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Abstract: We consider a predator-prey model with a non-monotonic functional response encompassing a prey refuge
and a strong Allee effect on the prey. The multiple existence and stability of interior equilibria are investigated. The
bifurcation analysis shows this model can exhibit numerous kinds of bifurcations (e.g., saddle-node, Hopf-Andronov and
Bogdanov-Takens bifurcations). It is found that there exist diverse parameter values for which the model exhibits a limit
cycle, a homoclinic orbit, and even many heteroclinic curves. The results obtained reveal the prey refuge in the model
brings rich dynamics and makes the system more sensitive to parameter values. The main purpose of the present work
is to offer a complete mathematical analysis of the effect that the refuge brings about.

Key words: Allee effect, Hopf bifurcation, B-T bifurcation, predator-prey system, refuge, non-monotonic functional
response

1. Introduction
The qualitative theory of differential s ystems h as b een o ne o f the main method f or b iological mathematicians
to reveal numerous processes encountered in the biosciences, particularly in ecological systems. And this trend
is bound to continue in the foreseeable future. Predator-prey interaction, one of the dominant themes in
ecology, has been modelled for many years and plenty of excellent works have been done for this kind of model
[9, 15, 16, 19]. The common predator-prey system can be generalized as follows:{

dx
dτ

dy
dτ

= xg(x) − yφ(x), 

= (εφ(x) − c)y, (1.1)

where x(τ) , y(τ) are the prey and the predator density, respectively; ε characterizes the conversion e iciency of 
predator; c represents the predator natural mortality rate; g(x) and φ(x) are smooth functions with respect to x 
and represent the natural per capita growth function and the functional response, respectively.

In (1.1), the classical choices of g(x) are exponential growth (g(x) = r ), or logistic growth (g(x) = r(1 − x/

K)), which has been modelled to explain various ecological phenomena, see, e.g., [25]. Allee effect, observed by 
Allee in the 1930s [1], shows a phenomenon to the effect that the per-individual growth rate will be positively 
correlated to the density of population in the case of low population densities. An Allee effect occurs
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when there is a positive relationship between a component of fitness and population size or density [5–7, 39].
Plenty of causes can bring about the Allee effect in a population such as mating limitation [11], inbreeding
depression [36], food exploitation and predator avoidance of defence. Recently, an epidemic model to describe
the joint interplay of a strong Allee effect and infectious diseases in a single population was introduced by Hilker
et al. [14], which complete bifurcations were studied by Cai et al. [3]. It is widely acknowledged that the Allee
effect greatly increases the likelihood of extinction of the population [39], and can lead to a variety of dynamical
effects. Allee effect has been roughly divided into two categories, namely strong and weak ones [6]. A threshold
will be introduced when the population is subject to a strong Allee effect and the growth rate can be negative if
the population density drops below the threshold [6, 7]. The population with weak Allee effect, though the per
capita population growth rate is lower when at low density than at higher density, does not undergo threshold
phenomena [6, 24]. Practically the continuous growth function considering the strong Allee effect usually takes
the mathematical form:

g(x) = r(1 − 
x
K

)(x−m),

where r and K are the intrinsic growth rate and the environment carrying capacity of prey, respectively; m

denotes the Allee threshold [6] which belongs to (0,K] . We can model the Allee effect in other mathematical
forms which are available in [6], even though [27] has shown the topological equivalence among these forms.

The other function φ(x) in (1.1) is called a functional response or trophic function, which is to character
the capacity of the predator to consume the prey. The conventional forms of functional response are Holling
types I, II, and III, and clearly, these types of functional response φ(x) have inherent monotonicity which
can be explained in many predator- prey interactions [9, 16, 19, 20]. However, a cluster of experimental and
observational findings illustrate that when it comes to the “inhibition” in microbial and “group defence” in
population dynamics, it is unrealistic to put forward the assumption that the functional response φ(x) is
monotonic [2]. Group defence, which has been investigated for many years, is used to describe the situation
whereby predation is decreased or even prevented altogether due to the increased ability of the prey to better
defend or disguise themselves when their number is large enough. To study the predator-prey interaction when
the prey exhibits group defence, many modellers change the inherent monotonicity of the functional response
φ(x) and assume the following condition that φ(x) should satisfy:

φ′(x)

{
> 0, if 0 ≤ x < M̃,

< 0, if x > M̃,
(1.2)

where M̃ > 0 is a constant. In [2], Andrews proposed a function

φ(x) =
qx

a+ bx+ x2
, (1.3)

which satisfies (1.2). The function (1.3) is also called the Monod-Haldane function or Holling type-IV function.
Afterwards, Sokol and Howell [35] proposed a simplified Monod-Haldane function of the form

φ(x) =
qx

a+ x2
, (1.4)

and found that it fitted their experimental data. Ruan and Xiao [31] have discussed the following predator-prey
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system with non-monotonic functional response{
dx
dτ = rx(1− x

K )− qxy
a+x2 ,

dy
dτ = εqxy

a+x2 − cy.
(1.5)

Olivares et al. [28] incorporate the Allee effect into (1.5), that is,{
dx
dτ = rx(1− x

K )(x−m)− qxy
a+x2 ,

dy
dτ = εqxy

a+x2 − cy.
(1.6)

The authors of [28] provided the dynamics analysis of system (1.6) and proved the uniqueness of limit cycle in
this system.

