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Abstract: In this paper, using some combinatorial identities and congruences involving q−harmonic numbers, we
establish congruences that for any odd prime p and any positive integer α ,

p−1∑
k=1 (mod 2)

(−1)nk q
−αnpk+n

(
k+1
2

)
+2k

[k]q

[
αp− 1

k

]n

q

(mod [p]2q),

and
p−1∑

k=1 (mod 2)

(−1)nkq−αnpk+n
(
k+1
2

)
+k

[
αp− 1

k

]n

q

H̃k(q) (mod [p]2q),

where n is any integer.

Key words: Congruence, q−analog, q−harmonic number

1. Introduction
The harmonic numbers are given by

H0 = 0 and Hn =

n∑
k=1

1

k
for n ∈ Z+.

In [22], Wolstenholme discovered that for any prime number p ≥ 5,

Hp−1 ≡ 0 (mod p2).

The q−harmonic numbers and the q−alternating harmonic number are given by

Hn(q) =

n∑
k=1

1

[k]q
, H̃n(q) =

n∑
k=1

qk

[k]q
, In(q) =

n∑
k=1

(−1)
k

[k]q
,
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and the q−harmonic numbers of order 2 are given by

Hn,2(q) =

n∑
k=1

1

[k]
2
q

, H̃n,2(q) =

n∑
k=1

qk

[k]
2
q

,

where for nonnegative integer n , [n]q = (1− qn)/(1− q) = 1+ q + q2 + ...+ qn−1. It is seen that for any prime
p such that 0 < m < p,

1

[p−m]q
≡ − qm

[m]q
(mod [p]q). (1.1)

The q−Pochhammer symbol is given by

(x; q)0 = 1 and (x; q)n =

n−1∏
k=0

(
1− xqk

)
.

For any m,n ∈ N, the q−binomial coefficients are defined by[
n

m

]
q

=
(q; q)n

(q; q)m(q; q)n−m
,

if n ≥ m, and if n < m, then
[
n
m

]
q
= 0. It is clear that

lim
q→1

[
n

m

]
q

=

(
n

m

)
,

where
(
n
m

)
is the usual binomial coefficient. The q−binomial coefficients satisfy the recurrence relation

[
n+ 1

m

]
q

= qm
[
n

m

]
q

+

[
n

m− 1

]
q

.

In [16], Pan and Cao defined the q−Fermat quotient by for an odd prime p,

Qp (m, q) =
(qm; qm)p−1 / (q; q)p−1 − 1

[p]q
,

where m is nonnegative integer such that p ∤ m.

In [21], Tauraso gave that for any prime p and any positive integer α,

[
αp− 1

k

]
q

≡ (−1)
k
q−(

k+1
2 )
(
1− α [p]q Hk (q)

)
(mod [p]2q),

where k is integer such that 0 ≤ k < p. Thus, it is clearly seen that

[
αp− 1

k

]
q

≡ (−1)
k
qαpk−

(
k+1
2

) (
1− α [p]q H̃k(q)

)
(mod [p]2q). (1.2)
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In [7], Elkhiri et al. gave that for an odd prime p,

p−1∑
k=1

H̃k(q) ≡
p−

(
q1−p; q

)
p−1

[p]q
(mod [p]q). (1.3)

In [2, 19], Shi et al. showed that for any prime p ≥ 5,

Hp−1(q) ≡
p− 1

2
(1− q) +

p2 − 1

24
(1− q)2 [p]q (mod [p]2q), (1.4)

and

H̃p−1(q) ≡
1− p

2
(1− q) +

p2 − 1

24
(1− q)2 [p]q (mod [p]2q). (1.5)

In [14], Ömür et al. investigated that for any positive integer n,

n∑
k=1

q2k

[k]q
= H̃n(q)− q(1− q) [n]q , (1.6)

and
n∑

k=1

(−q)
k

[k]q
= In(q) + (1− q)

(−1)n+1 + 1

2
. (1.7)

In [10], Kızılateş and Tuğlu gave that for any positive integer n,

∑
0≤i≤k≤n−1

qi+k

[i]q
= [n]q(H̃n(q)− q). (1.8)

In [11], Koparal et al. showed that for any positive integer n,

∑
1≤i≤k≤n

qi+k

[i]q [k]q
=

1

2

(
H̃n,2(q)− (1− q)H̃n(q) + H̃n(q)

2
)
,

and

∑
1≤i≤k≤n

qi+2k

[i]q [k]q
=

1

2
H̃n,2(q) +

1

2
H̃n(q)

2 +

(
q − 3

2
+ qn+1

)
H̃n(q) + q(1− qn). (1.9)

In [15], Pan established that for an odd prime p,

(p−1)/2∑
k=1

1

[2k]q
≡ −Qp(2, q) +

[p]q
2

(
Q2

p(2, q) +Qp(2, q) (1− q) +
p2 − 1

8
(1− q)

2

)
(mod [p]2q), (1.10)

∑
1≤i≤k≤p−1

(−1)k

[i]q [k]q
≡ Q2

p(2, q)− (1− q)Qp(2, q)−
1

24

(
p2 − 1

)
(1− q)

2
(mod [p]q), (1.11)
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(p−1)/2∑
k=1

1

[2k]
2
q

≡ (1− q)

(
1− p2

24
(1− q)−Qp(2, q)

)
(mod [p]q), (1.12)

and for any prime p and any positive integer k,

qkp ≡ 1− k (1− q) [p]q +

(
k

2

)
(1− q)

2
[p]

2
q (mod [p]3q). (1.13)

In [9], He obtained that for any prime p ≥ 5,

Hp−1,2(q) ≡ − (p− 1)(p− 5)

12
(1− q)2 (mod [p]q), (1.14)

H̃p−1,2(q) ≡ −p2 − 1

12
(1− q)2 (mod [p]q), (1.15)

and

Ip−1(q) ≡ [p]q

(
Q2

p(2, q) +Qp(2, q)(1− q) +

(
p2 − 1

)
12

(1− q)2

)
(1.16)

−2Qp(2, q)−
(p− 1) (1− q)

2
(mod [p]2q).

