgam was introduced by the author in his Doctoral Dissertation (cf. [9]). As an
application of ordered semigroup amalgams, we introduce the notion of ordered dominion which is “analogous”
to the notion of dominion of semigroups in the case of ordered semigroups. Following Isbell [4], if U is a
subsemigroup of a semigroup S and d ∈ S , we say that U dominates d if for all semigroups T and for all
homomorphisms β, γ : S → T such that β (u) = γ (u) for each u ∈ U , we have β (d) = γ (d) . The set of elements
of S dominated by U is called the dominion of U in S . According to Howie [3, §VII.2] there is a connection
between dominions and semigroup amalgams. In the last chapter of the paper we study ”similar concepts” in
the case of ordered semigroups, first defining the notion of ordered dominion and then characterizing ordered
dominions in some more accessible way (by means of ordered semigroup amalgams). The results provided by the
paper generalize the analogous ones concerning semigroups without order because a semigroup without order
can be considered as an ordered semigroup with order relation being its equality relation and so one can easily
obtain the corresponding results on semigroups without order from those presented in the paper.

2. Prerequisites

Let X be a nonempty set and B (X) be the set of all binary relations on X . If ρ, σ ∈ B (X) we define

ρ ◦ σ := {(α, b) ∈ X ×X : (∃c ∈ X) (α, c) ∈ ρ and (c, b) ∈ σ}

It is well known that (B (X) , ◦) is a semigroup (see [1, §1.4] and [3, §I.4]). If R ∈ B (X) and n ∈ N we

write Rn instead of R ◦R ◦ ... ◦R
← n times →

and we define R∞ :=
∞⋃

n=1
Rn . Then (see [1, §1.4] and [3, §I.4]) ) R∞ is

the smallest transitive relation on X containing R (called transitive closure). An equivalence relation ρ on a
semigroup (S, ·) is called congruence if for α , b, c∈ S , (α, b) ∈ ρ implies (α · c, b · c) ∈ ρ and (c · α, c · b) ∈ ρ

(see [1, §1.5] and [3, §1.5]). We denote by (x)ρ , x ∈ S , the ρ -class containing x, i.e.
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(x)ρ := {y ∈ S/ (x, y) ∈ ρ}

For a congruence ρ on S , the quotient set S/ρ is the set of all ρ -classes and is a semigroup endowed with the
operation ”∗” [3, §I.5]

(α)ρ ∗ (b)ρ = (α · b)ρ , α, b ∈ S

If (S, ·) is a semigroup and the ”symbol” 1 does not belong to S , then
(
S1,⊙

)
is the semigroup obtained from

S by adjoining an identity (see [1, §1.1], [3, §I.1] and [7]), that is S1 := S ∪ {1} and

α⊙ b :=

α · b, α, b ∈ S
α, b = 1
b, α = 1

, α, b ∈ S1

Clearly 1 is the identity of S1 . For any α, b ∈ S1 it is customary to write αb instead of α⊙ b (just as we do
for α · b , α, b ∈ S ). An ordered semigroup (S, ·,≤) is a semigroup (S, ·) with an order relation ”≤” which is
compatible with the operation ” ·” (i.e. for α , b, c ∈ S , α ≤ b implies α · c ≤ b · c and c · α ≤ c · b). For a
nonempty subset A of S we define

[A)
S
≤ := {x ∈ S/ (∃α ∈ A)α ≤ x} and (A]

S
≤ := {x ∈ S/ (∃α ∈ A)x ≤ α}

For α ∈ S we usually write [α)
S
≤ instead of [{α})S≤ and (α]

S
≤ instead of ({α}]S≤ , that is

[α)
S
≤ = {x ∈ S/α ≤ x} and (α]

S
≤ = {x ∈ S/x ≤ α}

A mapping f : (S, ·,≤) → (T, �,≺) between two ordered semigroups is (see [6, 10])

• a homomorphism if

o f (α · b) = f (α) � f (b) , α , b ∈ S

o f (α)≺ f (b) , α , b ∈ S such that α ≤ b .

• reverse isotone (or antitone) if for α , b ∈ S , f (α)≺ f (b) implies α ≤ b .

• a monomorphism if it is a reverse isotone homomorphism.

• an isomorphism if it is a monomorphism and onto (in this case we write S ≃ T ).

It is easy to see that

• a reverse isotone mapping is one-one (in general the reverse statement doesn’t hold).

• the composition of homomorphisms (resp. monomorphisms, isomorphisms) is a homomorphism (resp.
monomorphism, isomorphism).

Proposition 2.1 Let (S, ·,≤) , (T, �,≺) be ordered semigroups and f : S → T , g : T → S be homomorphisms
such that f ◦ g = 1T and g ◦ f = 1S (where 1T , 1S are the identity mappings on T , S respectively). Then
S ≃ T .
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Proof We shall prove that f is an isomorphism. Since f is a homomorphism, it suffices to show that f is a
reverse isotone and onto mapping.

• Let α, b ∈ S such that f (α)≺ f (b) . Since g is a homomorphism, then g (f (α)) ≤ g (f (b)) . Thus (since
g ◦ f = 1S ) α ≤ b .