Due to over-exploitation, over-predation, environmental pollution, etc, many kinds of species have been
driven to extinction and others are on the brink of extinction. To take this situation on hold, some preventive
measures, both human intervention and prey themselves prevention, should be taken such as restriction on
harvesting, creating refuges (burrows, trees, thick vegetation or rock talus), and so on. The method of creating
a refuge for the endangered species enlightens many researchers to insert a refuge in the conventional prey-
predator dynamics from various angles [4, 8, 12, 13, 17, 18, 22, 23, 26, 32, 34, 37]. Two traditional ways [37]
help workers to incorporate a refuge in predator-prey model for the studying of refuge: one is to assume that
the reserve areas protect a constant proportion of prey; the other is to consider that a constant number of
prey are protected by the refuge. The conclusions of the traditional literature about the role of refuge is that
the addition of refuge for prey can enhance the stability of the positive equilibrium and affect positively the
survival of prey and threaten the survival of predator. In [12], the oscillatory behaviour which is the case
in the absence of a refuge will be replaced by a stable equilibrium when considering a huge refuge. McNair
[23] found that prey predator oscillations will be amplified rather than damped be a prey refuge. Ruxton [32]
considered a continuous-time predator-prey model where the rate that prey taken to the refuge is assumed to be
proportional to the density of the predator, and the author showed that prey refuge has a stabilizing effect. With
the propose of Holling types functional response [15], many works such as [17, 26] have considered a refuge in
the model with Holling types functional response and got the conclusion that refuges used by prey can increase
the stability of interior equilibrium. Ma [22] investigated a generalised predator-prey model with monotonous
functional response which included the cases of Holling types I-III and found that the refuge used by prey also
can destabilize the stability of the predator-prey interactions. Zhou et al. [40] gave a Hopf bifurcation of a
predator-prey model with Holling type II functional response and prey refuge. Xiang et al. [38] obtained several
high codimension bifurcation analysis for a Holling-Tanner model with generalist predator and prey refuge. For
more investigations on biological models with refuge, we can refer the reader to [10, 33] and references therein.

Motivated by the above works, we extend model (1.5) and (1.6) by incorporating a refuge which is
proportional to the density of prey. Our purpose is to identify the role of the refuge in a predator-prey model
with a non-monotonic functional response. We assume that the reserve areas protect βx of the prey, where
β ∈ [0, 1) . This leaves (1− β)x of prey available to the predator, then system (1.6) yields that

dx
dτ = [r(1− x

K )(x−m)− q(1−β)y
(1−β)2x2+a ]x,

dy
dτ = [ p(1−β)x

(1−β)2x2+a − c]y,
(1.7)
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where p = εq and β is refuge parameter. If β = 0 , system (1.7) becomes system (1.6). It is not difficult to
realise that system (1.7) is qualitatively equivalent to the system (1.6) and thus some dynamics of the system
(1.7) are similar to those in the system (1.6). Yet the main purpose of this article is to illustrate the influence
of the refuge on the existence of the positive equilibria in the system (1.7) and the effects of the refuge on
the system (1.7) by giving a bifurcation analysis of system (1.7) in terms of the refuge parameter. The results
obtained illustrate the additional refuge on prey brings about ample dynamics and makes the system more
sensitive to parameter value.

Using the rescaling u = x
K , v = y

K , t = rKτ , we have{
du
dt = [(1− u)(u− α1)− Aγv

γ2u2+B ]u := F1(u, v),

dv
dt = ( Cγu

γ2u2+B −D)v := F2(u, v),
(1.8)

where
C =

p

rK2
, B =

a

K2
∈ (0, 1), A =

q

rK2
, 0 < α1 =

m

k
≪ 1, D =

c

rk
,

and γ = (1 − β) ∈ (0, 1] is anti-refuge parameter. We assume all the other parameters are positive. For
convenience, in the next, we will consider the effect of γ , instead of β , on the dynamics of (1.8).

This paper is organized as follows. In section 2, the cases of no-existence, the existence of one or two
interior equilibria, and their stability analysis are investigated. Bifurcation analysis is given in section 3. In the
last section, we discuss our findings in terms of β and summarize our conclusions.

2. Existence and stability analysis
2.1. Dissipative

The following lemma shows the system (1.8) is dissipative.

Lemma 2.1 Any solutions of (1.8) with a positive initial value are positive and bounded.

Proof Since {(u, v) : u = 0} and {(u, v) : v = 0} are manifolds of (1.8), then the positive quadrant
{(u, v) : u > 0, v > 0} is an invariant region of (1.8). Therefore, any solutions of (1.8) with the initial value
u(0) > 0 and v(0) > 0 are positive. For any u(0) > 1 , then

du

dt
= [(1− u)(u− α1)−

Aγv

γ2u2 +B
]u < 0,

as long as u > 1 . Along u = 1 , we have:

du

dt
= − Aγv

γ2u2 +B
< 0.

Then no equilibria of (1.8) can be found in the region {(u, v) : u > 1, v ≥ 0} . Hence any positive solution
satisfies u(t) ≤ max{u(0), 1} for t ≥ 0 . Let

V (t) = u(t) +
Av(t)

C
,
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then differentiating V with respect to t , we yield

V ′(t) = u′(t) +
Av′(t)

C

= u(1− u)(u− α1)−
ADv

C

= u(1− u)(u− α1) +Du−D(u+
Av

C
).

Let
η = max

t≥0
|u(1− u)(u− α1) +Du|,

then
V ′ ≤ η −DV (t).

From Gronwall’s inequality, we obtain that

V (t) ⩽ V (0)e−Dt +
η(1− e−Dt)

D
.

Hence v(t) is also bounded. Therefore, system (1.8) is dissipative. This completes the proof. 2

2.2. Equilibria analysis

Now we discuss all the possible equilibria of the system (1.8). Clearly, system (1.8) has three equilibria E0(0, 0) ,
E1(1, 0) and E2(α1, 0) which exist for all possible parameters. We now focus on the existence of equilibria
interior to the positive quadrant. It is easy to see that the necessary condition for system (1.8) admitting a
positive equilibrium is that the following equation has a positive root:

Cγu

γ2u2 +B
−D = 0.

Therefore, for γ ∈ (0, 1] , we let

f(x) = γ2Dx2 − Cγx+BD, ∆1 = C2 − 4BD2,

then the existence of solution for f(x) = 0 is determined by the sign of ∆1 . We also should determine the v

value of the equilibrium. Note that

(1− u′)(u′ − α1) =
Aγv

γ2u2 +B

where u′ satisfies f(u′) = 0 , then we get

v′ =
(1− u′)(u′ − α1)(γ

2u2 +B)

Aγ
.