In [20], combining (1.4) and (1.14), Straub deduced that for any prime p ≥ 5,

∑
1≤i≤k≤p−1

1

[i]q[k]q
≡
(
p2 − 1

)
(1− q)

2

12
(mod [p]q). (1.17)

Recently, some authors have investigated combinatorial and arithmetical properties of the binomial sums and
q−analogues of these sums([4–6, 8, 10, 12, 13, 17, 18]).
In [3], Cai and Granville gave the following congruences: For any prime p ≥ 5,

p−1∑
k=0

(−1)
k

(
p− 1

k

)n

≡


(
np−2
p−1

)
(mod p4) if n is odd,

2n(p−1) (mod p3) if n is even.
(1.18)

In [17], Pan showed the generalization of Carlitz’s congruence that for an odd prime p and any positive integer
n ,

p−1∑
k=0

(−1)
(n−1)k

(
p− 1

k

)n

≡ 2n(p−1) +
n(n− 1)(3n− 4)

48
p2Bp−3 (mod p4),

where Bn is the nth Bernoulli number.
In [12], Liu et al. established the generalization of (1.18) proved by Cai and Granville as follows: For any
positive odd integer n and positive integer a,

n−1∑
k=0

(−1)
(a−1)k

qa(
k+1
2 )
[
n− 1

k

]a
q

≡ (−q; q)
2a
n−1 +

a(a− 1)(n2 − 1)

24
(1− q)

2
[n]

2
q (mod Φn(q)

3),
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where Φn(q) is the nth cyclotomic polynomial.
In [4], Cai and Shen obtained that for any prime p ≥ 7 and nonnegative integer l,

(l+1)p−1∑
k=lp

(
αp− 1

k

)n

≡


(
α−1
l

)n
2αn(p−1) (mod p3) if 2 ∤ n,(

α−1
l

)n(αnp−2
p−1

)
(mod p4) if 2 | n,

where α and n are positive integers.
In [1], Abel’s partial summation formula asserts that for every pair of families (ak)

n
k=1 and (bk)

n
k=1 of complex

numbers, there is the relation

n∑
k=1

akbk =

n−1∑
k=1

(ak − ak+1)

k∑
j=1

bj + an

n∑
j=1

bj . (1.19)

Motivated by the works mentioned, we mainly obtain the following results in this paper.

Theorem 1.1 Let p be an odd prime and α be positive integer. For any integer n,

p−1∑
k=1 (mod 2)

(−1)nk
q−αnpk+n

(
k+1
2

)
+2k

[k]q

[
αp− 1

k

]n
q

≡ Qp(2, q) +
1− q

[2]q
− αn [p]q

(
(αn)

−1 − 1

2
Q2

p(2, q)

−

(
1

[2]q
+

p− (αn)
−1

2

)
Qp(2, q)(1− q)− (1− q)

(
5p2 (1− q) + 17q + 19

24
− p

2
q − 113q + 17

48[2]2q

−
7p2

(
1− q2

)
− 24p

(
1 + q2

)
+ 31q2

48[2]q
−
(αn)

−1 (
p2
(
1− q2

)
+ q2 + 47

)
48[2]q

))
(mod [p]2q).

Theorem 1.2 Let p be an odd prime and α be positive integer. For any integer n,

p−1∑
k=1 (mod 2)

(−1)nkq−αnpk+n
(
k+1
2

)
+k

[
αp− 1

k

]n
q

H̃k(q)

≡ 1−
(
1− q

[2]q
+

1− q

[2]2q

(p (p (1− q) + 8) (q + 1) + q (q − 24)− 9)

16

)
[p]q

+
1

[2]q

(
Qp(2, q)− 1 +

1− q

2[2]q
(p[2]q + 1− q)

+nα[p]q

(
−2q + 2

(
1− q

2[2]q
(p[2]q − 2q)− (nα)

−1
(1− q)

4

)
Qp(2, q)
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+

(
1− (nα)

−1

2

)
Q2

p(2, q) +
1

[2]q

(
4q2

(
q−1 − [p]q −

q2 + 2q − 1

[2]q

)

+
(q − 1)

(
2p2

(
q2 − 1

)
− q2 (3p− 25) + 9q (p+ 3) + 2

)
6

)

+[2]q

(
p

2
(1− q) +

3q + 1

2

)))
(mod [p]2q).

2. Proofs of Theorems 1.1 and 1.2
In this section, we will start with some lemmas and then derive our results about congruences.

Lemma 2.1 Let α and k be any positive integers. For any prime p and any integer n,[
αp− 1

k

]n
q

≡ (−1)
nk

qαnpk−n
(
k+1
2

) (
1− αn [p]q H̃k(q)

)
(mod [p]2q).

Proof By (1.2) and Binomial Theorem, the proof is clear. 2

Lemma 2.2 For any positive integer n, we have

n∑
k=1

q4k

[2k]q
= (1− q)

(
1− n− [n+ 1]q2

)
+

I2n(q) +H2n(q)

2
.

Proof By equality q4k

[2k]q
= 1

[2k]q
− (1− q)

(
q2k + 1

)
, we have

n∑
k=1

q4k

[2k]q
=

n∑
k=1

1

[2k]q
− (1− q)

(
n∑

k=1

q2k + n

)

=
1

2

2n∑
k=1

1 + (−1)k

[k]q
− (1− q)

(
1− q2n+2

1− q2
+ n− 1

)

=
1

2

(
2n∑
k=1

1

[k]q
+

2n∑
k=1

(−1)k

[k]q

)
− (1− q)

(
1− q2n+2

1− q2
+ n− 1

)

=
I2n(q) +H2n(q)

2
− (1− q)

(
[n+ 1]q2 + n− 1

)
.