• Let b ∈ T . Then for α := g (b) ∈ S we have f (α) = f (g (b)) =
(f◦g=1T )

b

2

Definition 2.2 ([5, 6, 10]) Let (S, ·,≤) be an ordered semigroup and σ ⊆ S × S (: σ is a binary relation on
S ). The relation σ is called pseudoorder if

i) ≤ ⊆ σ

ii) σ is transitive

iii) for x, y, z ∈ σ such that (x, y) ∈ σ we have (xz, yz) ∈ σ and (zx, zy) ∈ σ .

Now let (S, ·,≤) be an ordered semigroup and σ be a pseudoorder on S . Then we define (see [5, 6, 10])

σ̄ := σ ∩ σ−1

where σ−1 := {(α, b) ∈ S × S/ (b, α) ∈ σ} , that is,

σ̄ := {(α, b) ∈ S × S/ (α, b) ∈ σ, (b, α) ∈ σ}

The relation σ̄ is a congruence on S (see [5, 6, 10] – given a congruence ρ on an ordered semigroup S , it
has been constructed [8] by the author and N. Kehayopulu a pseudoorder σ on S such that ρ ⊆ σ̄ using the
quasi-chains modulo ρ). We can define an order relation ”≤σ ” on the quotient semigroup S/σ̄ as follows (see
[5, 6, 10]):

(α)σ̄≤σ(b)σ̄ ⇔ (x, y) ∈ σ for some x ∈ (α)σ̄, y ∈ (b)σ̄

It can be proved that

(α)σ̄≤σ(b)σ̄ if and only if (x, y) ∈ σ for any x ∈ (α)σ̄ , y ∈ (b)σ̄

(see [5, 6, 10]). Therefore

(α)σ̄≤σ(b)σ̄ if and only if (α, b) ∈ σ

Then
(
S/σ̄, ∗,≤σ

)
is an ordered semigroup (called ordered quotient of S by σ ) and the mapping σ# : (S, ·,≤) →(

S/σ̄, ∗,≤σ

)
defined by

σ# (x) = (x)σ̄ , x ∈ S

is an onto homomorphism called natural homomorphism (see [5, 6, 10]). For any relation R on S we define
(see [3, §I.5] and [10])
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Rc :=
{
(xαy, xby) ∈ S × S : x, y ∈ S1, (α, b) ∈ R

}
Proposition 2.3 Let (S, ·,≤) be an ordered semigroup and R ⊆ S × S . Then

i) (Rc∪ ≤)
∞ is a pseudoorder of S .

ii) R ⊆ (Rc∪ ≤)
∞

iii) If T is a pseudoorder of S containing R then (Rc∪ ≤)
∞ ⊆ T .

Proof

i) It is evident that ≤ ⊆ (Rc∪ ≤)
∞ and (Rc∪ ≤)

∞ is transitive. Since for α, b, c ∈ S with (α, b) ∈
(Rc∪ ≤) we clearly have (αc, bc) , (cα, cb) ∈ (Rc∪ ≤) then for α, b, c ∈ S , (α, b) ∈ (Rc∪ ≤)

∞ implies
(αc, bc) , (cα, cb) ∈ (Rc∪ ≤)

∞ . So (Rc∪ ≤)
∞ is a pseudoorder of S .

ii) It follows immediately from R ⊆ Rc ⊆ (Rc∪ ≤) ⊆ (Rc∪ ≤)
∞ .

iii) First we prove that (Rc∪ ≤) ⊆ T . For (α, b) ∈ (Rc∪ ≤) we have (α, b) ∈ Rc or α ≤ b .

α) If (α, b) ∈ Rc then there exist x, y ∈ S1 and (c, d) ∈ R such that α = xcy and b = xdy . Since
R ⊆ T we have (c, d) ∈ T which implies that (xcy, xdy) ∈ T (T is a pseudoorder on S ). Therefore
(α, b) ∈ T .

β ) If α ≤ b then, since T is a pseudoorder on S , (α, b) ∈ T .

Consequently (Rc∪ ≤) ⊆ T and so T is a transitive relation on S containing (Rc∪ ≤) and hence, since
(Rc∪ ≤)

∞ is the smallest transitive relation on S containing (Rc∪ ≤) , it follows that (Rc∪ ≤)
∞ ⊆ T .

2

From the above Proposition, (Rc∪ ≤)
∞ is the smallest pseudoorder on S containing R (called pseudoorder on

S generated by R) denoted by σR
S (if no confusion arises, we usually simplify the notation to σR ).