To guarantee v′ > 0 , the value of u′ should satisfy α1 < u′ < 1 , which implies that the u value of a possible
positive equilibrium of (1.8) belongs to the interval (α1, 1) . Let E∗(u∗, v∗) be the unique interior equilibrium
of system (1.8) and E1(u1, v1) , E2(u2, v2) be the two different interior equilibria of system (1.8). We have the
following several different cases:
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(H1) ∆1 < 0 . In this case, system (1.8) has no interior equilibria.

(H2) ∆1 = 0 and D ≤ C
2γ or D ≥ C

2γα1
. In this case, we know that u∗ = C

2Dγ . But u∗ does not belong to

(α1, 1) . Hence there is no positive equilibria for the system (1.8).

(H3) ∆1 = 0 and C
2γ < D < C

2γα1
. In this case, system (1.8) has unique positive equilibrium E∗(u∗, v∗) where

u∗ = C
2Dγ and v∗ = g(u∗) with

g(x) =
(1− x)(x− α1)

γ2x2 +B
.

(H4) ∆1 > 0 , C
2γ < D < C

2γα1
, f(1) > 0 , f(α1) > 0 . We can easily see that two different inferior equilibria

can be found for system (1.8) in this case, which are E1(u1, v1) and E2(u2, v2) where

u1 =
C −

√
∆1

2γD
, v1 = g(u1),

u2 =
C +

√
∆1

2γD
, v2 = g(u2).

(H5) f(1) < 0 , f(α1) > 0 . In this case, system (1.8) has two equilibria but one of them does not lie in the
positive quadrant. So only E1(u1, v1) will be obtained for system (1.8).

(H6) f(1) > 0 , f(α1) < 0 . Then the system (1.8) only has E2(u2, v2) just because u1 < α1 .

(H7) f(1) < 0 , f(α1) < 0 . No interior equilibria can be detected for system (1.8) since u1 < α1 and u2 > 1 .

(H8) ∆1 > 0 , D < C
2γ , f(1) > 0 . System (1.8) has no interior equilibria for u1 > 1 .

(H9) ∆1 > 0 , D > C
2γα1

, f(α1) > 0 . System (1.8) has no interior equilibria for u2 < α1 .

The following theorem summarizes what we have discussed above:

Theorem 2.2 There are two different interior equilibria in the system (1.8) if (H4) holds, and only one interior
equilibrium if (H3), (H5) or (H6) holds, while no interior equilibrium for cases of (H1), (H2), (H7), (H8) or
(H9).

Remark 2.3 Assume that ∆1 = 0 , then E∗(u∗, v∗) coincides with E1(1, 0) and E2(α1, 0) if D = C
2γ and

D = C
2γα1

, respectively. When ∆1 > 0 , the condition f(1) = 0 implies that either E1(u1, v1) or E2(u2, v2)

coincides with E1(1, 0) , while f(α1) = 0 implies either E1(u1, v1) or E2(u2, v2) coincides with E2(α1, 0) .
Moreover, if ∆1 > 0 , f(1) = 0 and f(α1) = 0 , then E1(u1, v1) and E2(u2, v2) coincide with E2(α1, 0) and
E1(1, 0) respectively at the same time.
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2.3. Stability analysis
Let

G =

(
F1(u, v)
F2(u, v)

)
,

and the Jacobian matrix associated to system (1.8) is given by

J =

(
F1u F1v

F2u F2v

)
,

where

F1u = (1− u)(u− α1)−
Aγv

γ2u2 +B
− u(u− α1) + u(1− u) +

2Aγ3u2v

(γ2u2 +B)2
,

F1v = − Aγu

γ2u2 +B
, F2u =

(CBγ − Cγ3u2)v

(γ2u2 +B)2
, F2v =

Cγv

γ2u2 +B
−D.

As far as E1(1, 0) and E2(α1, 0) are concerned, the Jacobian matrix evaluated at these points are:

J(E1) =

(
−(1− α1) − Aγ

γ2+B

0 − 1
γ2+B f(1)

)
,

J(E2) =

(
−α1(1− α1) − Aγα1

γ2α2
1+B

0 − 1
γ2α2

1+B
f(α1)

)
,

respectively. By standard stable analysis, we have following theorem.

Theorem 2.4 (1) E0(0, 0) is always a stable node for all possible parameters;
(2) E1(1, 0) is a stable node for the cases of (H1), (H2), (H3), (H4), (H6) (H8) or (H9), while is a

saddle for (H5) or (H7);
(3) E2(α1, 0) is a saddle for the cases of (H1), (H2), (H3), (H4), (H5) (H8) or (H9), while is an unstable

node for (H6) or (H7).

By Theorem 2.2, system (1.8) has a unique equilibrium E∗(u∗, v∗) in the case of (H3). Let

J(E∗) =

(
− C2

8D4γ2Θ(D) − 2ACD
C2+4BD2

0 0

)
,

where

Θ(x) = 4γ2α1x
2 − 4γC(1 + α1)x+ 3C2.

To obtain the stability of E∗ , we need to decide the sign of Θ(D) . Note the function Θ(x) is a parabola that
opens up with a symmetry given by

x =
C(1 + α1)

2γα1
> 0.
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Furthermore,

Θ(
C

2γ
) = C2(1− α1) > 0, Θ(

C

2γα1
) = C2(1− 1

α1
) < 0,

and
C

2γ
<

C

2γα1
<

C(1 + α1)

2γα1
,

then we know there exists a D∗ ∈ ( C
2γ ,

C
2γα1

) with Θ(D∗) = 0 . A simply calculating yields

D∗ =
C(1 + α1)− C

√
1− α1 + α2

1

2γα1
.