Thus, we have the proof. 2

Corollary 2.3 For an odd prime p , we have

p−1∑
k=1 (mod 2)

q2k

[k]q
≡ Qp(2, q) +

1− q

[2]q
−

Q2
p(2, q)

2
[p]q

+[p]q (1− q)

(
1

48

(
1− p2

)
(1− q)− Qp(2, q)

2
− 1

[2]q

)
(mod [p]2q).
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Proof Taking p− 1 replace of n in (1.6) and (p− 1)/2 replace of n in Lemma 2.2, by (1.4), (1.5), (1.13) and
(1.16), we have

p−1∑
k=1

q2k

[k]q
≡ (1− q)

(
3− p

2
+

(
(1− q)

(
p2 − 1

)
24

− 1

)
[p]q

)
(mod [p]2q), (2.1)

and

(p−1)/2∑
k=1

q4k

[2k]q
≡ −Qp(2, q)− (1− q)

(
1

1 + q
+

p− 3

2

)
+

Q2
p(2, q)

2
[p]q (2.2)

+
[p]q
2

(1− q)

(
Qp(2, q) +

1

8

(
p2 − 1

)
(1− q)− 2q

q + 1

)
(mod [p]2q),

respectively. From (1.4) and (1.16), we get the result. 2

Lemma 2.4 For an odd prime p , we have

∑
1≤i≤k≤p−1

q2k+i

[i]q[k]q
≡
(
p2 − 1

)
(1− q)

2

12
+ q − 1 (mod [p]q).

Proof By using (1.5), (1.9), (1.13), and (1.15), the desired result is obtained. 2

Lemma 2.5 For an odd prime p, we have

(p−1)/2∑
k=0

1

[2k + 1]q
≡ p− 1

2
(1− q) +Qp(2, q) +

1

[p]q
(2.3)

−1

2

(
Q2

p(2, q) +Qp(2, q) (1− q) +
1

24

(
p2 − 1

)
(1− q)

2

)
[p]q (mod [p]2q),

and

(p−1)/2∑
k=0

1

[2k + 1]
2
q

≡ Qp(2, q) (1− q) +
1

[p]
2
q

− (p− 1) (p− 11)

24
(1− q)

2
(mod [p]q). (2.4)

Proof Consider that

Hp−1(q) =

(p−1)/2∑
k=0

1

[2k + 1]q
+

(p−1)/2∑
k=1

1

[2k]q
− 1

[p]q
,

and

Hp−1,2(q) =

(p−1)/2∑
k=0

1

[2k + 1]
2
q

+

(p−1)/2∑
k=1

1

[2k]
2
q

− 1

[p]
2
q

.

From here, by (1.4), (1.10) and by (1.12), (1.14), respectively, we have the proofs of congruences. 2
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Lemma 2.6 For any prime p ≥ 5, we have

∑
1≤i≤k≤(p−1)/2

1

[2k]q [2i]q
≡ 1

2

(
Q2

p(2, q)−Qp(2, q)(1− q)− p2 − 1

24
(1− q)2

)
(mod [p]q), (2.5)

and

∑
1≤i≤k≤(p−1)/2

1

[2k + 1]q[2i]q
≡ −1

2
Q2

p(2, q) (2.6)

+

(
1

2
(2− p) (1− q)− 1

[p]q

)
Qp(2, q) +

1

48

(
p2 − 1

)
(1− q)

2
(mod [p]q).

Proof By exchanging sums, we have

∑
1≤i≤k≤(p−1)/2

1

[2k]q [2i]q
=

(p−1)/2∑
i=1

1

[2i]q

(p−1)/2∑
k=1

1

[2k]q
−

(p−1)/2∑
i=1

1

[2i]q

i−1∑
k=1

1

[2k]q

=

(p−1)/2∑
i=1

1

[2i]q

(p−1)/2∑
k=1

1

[2k]q
−

∑
1≤i≤k≤(p−1)/2

1

[2k]q [2i]q
+

(p−1)/2∑
k=1

1

[2k]
2
q

.

From here, we get

∑
1≤i≤k≤(p−1)/2

1

[2k]q [2i]q
=

1

2


(p−1)/2∑

k=1

1

[2k]q

2

+

(p−1)/2∑
k=1

1

[2k]
2
q

 .

By (1.10) and (1.12), the proof of the first congruence is finished.
Observe that

∑
1≤i≤k≤(p−1)/2

1

[2k]q[2i+ 1]q

=

(p−1)/2∑
k=1

1

[2k]q

(
H2k+1(q)−

k∑
i=1

1

[2i]q
− 1

)

=

(p−1)/2∑
k=1

H2k(q)

[2k]q
+

(p−1)/2∑
k=1

1

[2k]q[2k + 1]q
−

∑
1≤i≤k≤(p−1)/2

1

[2k]q[2i]q
−

(p−1)/2∑
k=1

1

[2k]q
,

and

∑
1≤i≤k≤(p−1)/2

1

[2k + 1]q[2i]q

=

(p−1)/2∑
i=1

1

[2i]q

(p−1)/2∑
k=1

1

[2k + 1]q
−

∑
1≤i≤k≤(p−1)/2

1

[2k]q[2i+ 1]q
+

(p−1)/2∑
k=1

1

[2k]q[2k + 1]q
.
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By combining these equations, we write

∑
1≤i≤k≤(p−1)/2

1

[2k + 1]q[2i]q
(2.7)

=

(p−1)/2∑
i=1

1

[2i]q

(p−1)/2∑
k=1

1

[2k + 1]q
+

(p−1)/2∑
k=1

1

[2k]q
−

(p−1)/2∑
k=1

H2k(q)

[2k]q
+

∑
1≤i≤k≤(p−1)/2

1

[2k]q [2i]q
.