Let now S , T be ordered semigroups and f : S → T be a homomorphism. We define (see [5, 6, 10])

f
∼
:= {(α, b) ∈ S × S : f (α) ≤ f (b)}

and

ker f := {(α, b) ∈ S × S : f (α) = f (b)}

Then (see [5, 6, 10])

• f
∼

is a pseudoorder on S

• ker f = f̄
∼

(=f
∼
∩ f

∼

−1 )

Theorem 2.4 Let S , T be ordered semigroups, f : S → T be a homomorphism and σ be a pseudoorder on S
such that σ ⊆ f

∼
. Then there exists a homomorphism η : S/σ̄ → T such that η ◦ σ# = f and f (S) = η

(
S/σ̄

)
.
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Proof Define η : S/σ̄ → T by

η ((α)σ̄) := f (α) , α ∈ S

Since σ ⊆ f
∼

we immediately have σ̄ ⊆ ker f and hence η is well-defined. Also for all α, b ∈ S

η ((α)σ̄ ∗ (b)σ̄) = η ((αb)σ̄) = f (αb) = f (α) f (b) = η ((α)σ̄) η ((b)σ̄)

So in order η to be a homomorphism, it suffices to show that η ((α)σ̄) ≤ η ((b)σ̄) for (α)σ̄≤σ(b)σ̄ :
Let α, b ∈ S such that (α)σ̄≤σ(b)σ̄ . Then (α, b) ∈ σ ⊆ f

∼
. Thus f (α) ≤ f (b) and hence η ((α)σ̄) ≤ η ((b)σ̄) .

Since for any α ∈ S we have (
η ◦ σ#

)
(α) = η

(
σ# (α)

)
= η ((α)σ̄) = f (α)

it is clear that η ◦ σ# = f and f (S) = η
(
S/σ̄

)
. 2

Remark If γ : S/σ̄ → T is a homomorphism such that γ ◦ σ# = f then for every α ∈ S we have

γ ((α)σ̄) = γ
(
σ# (α)

)
= f (α) = η ((α)σ̄)

and hence γ = η . So there is a unique homomorphism γ : S/σ̄ → T such that γ ◦ σ# = f (this is η ).

3. Free ordered products

Let {(Si, ·i,≤i) , i ∈ I} be an indexed family of disjoint ordered semigroups. Let S :=
⋃
i∈I

Si . Then for any

α ∈ S we denote σ (α) the unique κ ∈ I with the property that α ∈ Sκ . If no confusion arises, we shall not
use index for the order relation on Si , i ∈ I (i.e. we shall just write ≤ instead of ≤i ) and also we shall not
use any symbol for the operation of Si , i ∈ I (i.e. we shall just write αb instead of α·ib for all α, b ∈ Si ).
Now let n ∈ N .

• If n = 1 we denote F1 := {(α) : α ∈ S}

• If n ≥ 2 we denote

Fn :=

{
(α1, α2, ..., αn) ∈ S × S × ...× S

← n times →
: σ (αλ) ̸= σ (αλ+1) , λ = 1, ..., n − 1

}

We define Π
i∈I
∗Si :=

⋃
n∈N

Fn . The set Π
i∈I
∗Si

• consists of all finite strings

(α1, α2, ..., αn) ∈ S × S × ...× S︸ ︷︷ ︸
n

where if n ≥ 2 then σ (αλ) ̸= σ (αλ+1) , λ = 1, ..., n− 1 , and

• is a semigroup with operation ”•” defined by the rule that
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(α1, ..., αm) • (b1, ..., br) :=
{
(α1, ..., αm, b1, ..., br) , if σ (αm) ̸= σ (b1)
(α1, ..., αmb1, ..., br) , if σ (αm) = σ (b1)

(see [2, §9.4] and [3, §VII.1])

It is evident that Π
i∈I
∗Si is generated by the strings of length one (i.e. by (α) , α ∈ Si , i ∈ I ). On Π

i∈I
∗Si we

define a binary relation ”≺” as follows

(α1, ..., αm)≺ (b1, ..., br) ⇔

 m = r = q (say)
σ (αj) = σ (bj) , j = 1, ..., q

αj ≤ bj , j = 1, ..., q


Theorem 3.1

(
Π
i∈I
∗Si, •,≺

)
is an ordered semigroup.

Proof It suffices to show that ”≺” is an order relation on S with respect to the operation ′′•′′ . It is clear
that ”≺” is an order relation on S . Now let a = (α1, ..., αm) , b = (b1, ..., br) and c = (c1, ..., cn) be elements
of Π

i∈I
∗Si with a ≺ b . We shall show that a • c ≺ b • c and c • a ≺ c • b . Since a ≺ b then

 m = r = q (say)
σ (αj) = σ (bj) , j = 1, ..., q

αj ≤ bj , j = 1, ..., q


Hence a = (α1, ..., αq) and b = (b1, ..., bq) . We distinguish two cases:

i) σ (αq) ̸= σ (c1)

Then a•c = (α1, ..., αq)• (c1, ..., cn) = (α1, ..., αq, c1, ..., cn) . Since σ (αq) = σ (bq) we have σ (bq) ̸= σ (c1)

and hence b•c = (b1, ..., bq)•(c1, ..., cn) = (b1, ..., bq, c1, ..., cn) . Since σ (αj) = σ (bj) , αj ≤ bj , j = 1, ..., q

we immediately have a • c ≺ b • c .

ii) σ (αq) = σ (c1)

Then a • c = (α1, ..., αq) • (c1, ..., cn) = (α1, ..., αqc1, ..., cn) . Since σ (αq) = σ (bq) we have σ (bq) = σ (c1)

and hence b • c = (b1, ..., bq) • (c1, ..., cn) = (b1, ..., bqc1, ..., cn) . Since σ (αqc1) = σ (αq) = σ (bq) = σ (bqc1)

we have σ (αqc1) = σ (bqc1) . Also since σ (αq) = σ (bq) = σ (c1) = k (say) we have αq, bq, c1 ∈ Sk and so
αq ≤ bq implies αqc1 ≤ bqc1 . Thus, since σ (αj) = σ (bj) , αj ≤ bj , j = 1, ..., q − 1 , we immediately have
a • c ≺ b • c .