Meanwhile, Θ(x) is monotone decreasing in the interval of ( C
2γ ,

C
2γα1

) . Thus we have the following theorem:

Theorem 2.5 Assume the condition (H3) holds, then we have
(1) E∗ is a saddle-node attractor (see Figure 1(a)) when D < D∗ ;
(2) E∗ is a saddle-node repellor (see Figure 1(b)) when D > D∗ ;
(3) E∗ can be a cusp (see Figure 1(c)) when D = D∗ .

In the case of (H4), system (1.8) has two different equilibria E1(u1, v1) and E2(u2, v2) . It is apparent
to see that E2 is a saddle. For E1(u1, v1) , one has

J(E1) =

(
F1u(E

1) F1v(E
1)

F2u(E
1) 0

)
.

Clearly, det(J(E1)) > 0 . Then the stability of E1 is dependent of the sign of tr(J(E1)) , where

tr(J(E1)) = F1u(E
1)

=
C −

√
∆1

2γ2D2[(C −
√
∆1)2 + 4BD2]

[−2(C −
√
∆1)

3

+ 2γD(1 + α1)(C −
√

∆1)
2 + 4BγD3(1 + α1)

− 4D2(B + α1γ
2)(C −

√
∆1)]

≜ C −
√
∆1

2γ2D2[(C −
√
∆1)2 + 4BD2]

· P ∗(B,C,D, γ, α1).

Therefore we have the following theorem,

Theorem 2.6 Assume the condition (H4) holds, then we have
(1) E2 is a saddle;
(2) when P ∗ > 0 , E1 is an unstable node (focus);
(3) when P ∗ < 0 , E1 is a stable node (focus);
(4) when P ∗ = 0 , E1 is a weak focus or center.
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Similarly, we can have the following theorems,

Theorem 2.7 Assume the condition (H5) holds, then we have
(1) E1 is an unstable node (focus) if P ∗ > 0 ;
(2) E1 is a stable node (focus) if P ∗ < 0 ;
(3) E1 is a weak focus or center if P ∗ = 0 .

Theorem 2.8 E2 is a saddle if (H6) holds.

Remark 2.9 (1) According to Theorem 2.4, the topological structure around E1 and E2 may change when
parameter vector (A,B,C,D, γ, α1) varies from certain case to another.

(2) According to Remark 2.3, the existence of interior equilibria of system (1.8) with parameter vector
(A,B,C,D, γ, α1) satisfying f(1) = 0 and f(α1) = 0 is very sensitive, since at any arbitrarily small neigh-
bourhood of this kind of parameter, there exist some parameters such that it has none, one or two interior
equilibria.

(3) System (1.8) may exhibit many heteroclinic curves joining E0 and E2 (see Figure 2).

3. bifurcation analysis

3.1. Hopf bifurcation

In this subsection, we investigate the Hopf bifurcation in the system (1.8) which may occur only at E1 for the
cases of (H4) and (H5). We consider γ as the bifurcation parameter and set

P1 = {(A,B,C,D, γ, α1) : ∆1 > 0,
C

2γ
< D <

C

2α1γ
, f(1) > 0, f(α1) > 0, γ = γh},

P2 = {(A,B,C,D, γ, α1) : f(1) < 0, f(α1) > 0, γ = γh},

where γh satisfies
P ∗(A,B,C,D, γh, α1) = 0. (3.1)

Clearly, det(J(E1)) > 0 in the cases of (H4) and (H5). Since there are many parameters and it is hard to get
the analytic expression. Then next we will use the numerical method to show that some parameters can be got
in P1 or P2 which satisfies the following condition:

d

dγ
tr(J(E1))

∣∣∣
γ=γh

> 0, (3.2)

For A = 0.8 , B = 0.112 , C = 0.5 , D = 0.7404 , α1 = 0.05 , we have Figure 3(a) and we know γh = 0.4434 ,
which (0.8, 0.112, 0.5, 0.7404, 0.4434, 0.05) belongs to P1 ; for A = 0.8 , B = 0.6 , C = 0.5 , D = 0.2 , α1 = 0.05 ,
we have Figure 3(b) and we know γh = 0.474 , which (0.8, 0.6, 0.5, 0.2, 0.474, 0.05) belongs to P2 . From what
has been discussed above, we know that a parameter (A,B,C,D, γ, α1) will be detected in P1 or P2 which
satisfies (3.1) and (3.2). Now we know system (1.8) can undergo a Hopf bifurcation at E1 for γ = γh in the
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(a) Saddle-node attractor.
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(b) Saddle-node respellor.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

u

v

E*

(c) Cusp point.

Figure 1. Saddle-node attractor for A = 0.8, B = 0.17715, C = 0.5, D = 0.594, γ = 0.5, α1 = 0.05; saddle-node
respellor for A = 0.8, B = 0.0964, C = 0.5, D = 0.8052, γ = 0.5, α1 = 0.05; cusp point for A = 0.8, B = 0.111405,
C = 0.5, D = 0.7404, γ = 0.5, α1 = 0.05.
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cases of (H4) and (H5). We further discuss the stability of E1 and the limit cycle of the system (1.8) as a Hopf
bifurcation occurs by calculating the first Lyapunov coefficient l [29] at E1 . Making the transformation

x1 = u− u1, y1 = v − v1

to translate (u1, v1) to the origin, we have
ẋ1 = a10x1 + a01y1 + a20x

2
1 + a11x1y1 + a02y

2
1 + a30x

3
1 + a21x

2
1y1 + a12x1y

2
1

+a03y
3
1 +O1(x1, y1),

ẏ1 = b10x1 + b01y1 + b20x
2
1 + b11x1y1 + b02y

2
1 + b30x

3
1 + b21x

2
1y1 + b12x1y

2
1

+b03y
3
1 +O2(x1, y1),

(3.3)