Note that

2

(p−1)/2∑
k=1

H2k(q)

[2k]q
=

p−1∑
k=1

(−1)k

[k]q
Hk(q) +

∑
1≤i≤k≤p−1

1

[i]q[k]q
.

(1.11) and (1.17) yield that

(p−1)/2∑
k=1

H2k(q)

[2k]q
≡ 1

2

(
Q2

p(2, q)− (1− q)Qp(2, q) +
1

24

(
p2 − 1

)
(1− q)

2

)
(mod [p]q). (2.8)

Similarly, using (1.10), (2.5) and (2.8) in (2.7), the proof of (2.6) is obtained. Thus, we complete the proof of
Lemma (2.6). 2

Lemma 2.7 For an odd prime p, we have

(p−1)/2∑
k=1

k

[2k]q
≡ −1

4

(
1

4
(p− 1)

2
(1− q) + pQp(2, q) +

p− (q1−p; q)p−1

[p]q

)
(mod [p]q), (2.9)

and

(p−1)/2∑
k=1

k

[2k + 1]q
≡ 1

4
(p− 2)Qp(2, q)

−2− p− (q1−p; q)p−1

4[p]q
+

1

16
(1− q)

(
p2 − 6p+ 5

)
(mod [p]q).

Proof Observe that

p−1∑
k=1

k

[k]q

= 2

(p−1)/2∑
k=1

k

[2k]q
+ 2

(p−1)/2∑
k=1

k

[2k + 1]q
+

(p−1)/2∑
k=0

1

[2k + 1]q
− p

[p]q

= 2

(p−1)/2∑
k=1

k

[2k]q
+ 2

 (p− 1)

2

(p−3)/2∑
k=0

1

[p− 2k]q
−

(p−3)/2∑
k=0

k

[p− 2k]q

+

(p−1)/2∑
k=0

1

[2k + 1]q
− p

[p]q

= 2

(p−1)/2∑
k=1

k

[2k]q
−

(p−1)/2∑
k=0

k

[p− 2k]q

+ (p− 1)

(p−3)/2∑
k=0

1

[p− 2k]q
+

(p−1)/2∑
k=1

1

[2k + 1]q
− p

[p]q
+ p.
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By using the congruence [p− 2k]q ≡ −q−2k [2k]q (mod [p]q) for 1 ≤ k ≤ (p− 1) /2 , we get

p−1∑
k=1

k

[k]q
≡ 2

(p−1)/2∑
k=1

k

[2k]q
+

(p−1)/2∑
k=0

q2kk

[2k]q

− (p− 1)

(p−3)/2∑
k=1

q2k

[2k]q

+

(p−1)/2∑
k=1

1

[2k + 1]q
− 1

[p]q
+ p (mod [p]q).

With the help of q2k

[2k]q
= 1

[2k]q
− (1− q) , we obtain

p−1∑
k=1

k

[k]q
≡ 4

(p−1)/2∑
k=1

k

[2k]q
− p

(p−1)/2∑
k=1

1

[2k]q
+

(p−1)/2∑
k=1

1

[2k]q

+

(p−3)/2∑
k=1

1

[2k + 1]q
+

p− 1

[p− 1]q
+ p+

(p− 1) (p− 7)

4
(1− q)

= 4

(p−1)/2∑
k=1

k

[2k]q
− p

(p−1)/2∑
k=1

1

[2k]q
+

p−1∑
k=1

1

[k]q

+
p− 1

[p− 1]q
+ p− 1 +

(p− 1) (p− 7)

4
(1− q) (mod [p]q).

Thus, by (1.4), we get

(p−1)/2∑
k=1

k

[2k]q
≡ 1

4

p

(p−1)/2∑
k=1

1

[2k]q
+

p−1∑
k=1

k

[k]q
− p− 1

[p− 1]q

−1

4
(p− 1) (p+ 5q − pq − 1)

)
(mod [p]q). (2.10)

Note that, using ak = 1
[k]q

and bk = k in (1.19), by (1.3) and (1.4), we have

p−1∑
k=1

k

[k]q
≡ −

p−
(
q1−p; q

)
p−1

[p]q
(mod [p]q). (2.11)

From here, (2.10) yields that

(p−1)/2∑
k=1

k

[2k]q
≡ 1

4

p

(p−1)/2∑
k=1

1

[2k]q
−

p−
(
q1−p; q

)
p−1

[p]q
− p− 1

[p− 1]q

−1

4
(p− 1) (p+ 5q − pq − 1)

)
(mod [p]q).

Finally, by (1.1) and (1.10), the first congruence is obtained.
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Similarly, for the last congruence, consider that

p−1∑
k=1

k

[k]q
= 2

(p−1)/2∑
k=1

k

[2k]q
+

(p−1)/2∑
k=1

k

[2k + 1]q

− p

[p]q
+ 1.

Then, by (2.9) and (2.11), the congruence is obtained. Thus, the proof of Lemma (2.7) is complete. 2

Corollary 2.8 For an odd prime p, we have

∑
1≤i≤k≤(p−1)/2

1

[2i]q
≡ −1

2

(p
2
+ 1
)
Qp(2, q)

+
1

4

(
1

4
(p− 1)

2
(1− q) +

p− (q1−p; q)p−1

[p]q

)
(mod [p]q).