Similarly we show that c • a ≺ c • b . 2

The ordered semigroup
(
Π
i∈I
∗Si, •,≺

)
is called free ordered product of the family {(Si, ·i,≤i) , i ∈ I} . For every

j ∈ I we consider the mapping

θj : Sj → Π
i∈I
∗Si / α→ (α)

It is evident that θj is a monomorphism for any j ∈ I .
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Proposition 3.2 Let (T, ◦,≤T ) be an ordered semigroup and {ψi : Si → T, i ∈ I} be a family of homomor-
phisms. Then there exists a unique homomorphism γ : Π

i∈I
∗Si → T such that γ ◦ θj = ψj for each j ∈ I .

Proof We define γ : Π
i∈I
∗Si → T by

γ ((α1, α2, ..., αm)) :=
(
ψσ(α1) (α1)

)
◦
(
ψσ(α2) (α2)

)
◦ ... ◦

(
ψσ(αm) (αm)

)
i) Let (α1, ..., αm) , (b1, ..., br) ∈ Π

i∈I
∗Si . Then

γ ((α1, ..., αm) • (b1, ..., br)) = γ ((α1, ..., αm)) ◦ γ ((b1, ..., br))

(see [2, §9.4] and [3, §VII.1]).

ii) Let (α1, ..., αm) , (b1, ..., br) ∈ Π
i∈I
∗Si with (α1, ..., αm)≺ (b1, ..., br) . Then

 m = r = q (say)
σ (αp) = σ (bp) , p = 1, ..., q

αp ≤ bp, p = 1, ..., q


Since ψi is a homomorphism for every i ∈ I and σ (αp) = σ (bp) , p = 1, ..., q , then αp ≤ bp implies
ψσ(αp) (αp)≤Tψσ(bp) (bp) , p = 1, ..., q . Therefore ((T, ◦,≤T ) is an ordered semigroup)

(
ψσ(α1) (α1)

)
◦
(
ψσ(α2) (α2)

)
◦ ... ◦

(
ψσ(αq) (αq)

)
≤T

(
ψσ(b1) (b1)

)
◦
(
ψσ(b2) (b2)

)
◦ ... ◦

(
ψσ(bq) (bq)

)
and hence (m = r = q ) we have

γ ((α1, α2, ..., αm))≤T γ ((b1, b2, ..., br))

Consequently, γ is a homomorphism.
Now for j ∈ I and α ∈ Sj we have

γ (θj (α)) = γ ((α)) = ψσ(α) (α)

But σ (α) = j and so ψσ(α) (α) = ψj (α) . Thus γ (θj (α)) = ψj (α) . Therefore γ ◦ θj = ψj for every j ∈ I .
The uniqueness of γ follows immediately from the fact that Π

i∈I
∗Si is generated by strings of length one (see

[2, §9.4] and [3, §VII.1]). 2

Proposition 3.3 Let H be an ordered semigroup and {φi : Si → H, i ∈ I} be a family of monomorphisms
having the following property (say (+)):

«For any ordered semigroup T and for any family of homomorphisms {βi : Si → T, i ∈ I} there exists a
unique homomorphism δ : H → T such that δ ◦ φj = βj for each j ∈ I »

Then Π
i∈I
∗Si ≃ H .
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Proof

From the given property (+) for T = Π
i∈I
∗Si and the family of homomorphisms

{
θj : Sj → Π

i∈I
∗Si, j ∈ I

}
it

follows that there exists a unique homomorphism δ : H → Π
i∈I
∗Si such that δ ◦ φi = θi for every i ∈ I . From

Proposition 3.2 for T = H and the family of homomorphisms {φi : Si → H, i ∈ I} it follows that there exists
a unique homomorphism γ : Π

i∈I
∗Si → H such that γ ◦ θi = φi for every i ∈ I . Then γ ◦ δ : H → H is a

homomorphism such that

φi = γ ◦ θi = γ ◦ (δ ◦ φi) = (γ ◦ δ) ◦ φi

for any i ∈ I .
Now from the given property (+) for T = H and the family of homomorphisms {φi : Si → H, i ∈ I} it follows
that there exists a unique homomorphism δ′ : H → H such that δ′ ◦ φi = φi for every i ∈ I . Since clearly the
identity homomorphism 1H : H → H has this property, we immediately have γ ◦ δ = δ′ = 1H . So γ ◦ δ = 1H .
Also δ ◦ γ : Π

i∈I
∗Si → Π

i∈I
∗Si is a homomorphism such that

θj = δ ◦ φj = δ ◦ (γ ◦ θj) = (δ ◦ γ) ◦ θj

for any j ∈ I .