where

a10 = −(u1 − α1)u1 + (1− u1)u1 +
2Aγ3u2

1v1
(γ2u2

1 +B)2
= 0, a01 = − Aγu1

γ2u2
1 +B

< 0,

a20 =
1

2

[
− 2(u1 − α1)− 2u1 + 2(1− u1) +

2Aγ3u1v1
(γ2u2

1 +B)2
+

4ABγ3u1v1 − 4Aγ5u3
1v1

(γ2u2
1 +B)3

],

a11 =
Aγ3u2

1 −ABγ

2(γ2u2
1 +B)2

, a02 = 0,

a30 =
1

6

[
− 6 +

2ABγ3v1 − 6Aγ5u2
1v1

(γ2u2
1 +B)3

+
−40ABγ5u2

1v1 + 20Aγ7u4
1v1 + 4AB2γ3v1

(γ2u2
1 +B)5

],

a21 =
1

6

[ 2Aγ3u1

(γ2u2
1 +B)2

+
4ABγ3u1 − 4Aγ5u3

1

(γ2u2
1 +B)4

], a12 = 0, a03 = 0,

b10 = v1
CγB − Cγ3u2

1

(γ2u2
1 +B)2

> 0, b01 = 0, b20 = v1
Cγ5u3

1 − 3BCγ3u1

(γ2u2
1 +B)3

,

b11 =
CγB − Cγ3u2

1

(γ2u2
1 +B)2

, b02 = 0, b30 = v1
6BCγ5u2

1 −B2Cγ3 − Cγ7u4
1

(γ2u2
1 +B)4

,

b21 =
Cγ5u3

1 − 3BCγ3u1

3(γ2u2
1 +B)3

, b12 = 0, b03 = 0,

and O1(x1, y1) , O2(x1, y1) are the smooth functions with at least the fourth order with respect to (x1, y1) .
Hence using the formula of the first Lyapunov coefficient l at the origin of system (3.3), we have

l = − 3π
2a01∆3/2 ([a10b10(a

2
11 + a11b02 + a02b11) + a10a01(b

2
11 + a20b11 + a11b02)

+b210(a11a02 + 2a02b02)− 2a10b10(b
2
02 − a20a02)− 2a10a01(a

2
20 − b20b02)

−a201(2a20b20 + b11b20) + (a01b10 − 2a210)(b11b02 − a11a20)]
−(a210 + a01b10)[3(b10b03 − a01a30) + 2a10(a21 + b12) + (b10a12 − a01b21)]),

where ∆ = a10b01 − a01b10 . According to [28] and the equivalence between system (1.7) and system (1.6), we
have l ̸= 0 , which guarantees the uniqueness of limit cycle, then the origin of system (3.3) is a weak focus
of multiplicity one that is stable if l < 0 and unstable if l > 0 [29]. With the aid of numerical calculations,
we can see that the sign of l can be negative at certain parameter (A,B,C,D, γ, α1) . For example, when the
parameter (A,B,C,D, γ, α1) = (0.8, 0.6, 0.5, 0.2, 0.474, 0.05) belongs to P2 , then l = −1.068760e + 00 < 0 .
Since the complexity of the expression of l , we have the following theorem theoretically:
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Figure 2. ForA = 0.8, B = 0.009, C = 0.5, D = 1.176, γ = 0.5, α1 =0.05, there exists E2 which is saddle and the
red line is saddle point separatrix. Many heteroclinic curves connecting E0 and E2 can be found.

Theorem 3.1 Let

P3 = {(A,B,C,D, γ, α1) : (A,B,C,D, γ, α1) ∈ P1 or P2, l < 0},

P4 = {(A,B,C,D, γ, α1) : (A,B,C,D, γ, α1) ∈ P1 or P2, l > 0},

then

(1) if the parameter (A,B,C,D, γ, α1) is in P3 , then the equilibrium E1 of the system (1.8) is a weak focus
of multiplicity one and is stable;

(2) if the parameter (A,B,C,D, γ, α1) is in P4 , then the equilibrium E1 of the system (1.8) is a weak focus
of multiplicity one and is unstable.

We regard the sets Pi, i = 3, 4 as three surfaces. From Theorem 2.6, Theorem 2.7, and the first case in
Theorem 3.1 coupled with the condition (3.2), we know that a stable limit cycle can be generated by the weak
focus E1 as γ passes through the bifurcation value γ = γh . When the parameter (A,B,C,D, γh, α1) varies
from one side of the surface P3 to the other side, system (1.8) can experience a supercritical Hopf bifurcation [29]
and a stable limit cycle occurs in the small neighbourhood of E1 when γ > γh and (A,B,C,D, γh, α1) ∈ P3 .
Those phenomena can be numerically presented in (Figure 4).

On the other hand, from Theorem 2.6, Theorem 2.7 and the third case in Theorem 3.1 couple with the
condition (3.2), we know that an unstable limit cycle can be generated by the weak focus E1 as γ passes
through the bifurcation value γ = γh . When the parameter (A,B,C,D, γh, α1) varies from one side of the
surface P4 to the other side, system (1.8) may undergo a subcritical Hopf bifurcation [29] and an unstable limit
cycle occurs in the small neighbourhood of E1 when γ < γh and (A,B,C,D, γh, α1) ∈ P4 .
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(a) (A,B,C,D, γh, α1) ∈ P1 .
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(b) (A,B,C,D, γh, α1) ∈ P2 .

Figure 3. Existence of Hopf bifurcation parameter γ .
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Now we show that Hopf bifurcation can be observed by changing the bifurcation parameter γ in the small
neighbourhood of bifurcation value γh . We again use numerical way (Figure 4). If 0 < γ < γh , system (1.8)
has a stable equilibrium E1 (Figure 4(a)). A stable limit cycle appears when γ passes through γh (Figures
4(b), 4(c), 4(d)) and the limit cycle expands with the increasing γ . As γ becomes larger, the stable limit cycle
disappears and a homoclinic orbit is created by joining the stable and unstable manifolds of the saddle. By the
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(a) γ = 0.473 (γ < γh) , E1 is a stable focus.
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(b) γ = 0.474(γ = γh) , a weak focus of multiplicity one occurs.
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(c) γ = 0.489(γ > γh) , inside the stable limit cycle.
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(d) γ = 0.489(γ > γh) , outside the stable limit cycle.