Proof By observing that

∑
1≤i≤k≤(p−1)/2

1

[2i]q
=

p+ 1

2

(p−1)/2∑
k=1

1

[2k]q
−

(p−1)/2∑
k=1

k

[2k]q
,

and by (1.10) and (2.9), the congruence is obtained. 2

Lemma 2.9 For an odd prime p, we have

(p−1)/2∑
k=1

H̃2k(q) ≡
1

2

(
p−

(
q1−p; q

)
p−1

[p]q
+

1

2
((1− p)(1− q)− 2Qp(2, q))

)
(mod [p]q), (2.12)

and
p−1∑
k=1

qkH̃2
k(q) ≡ −p

2
(1− q)− 1 + 3q

2
(mod [p]q). (2.13)

Proof Observe that

(p−1)/2∑
k=1

H̃2k(q)

=
∑

1≤i≤k≤p−1

qi
1 + (−1)k

[i]q
=

1

2

 ∑
1≤i≤k≤p−1

qi

[i]q
+

∑
1≤i≤k≤p−1

(−1)k
qi

[i]q


=

1

2

 ∑
1≤i≤k≤p−1

qi

[i]q
+

p−1∑
i=1

qi

[i]q

(
p−1∑
k=1

(−1)k −
i−1∑
k=1

(−1)k

)
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=
1

2

 ∑
1≤i≤k≤p−1

qi

[i]q
+ H̃p−1(q)

(
p−1∑
k=1

(−1)k + 1

)
− 1

2

p−1∑
k=1

qk
1− (−1)k

[k]q


=

1

2

 ∑
1≤i≤k≤p−1

qi

[i]q
+

1

2
H̃p−1(q) +

1

2

p−1∑
k=1

(−q)
k

[k]q

 .

Then, by (1.7), we get

(p−1)/2∑
k=1

H̃2k(q) =
1

2

 ∑
1≤i≤k≤p−1

qi

[i]q
+

1

2
H̃p−1(q) +

1

2
Ip−1(q)

 .

Finally, using (1.3), (1.5) and (1.16), we have the proof of (2.12).
Similarly, by exchanging sums, using (1.8) and (2.1), the proof of (2.13) is obtained. Thus, we have the proof.
2

Lemma 2.10 For an odd prime p, we have

(p−1)/2∑
k=1

q2kH̃2k(q)

≡ 1

[2]q

(
−Qp(2, q)−

2

[2]q
+ 2 +

1

2
(1− p) (1− q)

+
[p]q
2

Q2
p(2, q) +

[p]q
2

Qp(2, q) (1− q)− q[p]q
2

(2 + p (1− q))

+
[p]q
16[2]q

(
p2 (q + 1)− 9q − 1

)
(1− q)

2

)
(mod [p]2q).

Proof By taking with ak = q2k and bk = H̃2k(q) in (1.19), we have

(p−1)/2∑
k=1

q2kH̃2k(q)

= H̃p+1(q)

(p−1)/2∑
k=1

q2k +

(p−1)/2∑
k=1

(
H̃2k(q)− H̃2k+2(q)

) k∑
i=1

q2i

= H̃p+1(q)

(p−1)/2∑
k=1

q2k +

(p−1)/2∑
k=1

(
H̃2k(q)− H̃2k+2(q)

)(1− q2k+2

1− q2
− 1

)

= H̃p+1(q)

(p−1)/2∑
k=1

q2k −
(p−1)/2∑

k=1

(
q2k+1

[2k + 1]q
+

q2k+2

[2k + 2]q

)(
[2k + 2]q

[2]q
− 1

)
.
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Then, by some elementary operations, we get

(p−1)/2∑
k=1

q2kH̃2k(q)

=

(
H̃p−1(q) +

qp

[p]q
+

qp+1

[p+ 1]q

) (p−1)/2∑
k=1

q2k +

(p−1)/2∑
k=1

1

[2k]q

+
q

[2]q

(p−1)/2∑
k=1

1

[2k + 1]q
− 2q2

[2]q

(p−1)/2∑
k=1

q2k − 1

[2]q
− 2q + 1

2[2]q
(1− q)(p− 1) +

1

[p+ 1]q
.

By using (1.5), (1.13) and the congruence 1
[p+1]q

≡ 1− q[p]q (mod [p]2q), we have

(p−1)/2∑
k=1

q2kH̃2k(q)

≡ q

[2]q

(p−1)/2∑
k=1

1

[2k + 1]q
+

(p−1)/2∑
k=1

1

[2k]q
+

1

2
(1− p) (1− q) +

q2 + 2q − 1

[2]2q

− q

[2]q[p]q
+

1

[2]q
+

q

[2]q

(
(1− p)

1− q

2
− p2 − 1

24
(1− q)2 − 1− q

[2]q

)
[p]q (mod [p]2q).

Finally, by (1.10) and (2.3), the desired congruence is obtained. 2

Lemma 2.11 For an odd prime p , we have

(p−1)/2∑
k=1

H̃2k(q)

[2k + 1]q
≡ 1

2

(
−Q2

p(2, q) + (1− p)(1− q)Qp(2, q)

+
(p+ 13)

24
(p− 1) (1− q)

2
+ (1− q)

1− (q1−p; q)p−1

[p]q

)
(mod [p]q),

and

(p−1)/2∑
k=1

H̃2k(q)

[2k + 2]q
≡ 1

2

(
Q2

p(2, q)− (4 + (1− p)(1− q))Qp(2, q)
)

− (1− p) (1− q)

16
(3p (1− q) + q − 17) + (1− q)

p− (q1−p; q)p−1

2[p]q
(mod [p]q).