From Proposition 3.2 for T = Π
i∈I
∗Si and the family of homomorphisms

{
θj : Sj → Π

i∈I
∗Si, j ∈ I

}
it follows

that there exists a unique homomorphism γ′ : Π
i∈I
∗Si → Π

i∈I
∗Si such that γ′ ◦ θj = θj for every j ∈ I .

Since clearly the identity homomorphism 1 Π
i∈I

∗Si
: Π
i∈I
∗Si → Π

i∈I
∗Si has this property, we immediately have

δ ◦ γ = γ′ = 1 Π
i∈I

∗Si
. So δ ◦ γ = 1 Π

i∈I

∗Si
. From this and the fact that γ ◦ δ = 1H (shown above), we now

immediately deduce that Π
i∈I
∗Si ≃ H as required. 2

4. Ordered semigroup amalgams
An ordered semigroup amalgam

A = [{(Si, ·i,≤i) , i ∈ I} ; (U, ·U ,≤U ) ; {φi : U → Si, i ∈ I}]

consists of

• a family {(Si, ·i,≤i) , i ∈ I} of disjoint ordered semigroups

• an ordered semigroup (U, ·U ,≤U ) (called the core of the ordered semigroup amalgam) such that Si∩U = ∅
for each i ∈ I

• a family {φi : U → Si, i ∈ I} of monomorphisms.

We simplify the notation A = [{(Si, ·i,≤i) , i ∈ I} ; (U, ·U ,≤U ) ; {φi : U → Si, i ∈ I}] to A = [Si;U ;φi, i ∈ I]

when the context allows. We shall say that the ordered semigroup amalgam A is embedded in the ordered
semigroup T if there exists a monomorphism λ : U → T and a family {λi : Si → T, i ∈ I} of monomorphisms
with the following properties:
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• λi ◦ φi = λ for any i ∈ I

• λi (Si) ∩ λj (Sj) = λ (U) , i, j ∈ I such that i ̸= j .

Let now

R = {(a, b) ∈ F1 × F1 : (∃ (u, i, j) ∈ U × I × I) a = θi (φi (u)) , b = θj (φj (u))}

It is evident that R is a binary relation on Π
i∈I
∗Si and hence we can consider the pseudoorder on Π

i∈I
∗Si

generated by R , σR = (Rc ∪ ≺)
∞ where

Rc :=

{
(xay, xby) ∈ Π

i∈I
∗Si × Π

i∈I
∗Si : x, y ∈

(
Π
i∈I
∗Si

)1

, (a, b) ∈ R

}

Then the ordered quotient of Π
i∈I
∗Si by σR is called free ordered product of the ordered semigroup amalgam A

and denoted Π∗U
i∈I

Si (i.e. Π∗U
i∈I

Si =
Π

i∈I

∗Si

/σR
where σR = σR ∩ σR−1 ).

For each i ∈ I we define µi = σR
# ◦ θi , where σR# is the natural homomorphism

σR
# : Π

i∈I
∗Si → Π∗U

i∈I
Si , σR# ((α1, α2, ..., αn)) = ((α1, α2, ..., αn))σR

It is clear that for every i ∈ I the mapping µi is a homomorphism (µi : Si → Π∗U
i∈I

Si , µi (α) = ((α))σR
).

Proposition 4.1 For any i, j ∈ I we have µi ◦ φi = µj ◦ φj .

Proof Let u ∈ U . Then

µi (φi (u)) = σR
# (θi (φi (u))) = (θi (φi (u)))σR

and similarly µj (φj (u)) = (θj (φj (u)))σR
. Since

• (θi (φi (u)) , θj (φj (u))) ∈ R ⊆ σR

• (θj (φj (u)) , θi (φi (u))) ∈ R ⊆ σR

it follows immediately that (θi (φi (u)) , θj (φj (u))) ∈ σR∩σR−1 = σR and thus (θi (φi (u)))σR
= (θj (φj (u)))σR

.
Consequently µi (φi (u)) = µj (φj (u)) . 2

We define µ = µi ◦ φi , i ∈ I (from the above Proposition, the definition of µ does not depend on the choice of
i ∈ I ). Clearly

• µ : U → Π∗U
i∈I

Si , µ (u) = ((φi (u)))σR

• µ is a homomorphism.
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Proposition 4.2

i) Let j ∈ I such that µj is reverse isotone. Then µ is reverse isotone.

ii) µ (U) ⊆ µi (Si) for all i ∈ I .

Proof

i) Since µ = µj ◦ φj , µj is reverse isotone and φj is a monomorphism then clearly µ is reverse isotone.

ii) For every i ∈ I we have µ (U) = µi (φi (U)) ⊆ µi (Si) .

2

Definition 4.3 The ordered semigroup amalgam A is naturally embedded in its free ordered product if

• µi is reverse isotone for all i ∈ I

• µi (Si) ∩ µj (Sj) ⊆ µ (U) for all i, j ∈ I such that i ̸= j .

Proposition 4.4 If the ordered semigroup amalgam A is naturally embedded in its free ordered product then
the ordered amalgam A is embeddable in an ordered semigroup.