Figure 4. Bifurcation structure of E1 for Hopf bifurcation for A = 0.8 , B = 0.6 , C = 0.5 , D = 0.2 , α1 = 0.05 .
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above statements, we have:

Theorem 3.2 (1) System (1.8) has at least one stable limit cycle under the condition that the parameter
(A,B,C,D, α1) ∈ P3 , γ > γh and | γ − γh |≪ 1 .

(2) System (1.8) has at least one unstable limit cycle under the condition that the parameter (A,B,C,D, α1) ∈
P4 , 0 < γ < γh and | γ − γh |≪ 1 .

3.2. Saddle-node bifurcation
Let

P6 = {(A,B,C,D, γ, α1) : ∆1 = 0,
C

2γ
< D <

C

2γα1
},

then from the theorem (2.2), we can see that when (A0, B0, C0, D0, γ0, α10) ∈ P6 , system (1.8) has only one
interior equilibrium E∗(u∗, v∗) . Let γ∗ has following property:

D∗ =
C0(1 + α10)− C0

√
1− α10 + α2

10

2γ∗α10
.

Now we choose B as the bifurcation parameter, then we have the following theorem.

Theorem 3.3 For B = B0 and γ0 ̸= γ∗ , a saddle-node bifurcation occurs at the unique positive equilibrium
E∗(u∗, v∗) of system (1.8).

Proof First, we have det(J(E∗)) = 0 . Then, J(E∗) has an eigenvalue λ1 = 0 . According to Theorem 2.5,
we know thast if γ0 ̸= γ∗ , then λ1 = 0 is simple. Let W1 and W2 be the eigenvectors corresponding to the
λ1 = 0 for J(E∗) and J(E∗)T respectively. Then we have

W1 =

(
1

C2
0+4B0D

2
0

2A0C0D0
H1

)
:=

(
w11

w12

)
,

and

W2 =

(
0
1

)
.

From the expressions for W1 and W2 , we get

WT
2 GB(E

∗;B0) = − C0γ0u
∗v∗

(γ2
0u

∗2 +B0)2
̸= 0,

WT
2 D2G(W1,W1) = − 2C0γ

3
0u

∗v∗

(γ2
0u

∗2 +B0)2
̸= 0,

where GB = ∂G
∂B and

D2G(W1,W1) =
∂2G

∂u2
w11w11 +

∂2G

∂u∂v
w11w12 +

∂2G

∂v∂u
w12w11 +

∂2G

∂v2
w12w12.

By Sotomayor’s theorem [29], system (1.8) undergoes a saddle-node bifurcation at E∗ as B passes B0 if
γ0 ̸= γ∗ . 2
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We have a numerical example to illustrate a saddle-node bifurcation of system (1.8) (Figure 5). This
example illustrates that when B > B0 where B0 represents saddle-node bifurcation parameter value, system
(1.8) does not have any interior equilibria; when B passes through B0 (in this example, B0 = 0.097656), then
system (1.8) has two different interior equilibria: the smaller equilibrium (blue) is unstable node and the larger
one (red) is saddle.
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(a) Prey population scenario.
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(b) Predator population scenario.

Figure 5. A saddle-node bifurcation of system (1.8) at B0 =0.097656 (mark as SN), for A = 0.8 , C = 0.5 , D = 0.8 ,
γ = 0.5 , α1 = 0.05 . A neutral saddle also occurs.

3.3. Bogdanov-Takens bifurcation

From the analysis in section 2, we know that when (A,B,C,D, γ, α1) ∈ P6 and D = D∗ , system (1.8) has
an interior equilibrium E∗ which can be a cusp. We use parameter (A0, B0, C0, D0, γ0, α10) again and now
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γ0 = γ∗ (namely D0 = D∗ ), then
det(J(E∗)) = 0, tr(J(E∗)) = 0.

The following theorem indicates that system (1.8) could exhibit the BT bifurcation under a small parameter
perturbation if we choose apt bifurcation parameters,

Theorem 3.4 The interior equilibrium E∗ of the system (1.8) is a cusp of codimension 2.

Proof First of all, we translate the interior equilibrium E∗ to the origin and expand the system (1.8) in a
power series around the origin. Let

X = u− u∗, Y = v − v∗,

then system (1.8) can be rewritten as{
Ẋ = − A0γ0u

∗

γ2
0u

∗2+B0
Y + h(u∗)X2 +R10(X,Y ),

Ẏ = − 2C0γ
3
0u

∗

(γ2
0u

∗2+B0)2
X2 +R20(X,Y ),

(3.4)

where

h(u∗) =
−7u∗2 + 3α10u

∗ + 3u∗ − α10

2u∗ ,

R10(X,Y ) and R20(X,Y ) are C∞ functions in (X,Y ) at least of the third order. Next, we study the normal
form of system (1.8) in the two-dimensional center manifold. Making the affine transformation

X = X, Z = − A0γ0u
∗

γ2
0u

∗2 +B0
Y.

We can rewrite system (3.4) as follows:{
Ẋ = Z + h(u∗)X2 +R11(X,Z),

Ż = δ1X
2 +R21(X,Z),

(3.5)

where

δ1 =
2A0C0γ

4
0u

∗2

(γ2
0u

∗2 +B0)3
,

R11(X,Z) and R21(X,Z) are C∞ functions in (X,Z) at least of the third order. In order to find the canonical
form of the cusp, we take

f = X, e = Z + h(u∗)X2 +R21(X,Z),

and the system (3.5) becomes {
ḟ = e,

ė = δ1f
2 + δ2fe+R30(f, e),

(3.6)

where R30(f, e) is a C∞ function in (f, e) at least of the third order, and

δ2 =
−7u∗2 + 3α10u

∗ + 3u∗ − α10

4u∗ .
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It is easy to see that δ1 > 0 and δ2 < 0 , then E∗(u∗, v∗) is a cusp of codimension 2. 2

Next we are interested in the bifurcation of the cusp E∗ as the parameters vary in a small neighbourhood
of (A0, B0, C0, D0, α10) . According to the Theorem (3.3), we choose B and γ as bifurcation parameters, then
we obtain

Theorem 3.5 The system (1.8) undergoes a Bogdanov-Takens bifurcation around the equilibrium point E∗

when B = B0 and γ0 = γ∗ .