Proof Observe that
(p−1)/2∑

k=1

H̃2k(q)

[2k + 1]q
=

(p−1)/2∑
k=0

H̃p−2k−1(q)

[p− 2k]q
.
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Then, from the congruence H̃p−k(q) ≡ H̃p−1(q) + Hk−1(q) (mod [p]q) for 1 ≤ k ≤ p and some elementary
operations, (1.1) yields that

(p−1)/2∑
k=1

H̃2k(q)

[2k + 1]q

≡ −
(p−1)/2∑

k=1

H2k(q)

[2k]q
+ (1− q)

(p−1)/2∑
k=1

H̃2k(q) + (1− q)
p2 − 1

4

+
qp−1

[p− 1]q
Hp−1(q)

+H̃p−1(q)

(1− q)2
p2 − 1

4
+

1

[p]q
−

(p−1)/2∑
k=1

1

[2k]q
+ (1− q)

p− 1

2
+

qp−1

[p− 1]q

 (mod [p]q).

By (1.1), (1.4) and (1.5), we obtain

(p−1)/2∑
k=1

H̃2k(q)

[2k + 1]q

≡ −
(p−1)/2∑

k=1

H2k(q)

[2k]q
+ (1− q)

(p−1)/2∑
k=1

H̃2k(q)−
p− 1

2[p]q
(1− q)

+(p− 1)
1− q

2

(p−1)/2∑
k=1

1

[2k]q
+

(p+ 13)(p− 1)

24
(1− q)

2
(mod [p]q).

Finally, using (1.10), (2.12) and (2.8), the first congruence is obtained.
For the second congruence, observe that

(p−1)/2∑
k=1

H̃2k(q)

[2k + 2]q
=

(p+1)/2∑
k=2

H̃2k−2(q)

[2k]q
.

From here, by some elementary operations, we find that

(p−1)/2∑
k=1

H̃2k(q)

[2k + 2]q

=

(p−1)/2∑
k=1

H2k(q)

[2k]q
− 2(1− q)

(p−1)/2∑
k=1

k

[2k]q
−

(p−1)/2∑
k=1

1

[2k + 1]q
−

(p−1)/2∑
k=1

1

[2k]2q

+(2− q)

(p−1)/2∑
k=1

1

[2k]q
− 1

[p+ 1]2q
+

H̃p+1(q)

[p+ 1]q
+

2− q

[p+ 1]q
− 1,
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and using (1.10), (1.12), (2.8) and (2.9),

(p−1)/2∑
k=1

H̃2k(q)

[2k + 2]q

≡ 1

2
Qp(2, q) (Qp(2, q) + p (1− q) + q − 3) + (1− q)

p− (q1−p; q)p−1

2[p]q
−

(p−1)/2∑
k=1

1

[2k + 1]q

− 1

[p+ 1]2q
+

H̃p+1(q)

[p+ 1]q
+

(2− q)

[p+ 1]q
− 1 +

1

16
(1− q)

2 (
3p2 − 4p+ 1

)
(mod [p]q).

Hence, by (1.5), (1.13), (2.3) and the congruence 1
[p+1]q

≡ 1−q[p]q (mod [p]2q), the proof of the second congruence

is obtained. Thus, we have the proof. 2

Lemma 2.12 For an odd prime p, we have

(p−1)/2∑
k=1

q2kH̃2
2k(q)

≡ 1

1− q2

(
Qp(2, q)

(
−3q3 + 5q2 + 3q + 3

[2]q
+ (p+ 1) (1− q)

2 − 4

)

+(1− q)Q2
p(2, q)− 2q (1− q)− 4q2 (1− q)

[2]q

(
q2 + 2q − 1

[2]q
− q−1 + [p]q

)

− (1− q)
2

(
2p2

(
q2 − 1

)
− q2 (3p− 25) + 9q (p+ 3) + 2

)
6[2]q

)
(mod [p]q).

Proof Observe that

(p−1)/2∑
k=1

q2kH̃2
2k(q) + qp+1H̃2

p+1(q)

=

(p+1)/2∑
k=1

q2kH̃2
2k(q) =

(p−1)/2∑
k=0

q2k+2H̃2
2k+2(q)

=

(p−1)/2∑
k=0

q2k+2

(
H̃2k(q) +

q2k+1

[2k + 1]q
+

q2k+2

[2k + 2]q

)2

= 2

(p−1)/2∑
k=0

q2k+2 q2k+1

[2k + 1]q
+

(p−1)/2∑
k=0

q2k+2 q2k+2

[2k + 2]q

 H̃2k(q)

+

(p−1)/2∑
k=1

q2k+2H̃2
2k(q) + q2

(p−1)/2∑
k=0

q2k+2 q4k

[2k + 1]2q
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+2

(p−1)/2∑
k=0

q2k+2 q4k+3

[2k + 1]q[2k + 2]q
+

(p−1)/2∑
k=0

q2k+2 q4k+4

[2k + 2]2q
.

Then, by some elementary operations, we get

(p−1)/2∑
k=1

q2kH̃2
2k(q)

=
1

1− q2

2q

(p−1)/2∑
k=1

H̃2k(q)

[2k + 1]q
+ 2

(p−1)/2∑
k=1

H̃2k(q)

[2k + 2]q
+

(p+1)/2∑
k=1

1

[2k]2q

−4q2 (1− q)

(p−1)/2∑
k=1

q2kH̃2k(q) + q2 (1− q)
2 (

3 + q−2
) (p−1)/2∑

k=0

q2k

+q

(p−1)/2∑
k=0

1

[2k + 1]2q
+
(
2q2 − 3q(1− q)

) (p−1)/2∑
k=1

1

[2k + 1]q
+ q (5q − 3)

− (5− 3q)

(p−1)/2∑
k=1

1

[2k]q
− 2(1− q2)

(p−1)/2∑
k=1

H̃2k(q)−
5− 3q

[p+ 1]q

+
(
qp+1 − 1

)
(1− q)2 + 2 (p+ 1) (1− q)

2
(q + 1)− qp+1H̃p+1(q)

)
.