Proof Since µi is reverse isotone for all i ∈ I then clearly
{
µi : Si → Π∗U

i∈I
Si, i ∈ I

}
is a family of monomor-

phisms and also µ is a monomorphism. Moreover µ = µi ◦φi for every i ∈ I . Now let i, j ∈ I such that i ̸= j .
We shall prove that µi (Si) ∩ µj (Sj) = µ (U) . Indeed:

• By Definition 4.3 we have µi (Si) ∩ µj (Sj) ⊆ µ (U) .

• By Proposition 4.2 ii) it follows immediately that µ (U) ⊆ µi (Si) ∩ µj (Sj) .

Thus µi (Si)∩µj (Sj) = µ (U) and hence the ordered amalgam A is embedded in the ordered semigroup Π∗U
i∈I

Si .

2

Proposition 4.5 Let Q be an ordered semigroup and {νi : Si → Q, i ∈ I} be a family of homomorphisms such
that νi ◦ φi = νj ◦ φj for all i, j ∈ I . Then there exists a unique homomorphism δ : Π∗U

i∈I
Si → Q such that

δ ◦ µi = νi for each i ∈ I .

Proof By Proposition 3.2 we obtain a unique homomorphism γ : Π
i∈I
∗Si → Q such that γ ◦ θi = νi for every

i ∈ I . Then for i, j ∈ I and u ∈ U we have

γ (θi (φi (u))) = νi (φi (u)) = νj (φj (u)) = γ (θj (φj (u)))

and hence (θi (φi (u)) , θj (φj (u))) ∈ ker γ which clearly means that R ⊆ ker γ . Since ker γ = γ
∼
∩ γ

∼

−1

where γ
∼

:=

{
(a, b) ∈

(
Π
i∈I
∗Si

)
×
(
Π
i∈I
∗Si

)
: γ (a)≺ γ (b)

}
, it follows immediately that R ⊆ γ

∼
. Thus γ

∼

is a pseudoorder on Π
i∈I
∗Si containing R and so σR ⊆ γ

∼
. Then by Theorem 2.4 there exists a (unique)

homomorphism δ : Π∗U
i∈I

Si → Q such that δ ◦ σR# = γ . Consequently for each i ∈ I and α ∈ Si it follows that
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δ (µi (α)) = δ
(
((α))σR

)
= δ (πσR

((α))) = γ ((α)) = γ (θi (α)) = νi (α)

and hence δ ◦ µi = νi for all i ∈ I .
Now let ζ : Π∗U

i∈I
Si → Q be a homomorphism such that ζ ◦ µi = νi for each i ∈ I . We shall prove that ζ = δ .

Indeed:
For (α1, α2, ..., αn) ∈ Π

i∈I
∗Si (n ∈ N) we have

ζ
(
((α1, α2, ..., αn))σR

)
= ζ

(
((α1))σR

((α2))σR
...((αn))σR

)
=

= ζ
(
((α1))σR

)
ζ
(
((α2))σR

)
...ζ

(
((αn))σR

)
=

= ζ
(
µσ(α1) (α1)

)
ζ
(
µσ(α2) (α2)

)
...ζ

(
µσ(αn) (αn)

)
=

= νσ(α1) (α1) νσ(α2) (α2) ...νσ(αn) (αn) =

= δ
(
µσ(α1) (α1)

)
δ
(
µσ(α2) (α2)

)
...δ

(
µσ(αn) (αn)

)
=

= δ
(
((α1))σR

)
δ
(
((α2))σR

)
...δ

(
((αn))σR

)
=

= δ
(
((α1))σR

((α2))σR
...((αn))σR

)
= δ

(
((α1, α2, ..., αn))σR

)

and so the proof is complete. 2

Theorem 4.6 Let A = [{(Si, ·i,≤i) , i ∈ I} ; (U, ·U ,≤U ) ; {φi : U → Si, i ∈ I}] be an ordered semigroup amal-
gam. The following are equivalent:

i) A is embeddable in an ordered semigroup

ii) A is naturally embedded in its free ordered product.

Proof Since ii)⇒ i) is obvious, it suffices to show only i)⇒ ii). So suppose that A is embeddable in an ordered
semigroup (T, ·T ,≤T ) , i.e. that there exists a monomorphism λ : U → T and a family {λi : Si → T, i ∈ I} of
monomorphisms such that λi ◦ φi = λ for every i ∈ I and λi (Si) ∩ λj (Sj) = λ (U) for all i, j ∈ I with i ̸= j .
By Proposition 4.5 there exists a unique homomorphism δ : Π∗U

i∈I
Si → T such that δ ◦ µi = λi for each i ∈ I .