Proof Using the method in [21], we consider the neighbourhood of (B0, γ
∗) , i.e. γ = γ∗ + ε1 , B = B0 + ε2 ,

where εi , i = 1, 2 are sufficient small, and system (1.8) becomes
du
dt = [(1− u)(u− α10)− A0(γ

∗+ε1)v
(γ∗+ε1)2u2+B0+ε2

]u,

dv
dt = [ C0(γ

∗+ε1)u
(γ∗+ε1)2u2+B0+ε2

−D0]v.
(3.7)

We translate E∗ to the origin and expand system (3.7) in a power series around the origin. Let

x2 = u− u∗, y2 = v − v∗.

Then we have 
ẋ2 = L10 + L11x2 + L12y2 +

1
2L13x

2
2 + L14x2y2 +

1
2L15y

2
2 + T1(x2, y2, ε1, ε2)

:= Q1(x2, y2, ε1, ε2),
ẏ2 = L20 + L21x2 + L22y2 +

1
2L23x

2
2 + L24x2y2 +

1
2L25y

2
2 + T2(x2, y2, ε1, ε2)

:= Q2(x2, y2, ε1, ε2),

(3.8)

and

L10 =
A0γ

∗u∗v∗

(γ∗2u∗2 +B0)2
ε2 + ξ1(ε1, ε2), L11 =

4A0γ
∗4u∗4v∗

(γ∗2u∗2 +B0)3
ε1 −

2A0γ
∗3u∗2v∗

(γ∗2u∗2 +B0)3
ε2 + ξ2(ε1, ε2),

L12 = − A0γ
∗u∗

γ∗2u∗2 +B0
+

A0γ
∗u∗

(γ∗2u∗2 +B0)2
ε2 + ξ3(ε1, ε2), L13 = h(u∗)− 4A0γ

∗4u∗3v∗

(γ∗2u∗2 +B0)3
ε1 + ξ4(ε1, ε2),

L14 =
2A0γ

∗2u∗2

(γ∗2u∗2 +B0)2
ε1 −

A0γ
∗

(γ∗2u∗2 +B0)2
ε2 + ξ5(ε1, ε2), L15 = 0,

L20 = − C0γ
∗u∗v∗

(γ∗2u∗2 +B0)2
ε2 + ξ6(ε1, ε2), L21 = − 2C0γ

∗2u∗2

(γ∗2u∗2 +B0)2
ε1 +

C0γ
∗

(γ∗2u∗2 +B0)2
ε2 + ξ7(ε1, ε2),

L22 = − C0γ
∗u∗

(γ∗2u∗2 +B0)2
ε2 + ξ8(ε1, ε2), L23 = − 4C0γ

∗5u∗3v∗

(γ∗2u∗2 +B0)3
+

8C0γ
∗6u∗5v∗

(γ∗2u∗2 +B0)4
ε1 + ξ9(ε1, ε2),

L24 = − 2C0γ
∗2u∗2

(γ∗2u∗2 +B0)2
ε1 +

C0γ
∗

(γ∗2u∗2 +B0)2
ε2 + ξ10(ε1, ε2), L25 = 0,

where ξi(ε1, ε2), i = 1, · · · , 10 , are smooth functions at least of the second order, T1(x2, y2, ε1, ε2) and
T2(x2, y2, ε1, ε2) are C∞ functions at least of the third order with respect to (x2, y2) , and the coefficients
depend smoothly on ε1 and ε2 , respectively. Making the parameter-dependent affine transformation

m = x2, n = L11x2 + L12y2,
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system (3.7) becomes

ṁ = L10 + n+ ( 12L13 − L14

L12
L11)m

2 + L14

L12
mn+ T̃1(m,n, ε1, ε2),

ṅ = L11L10 + L12L20 + (L11 + L22))n+ (L12L21 − L11L22)m

+( 12L11L13 − L2
11L14

L12
+ L12L13

2 − L11L24)m
2 + (L11L14

L12
+ L24)mn

+T̄2(m,n, ε1, ε2),

(3.9)

where T̄1(m,n, ε1, ε2) and T̄2(m,n, ε1, ε2) are C∞ functions in variables (m,n) at least of the third order, the
coefficients depend smoothly on ε1 and ε2 .

Furthermore, if ε1 = ε2 = 0 , we can see that

(BT0)

J(E∗, 0, 0) =

(
0 − 2A0C0D0

C2
0+4B0D2

0

0 0

)
̸= θ2×2,

(BT1) [L13

2
− L11L14

L12
+

L11L14

L12
+ L24

]∣∣∣
ε1=0,ε2=0

=
h(u∗)

2
< 0,

(BT2) [
− L11L13

2
− L2

11L14

L12
+

L12L13

2
− L11L24

]∣∣∣
ε1=0,ε2=0

=
2C0γ

∗6u∗4v∗

(γ∗2u∗2 +B0)4
> 0,

(BT3) the map ((
x2

y2

)
,

(
ε1

ε2

))
−→

((
Q1

Q2

)
, tr(M), det(M)

)
, i = 1, 2

is regular at (
x2

y2

)
=

(
0

0

)
and

(
ε1

ε2

)
=

(
0

0

)
,

where

M =
∂(Q1, Q2)

∂(x2, y2)
.