(1.10), (1.12), (2.3) and the congruence 1
[p+1]q

≡ 1− q[p]q (mod [p]2q) yield that

(p−1)/2∑
k=1

q2kH̃2
2k(q)

≡ 1

1− q2

2q

(p−1)/2∑
k=1

H̃2k(q)

[2k + 1]q
− 4q2 (1− q)

(p−1)/2∑
k=1

q2kH̃2k(q)

+2

(p−1)/2∑
k=1

H̃2k(q)

[2k + 2]q
− 2(1− q2)

(p−1)/2∑
k=1

H̃2k(q) + q

(p−1)/2∑
k=0

1

[2k + 1]2q

+
(
5q2 − 5q + 4

)
Qp(2, q) +

(
2q2 − 3q(1− q)

) 1

[p]q

+
(1− q)

2

[2]q

(
2p
(
1 + q2

)
+ 4q (p+ 1) + 5q2 + 3

)
+
(
qp+1 − 1

)
(1− q)2 + 3q − 4− qp+1H̃p+1(q)

+
(p (1− q) + (35− 60q) q + 1)

24
(1− p) (1− q)

)
(mod [p]q).
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By (2.4) and (2.12), we obtain

(p−1)/2∑
k=1

q2kH̃2
2k(q)

≡ 1

1− q2

−4q2 (1− q)

(p−1)/2∑
k=1

q2kH̃2k(q)− 2(1− q2)
p−

(
q1−p; q

)
p−1

2[p]q

+2

(p−1)/2∑
k=1

H̃2k(q)

[2k + 2]q
+ 2q

(p−1)/2∑
k=1

H̃2k(q)

[2k + 1]q
+
(
3q2 − 4q + 5

)
Q(p)

+
(
qp+1 − 1

)
(1− q)2 +

(
2q2 − 3q(1− q) +

q

[p]q

)
1

[p]q

+(1− q)
2 2p

(
1 + q2

)
+ 4q (p+ 1) + 5q2 + 3

[2]q
− qp+1H̃p+1(q)

+
(1− q)

2

[2]q

(
2p
(
1 + q2

)
+ 4q (p+ 1) + 5q2 + 3

)
+ 3q − 4

−
(
p
(
q2 − 1

)
− (24− 37q) q + 11

)
24

(1− p) (1− q)

)
(mod [p]q).

By Lemmas 2.10 and 2.11, this completes the proof. 2

Lemma 2.13 For any prime p ≥ 5 , we have

(p−1)/2∑
k=1

q4k

[2k]q
H̃2k(q)

≡
Q2

p(2, q)

2
+ (1− q)

((
1

[2]q
+

p

2

)
Qp(2, q) +

7
(
p2 − 1

)
(1− q)

24

−q (p− 1)

2
− 113q + 17

48 [2]
2
q

−
7p2

(
1− q2

)
− 24p

(
1 + q2

)
+ 31q2

48 [2]q

)
(mod [p]q).

Proof By taking with ak = q4k

[2k]q
and bk = H̃2k(q) in (1.19), we get

(p−1)/2∑
k=1

q4k

[2k]q
H̃2k(q)

= H̃p+1(q)

(p−1)/2∑
k=1

q4k

[2k]q
+

(p−1)/2∑
k=1

(
H̃2k(q)− H̃2k+2(q)

) k∑
i=1

q4i

[2i]q

= H̃p+1(q)

(p−1)/2∑
k=1

q4k

[2k]q
−

∑
1≤i≤k≤(p−1)/2

q2k+1

[2k + 1]q

q4i

[2i]q
−

∑
1≤i≤k≤(p−1)/2

q2k+2

[2k + 2]q

q4i

[2i]q
.
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Then, with the help of Lemma 2.2, we write

(p−1)/2∑
k=1

q4k

[2k]q
H̃2k(q)

= H̃p+1(q)

(p−1)/2∑
k=1

q4k

[2k]q
+ (1− q)

 q2

q + 1

(p−1)/2∑
k=1

q2k+1

[2k + 1]q
[2k]q +

(p−1)/2∑
k=1

q2k+1

[2k + 1]q
k


−

∑
1≤i≤k≤(p−1)/2

q2k+1

[2k + 1]q [2i]q
−

∑
1≤i≤k≤(p−1)/2

q2k+2

[2k + 2]q [2i]q

+(1− q)

 q2

q + 1

(p−1)/2∑
k=1

q2k+2

[2k + 2]q
[2k]q +

(p−1)/2∑
k=1

q2k+2

[2k + 2]q
k

 ,

and from the definition of [n]q , equals

H̃p+1(q)

(p−1)/2∑
k=1

q4k

[2k]q
−

∑
1≤i≤k≤(p−1)/2

1

[2k + 1]q [2i]q

−
∑

1≤i≤k≤(p−1)/2

1

[2k + 2]q [2i]q
+ 2(1− q)

∑
1≤i≤k≤(p−1)/2

1

[2i]q

+(1− q)

 q2

[2]q

2

(p−1)/2∑
k=1

q2k − (1− p) (1− q)

2q2
(2q + 1)

−q−1

(p−1)/2∑
k=1

1

[2k + 1]q

−
(p−1)/2∑

k=1

1

[2k + 2]q

+

(p−1)/2∑
k=1

k

[2k + 1]q
+

(p−1)/2∑
k=1

k

[2k + 2]q
− 2(1− q)

(p−1)/2∑
k=1

k

 .