Then for every i ∈ I , µi is reverse isotone since for x, y ∈ Si we have

µi (x)≺σR
µi (y) ⇒ δ (µi (x))≤T δ (µi (y)) ⇒ λi (x)≤Tλi (y) ⇒ x ≺ y

So the first condition of Definition 4.3 holds. For the second condition of Definition 4.3, suppose i, j ∈ I such
that i ̸= j . We shall prove that µi (Si) ∩ µj (Sj) ⊆ µ (U) . Indeed:
Let z ∈ µi (Si) ∩ µj (Sj) . Then there exist α ∈ Si and b ∈ Sj such that z = µi (α) = µj (b) and hence
δ (z) = δ (µi (α)) = λi (α) ∈ λi (Si) . Similarly δ (z) ∈ λj (Sj) and so δ (z) ∈ λi (Si)∩λj (Sj) = λ (U) . Therefore
there exists u ∈ U such that δ (z) = λ (u) , i.e. λi (α) = λi (φi (u)) . Since λi is a monomorphism (and hence
one-one), it follows that α = φi (u) . Thus

z = µi (α) = µi (φi (u)) = µ (u) ∈ µ (U)

Consequently, we have shown that both the conditions of Definition 4.3 hold, and hence A is naturally embedded
in its free ordered product as required. 2
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5. Ordered dominions
Let S be an ordered semigroup and let U be a subsemigroup of S . We say that U dominates an element d ∈ S

if for all ordered semigroups (T, ·,≤) and for all homomorphisms β, γ : S → T such that β (u) = γ (u) for each
u ∈ U , we have

[β (d))
T
≤ ∩ [γ (d))

T
≤ ̸= ∅

The set of elements of S dominated by U is called the ordered dominion of U in S and is written DomS (U) .

Proposition 5.1 Let U be a subsemigroup of an ordered semigroup S . Then

i) U ⊆ DomS (U) ⊆ S

ii) DomS (U) is a subsemigroup of S

Proof

i) Let w ∈ U ⊆ S , (T, ·,≤) be an ordered semigroup and β, γ : S → T be homomorphisms such that
β (u) = γ (u) for each u ∈ U . We will prove that w ∈ DomS (U) . For this it suffices to show that

[β (w))
T
≤ ∩ [γ (w))

T
≤ ̸= ∅ . Since w ∈ U we have β (w) = γ (w) . Thus β (w) ∈ [β (w))

T
≤ ∩ [γ (w))

T
≤ and so

[β (w))
T
≤ ∩ [γ (w))

T
≤ ̸= ∅ .

ii) From i) it immediately follows that ∅ ̸= DomS (U) ⊆ S . Let now d1, d2 ∈ DomS (U) . We will prove that
d1d2 ∈ DomS (U) . To do this, take an ordered semigroup (T, ·,≤) and homomorphisms β, γ : S → T

such that β (u) = γ (u) for each u ∈ U . We need to show that [β (d1d2))
T
≤ ∩ [γ (d1d2))

T
≤ ̸= ∅ . Since

d1, d2 ∈ DomS (U) then [β (d1))
T
≤ ∩ [γ (d1))

T
≤ ̸= ∅ and [β (d2))

T
≤ ∩ [γ (d2))

T
≤ ̸= ∅ . Thus there exist

t1, t2 ∈ T such that β (d1) ≤ t1 , γ (d1) ≤ t1 , β (d2) ≤ t2 and γ (d2) ≤ t2 . Since β , γ are homomorphisms
and T is an ordered semigroup, it is clear that β (d1d2) ≤ t1t2 and γ (d1d2) ≤ t1t2 . Hence

t1t2 ∈ [β (d1d2))
T
≤ ∩ [γ (d1d2))

T
≤

and so [β (d1d2))
T
≤ ∩ [γ (d1d2))

T
≤ ̸= ∅ .

2

Let (S, ·,≤) , (Si, ·i,≤i) , i ∈ I , U be ordered semigroups, αi : (S, ·,≤) → (Si, ·i,≤i) be isomorphisms and
f : U → S be a monomorphism. We consider the ordered semigroup amalgam

A = [{S, Si, i ∈ I} ;U ; {f, αi ◦ f, i ∈ I}]

and the free ordered product of A , say P . Denote “≤P ” the order relation of P . Let also the associated (with
the free ordered product P of A) homomorphisms

µ : S → P , µ (s) = ((s))σR

µi : Si → P , µi (x) = ((x))σR
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Proposition 5.2 The homomorphisms µ , µi , i ∈ I are reverse isotone.

Proof For any i, j ∈ I we define

ξi,j = αi ◦ αj
−1 : Sj → Si

Clearly ξi,j is an isomorphism for all i, j ∈ I and also ξi,i = 1Si for every i ∈ I .
Let now κ ∈ I .

• ακ ◦ f = ακ ◦ αλ
−1 ◦ αλ ◦ f = ξκ,λ ◦ (αλ ◦ f) , λ ∈ I

• ξ
κ,λ

◦ (αλ ◦ f) = ακ ◦ αλ
−1 ◦ αλ ◦ f = ακ ◦ f = ακ ◦ αν

−1 ◦ αν ◦ f = ξ
κ,ν

◦ (αν ◦ f) , ν, λ ∈ I .