By using some elementary operations, we have

(p−1)/2∑
k=1

q4k

[2k]q
H̃2k(q)

= H̃p+1(q)

(p−1)/2∑
k=1

q4k

[2k]q
−

∑
1≤i≤k≤(p−1)/2

1

[2k + 1]q [2i]q
+

(p−1)/2∑
k=1

1

[2k]
2
q

−

(
1

[p+ 1]q
+ (1− q) (1− p)

)
(p−1)/2∑

k=1

1

[2k]q
−

∑
1≤i≤k≤(p−1)/2

1

[2k]q [2i]q
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−(q − 1)

(p−1)/2∑
k=1

k

[2k + 1]q
−

(p−1)/2∑
k=1

k

[2k]q
+

p− 3

2[p+ 1]q

+
q2

[2]q

2

(p−1)/2∑
k=1

q2k − q−1

(p−1)/2∑
k=1

1

[2k + 1]q


+

1

2 [2]q
(p+ 1 + (p− 1) q (1− 2q)) + (1− q)

1− p2

4

)
.

With the help of Lemmas 2.6 and 2.7, we get

(p−1)/2∑
k=1

q4k

[2k]q
H̃2k(q)

≡ H̃p+1(q)

(p−1)/2∑
k=1

q4k

[2k]q
−Qp(2, q)

(
(1− p) (1− q)− 1

[p]q

)

−

(
1

[p+ 1]q
+ (1− q) (1− p)

)
(p−1)/2∑

k=1

1

[2k]q
+

(p−1)/2∑
k=1

1

[2k]
2
q

+ (1− q)

 q2

[2]q

2

(p−1)/2∑
k=1

q2k − 1

q

(p−1)/2∑
k=1

1

[2k + 1]q


+
p− 1

2 [p]q
+

1

2 [2]q
(p+ 1 + q (p− 1) (1− 2q))

−1

8
(1− q)

(
p2 + 4p− 5

)
+

p− 3

2

)
(mod [p]q).

(1.10), (1.12) and (2.3) yield that

(p−1)/2∑
k=1

q4k

[2k]q
H̃2k(q)

≡ H̃p+1(q)

(p−1)/2∑
k=1

q4k

[2k]q
+Qp(2, q)

(
1

[p]q
+ 2

q2

[2]q

)

−(q − 1)

 q2

[2]q

2

(p−1)/2∑
k=1

q2k − q−1Hp−1(q)

+

(
p− 1

2
− q

[2]q

)
1

[p]q

−q2 (p− 1)

[2]q
+

2 (2q + 1)− p (1− q)

6
(p− 1)

)
(mod [p]q).

Finally, by using (1.4), (1.5), (1.13) and (2.2), we complete the required congruence. 2
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Proof of Theorem 1.1. Observe that by Lemma 2.1

p−1∑
k=1 (mod 2)

(−1)nk
q−αnpk+n

(
k+1
2

)
+2k

[k]q

[
αp− 1

k

]n
q

≡
p−1∑

k=1 (mod 2)

q2k

[k]q
− αn [p]q

p−1∑
k=1 (mod 2)

q2k

[k]q
H̃k(q)

=

p−1∑
k=1 (mod 2)

q2k

[k]q
− αn [p]q

p−1∑
k=1

q2k

[k]q
H̃k(q)−

(p−1)/2∑
k=1

q4k

[2k]q
H̃2k(q)

 (mod [p]2q).

Then, Corollary 2.3 yields that

p−1∑
k=1 (mod 2)

(−1)nk
q−αnpk+n

(
k+1
2

)
+2k

[k]q

[
αp− 1

k

]n
q

≡ Qp(2, q) +
1− q

[2]q
+ [p]q

(
−1

2

(
Q2

p(2, q) +Qp(2, q)(1− q)
)

−1− q

[2]q
− 1

48

(
p2 − 1

)
(1− q)

2

)
− αn [p]q

p−1∑
k=1

q2k

[k]q
H̃k(q)−

(p−1)/2∑
k=1

q4k

[2k]q
H̃2k(q)

 (mod [p]2q).

Finally, by using Lemmas 2.4 and 2.13, the desired congruence is obtained.
Proof of Theorem 1.2. Observe that by Lemma 2.1

p−1∑
k=1 (mod 2)

(−1)nkq−αnpk+n
(
k+1
2

)
+k

[
αp− 1

k

]n
q

H̃k(q)

≡
p−1∑

k=1 (mod 2)

qkH̃k(q)− nα[p]q

p−1∑
k=1 (mod 2)

qkH̃2
k(q)

=

p−1∑
k=1

qkH̃k(q)−
(p−1)/2∑

k=1

q2kH̃2k(q)− nα[p]q

p−1∑
k=1

qkH̃2
k(q)−

(p−1)/2∑
k=1

q2kH̃2
2k(q)

 (mod [p]2q).

Then, by (1.5), (1.8) and Lemma 2.10, we obtain that

p−1∑
k=1 (mod 2)

(−1)nkq−αnpk+n
(
k+1
2

)
+k

[
αp− 1

k

]n
q

H̃k(q)

≡ 1 +
Qp(2, q)

[2]q
− [p]q

(
1

2[2]q

(
Q2

p(2, q) +Qp(2, q)(1− q)
)

−1− q

[2]2q

(
1 + 9q − p2 (q + 1)

)
(1− q) + 8pq (q + 1)

16
+ (p− 1)

1− q

2
+ 1

)

− 1

[2]q

(
q2 + 2q − 1

[2]q
+

1

[p+ 1]q
+

1

2
(1− 3q − p (1− q))

)
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−nα[p]q

p−1∑
k=1

qkH̃2
k(q)−

(p−1)/2∑
k=1

q2kH̃2
2k(q)

 (mod [p]2q),

and so, using (2.13), the congruence 1
[p+1]q

≡ 1− q[p]q (mod [p]2q) and Lemma 2.12, we have the proof.
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