Then, by Proposition 4.5 (taking Sκ as Q with homomorphisms ακ : S → Sκ , ξκ,λ : Sλ → Sκ , λ ∈ I ), there
exists a homomorphism δ : P → Sκ with the property

δ ◦ µ = ακ , δ ◦ µλ = ξκ,λ , λ ∈ I

A) µ is reverse isotone
Let s1, s2 ∈ S such that µ (s1)≤Pµ (s2) . Then

µ (s1)≤Pµ (s2) ⇒ (δ homomorphism)

δ (µ (s1))≤κδ (µ (s2)) ⇒ (δ ◦ µ = ακ)

ακ (s1)≤κακ (s2) ⇒ (ακ reverse isotone)

ακ (s1)≤κακ (s2) ⇒ (ακ reverse isotone)

s1 ≤ s2

B) µκ is reverse isotone
Let x1, x2 ∈ Sκ such that µκ (x1)≤Pµκ (x2) . Then

µκ (x1)≤Pµκ (x2) ⇒ (δ homomorphism)

δ (µκ (x1))≤κδ (µκ (x2)) ⇒ (δ ◦ µκ = ξκ,κ = 1Sκ)

x1≤κx2

2

Since f : U → S is a homomorphism, then obviously f (U) is a subsemigroup of S .

Theorem 5.3 DomS (f (U)) =
⋃

w∈P

(
µ−1

(
(w]

P
≤P

)⋂
(µi ◦ αi)

−1
(
(w]

P
≤P

))
, i ∈ I .

Proof Let i ∈ I .

A) DomS (f (U)) ⊆
⋃

w∈P

(
µ−1

(
(w]

P
≤P

)⋂
(µi ◦ αi)

−1
(
(w]

P
≤P

))
Let d ∈ DomS (f (U)) . By Proposition 4.1 we have µ ◦ f = µi ◦ (αi ◦ f) . Therefore µ (f (u)) =

(µi ◦ α) (f (u)) for each u ∈ U and thus µ (υ) = (µi ◦ α) (υ) for any υ ∈ f (U) . Since d ∈ DomS (f (U))

and µ, µi ◦ αi : S → P are homomorphisms, then
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[µ (d))
P
≤P

∩ [(µi ◦ αi) (d))
P
≤P

̸= ∅

Hence there exists w ∈ P such that µ (d)≤Pw and (µi ◦ αi) (d)≤Pw . Therefore

µ (d) ∈ (w]
P
≤P

, (µi ◦ αi) (d) ∈ (w]
P
≤P

that is, d ∈ µ−1
(
(w]

P
≤P

)⋂
(µi ◦ αi)

−1
(
(w]

P
≤P

)
.

B)
⋃

w∈P

(
µ−1

(
(w]

P
≤P

)⋂
(µi ◦ αi)

−1
(
(w]

P
≤P

))
⊆ DomS (f (U))

Let w ∈ P and d ∈ µ−1
(
(w]

P
≤P

)⋂
(µi ◦ αi)

−1
(
(w]

P
≤P

)
. Thus

d ∈ µ−1
(
(w]

P
≤P

)
, d ∈ (µi ◦ αi)

−1
(
(w]

P
≤P

)
and hence

µ (d) ∈ (w]
P
≤P

, (µi ◦ αi) (d) ∈ (w]
P
≤P

that is, µ (d)≤Pw and (µi ◦ αi) (d)≤Pw .
Let now (T, ·T ,≤T ) be an ordered semigroup and β, γ : S → T homomorphisms such that β (υ) = γ (υ)

for any υ ∈ f (U) which means that β ◦ f = γ ◦ f . For any j ∈ I we define

ζj = γ ◦ αj
−1 : Sj → T

Clearly ζj is a homomorphism for all j ∈ I .

• β ◦ f = γ ◦ f = γ ◦ ακ
−1◦ = ζκ ◦ (ακ ◦ f) , κ ∈ I

• ζκ ◦ (ακ ◦ f) = γ ◦ ακ
−1 ◦ ακ ◦ f = γ ◦ αλ

−1 ◦ αλ ◦ f = ζλ ◦ (αλ ◦ f) , κ, λ ∈ I .

Then, by Proposition 4.5 (taking T as Q with homomorphisms β : S → T , ζκ : Sκ → T , κ ∈ I ), there
exists a homomorphism η : P → T with the property

η ◦ µ = β , η ◦ µκ = ζκ , κ ∈ I

� Since η is a homomorphism and µ (d)≤Pw , we have

β (d) = η (µ (d))≤T η (w)

that is, η (w) ∈ [β (d))
T
≤T

.

� Since η is a homomorphism and (µi ◦ αi) (d)≤Pw , we have

γ (d) =
(
γ ◦ αi

−1) (αi (d)) = ζi (αi (d)) = (η ◦ µi) (αi (d)) = η ((µi ◦ αi) (d))≤T η (w)

that is, η (w) ∈ [γ (d))
T
≤T

.
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Consequently η (w) ∈ [β (d))
T
≤T

∩ [γ (d))
T
≤T

and thus [β (d))
T
≤T

∩ [γ (d))
T
≤T

̸= ∅ . Therefore d ∈

DomS (f (U)) .

2

Since every semigroup without order can be considered as an ordered semigroup with its equality relation being
its order relation, then we immediately have that the notions and results presented in the paper generalize the
analogous ones of semigroup without order.
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