By the theorem in [21], the system (1.8) can undergo a Bogdanov-Takens bifurcation around the interior
equilibrium point E∗ when B = B0 and γ0 = γ∗ . This completes the proof. 2

Remark 3.6 The quantity ω [21] which determines the structure of the bifurcation is given by

ω = sign[h(u
∗)c0γ

∗6u∗4v∗

(γ∗2u∗2 +B0)4
] = −1.
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The bifurcation diagram of system (1.8) in (γ,B) is presented in (Figure 6). Now we make a roundtrip near the
Bogdanov-Takens point (γ,B) = (0.498, 0.114) and sketch all the possible dynamical structures of the system
(1.8) near the BT point. We start from domain 1 where there are no positive equilibria (and thus no limit cycles
are possible). When through the horizontal line at the left part of BT point into domain 2, there are two possible
structures that the system (1.8) can exhibit. The first case is that when entering from domain 1 into domain 2
through the left part of mark CP (which means the unique positive equilibrium E∗ coincides with E1 ), system
(1.8) has no positive equilibria even though the change of number of equilibria can be from one to two. Yet one
positive equilibrium (a stable node) can be detected after a certain point in domain 2; the second case is two
interior equilibria (a stable node and a saddle) can be found when entering from domain 1 into domain 2 through
the limit point curve (magenta) part between the mark CP and BT. Then the nodes in both cases turn into a
focus and lose stability as we cross the Hopf curve (green). A stable limit cycle is presented for close parameter
values to the right of the Hopf cure (green). If we continue the journey anticlockwise and finally return to
domain 1 where no limit cycle can remain, there must be global bifurcations “destroying” the cycle somewhere
between the hopf curve and limit point curve. According to [21], we know of only two such bifurcations of
codim 1 in planar systems: a saddle homoclinic bifurcation and a saddle-node homoclinic bifurcation. Since the
saddle-node equilibrium at the fold bifurcation cannot have a homoclinic orbit [21], the only possible candidate
for global bifurcation is the appearance of an orbit homoclinic to the saddle. On the homoclinic curve (blue),
an orbit homoclinic to the saddle E1(1, 0) (Figure 7(a)) or an orbit homoclinic to the saddle E2 (Figure 7(b))
can be found. As we trace the homoclinic orbit along the homoclinic curve toward the Bogdanov-Takens point,
the looplike orbit shrinks and disappears. There exists a non-bifurcation line corresponding to a neutral saddle
(black) between domain 4 and domain 5.
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0.15

B

BT CP 

Hopf curve (green)

Neutral saddle curve (black)
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Limit point curve (magenta)
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domain 5
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Homoclinic curve (blue)

domain 4

γ

Figure 6. Bifurcation structure of system (1.8) in (γ,B) with a Bogdanov-Takens bifurcation for A = 0.8, C = 0.5,
D = 0.7404, α1 = 0.05.

4. Discussion
In this paper, a model, equivalently extended by the model in [28], has been erected by considering a refuge
which can protect prey proportionally to the density of prey. As mentioned in the introduction, the equivalence
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(a) Homoclinic to E1 , (γ,B) = (0.3, 0.06924) .
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(b) Homoclinic to E2 , (γ,B) = (0.4482, 0.1038) .

Figure 7. Homoclinic orbits for A = 0.8 , C = 0.5 , D = 0.7404 , α1 = 0.05 .
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between system (1.7) and system (1.6) makes the stability analysis for both models have some similarities and
also guarantees the uniqueness of limit cycle of the model in this paper, if it has. However, in this paper, we
intend to analyse the influence that the refuge produced on the existence of positive equilibrium of the system
(1.7) and make a well-round analysis. In addition, we conduct the bifurcation analysis of the system (1.7)
mainly in terms of the refuge parameter to study the effect that variant values of refuge exert on the dynamics
of the system (1.7), which was not considered in [28]. Noting the relationship between the anti-refuge parameter
γ and the refuge parameter β , we can discuss the effect of refuge on the system (1.8) merely in terms of β .

According to the discussion in Section 2, we know that there are nine cases for the existence of the solution
of system (1.8) and each case has a relationship with the value of β except the case (H1). In the case of (H1),
because of the sign of ∆1 fixed once we choose a certain value for (C,B,D) , it has nothing to do with the value
of β which explains why we take other parameter B rather than β as the parameter for saddle-node bifurcation
that also can be explained by (Figure 6). Hence, when ∆1 < 0 , the value of β does not have any effect on the
system (1.8) and the system exhibits a bistability phenomenon for the existence of strong Allee effect. However,
β plays a very important role in determining the existence of positive equilibria for the system (1.8) when the
rest of the parameters are deterministic and ∆1 ≥ 0 . In the cases of (H2) and (H3), system (1.8) may have
none or one interior equilibrium in which β can play a significant role. In cases of (H4) to (H9), just as the
predator-prey system which considers a non-monotonic functional response in [28, 31], system (1.8) may have
up to two positive equilibria (see the case (H4)). When we regard the parameter (A,B,C,D, α1) as constant
and ∆1 > 0 , system (1.8) may have none, one or two positive equilibria when we increase refuge parameter β

from 0. From what has been discussed above, we can conclude that considering refuge can alter the number of
interior equilibria of the system (1.8) and make the system more complex. Meanwhile, contrasting to the case
without refuge, adding refuge on the prey (increase the value of β ) may increase the equilibrium density of the
prey population which is natural as an increase in refuge parameter β decreases the predation risk for the prey
population.

Due to the existence of a strong Allee effect, it is interesting to note that the origin E0 is a locally
asymptotically stable equilibrium point of system (1.8) for any set of parameter values and there exists a
separatrix curve determined by the stable (unstable) manifold of E2 which divides the behaviour of trajectories
of the system into two domain in the phase plane, suggesting that the model is sensitive enough to the initial
conditions which is also true in [28]. Consequently, the refuge used by prey does not decrease or diminish the
effect that the Allee effect brings about.

In section 3, we consider β as the bifurcation parameter and find that system (1.8) can exhibit a subcritical
Hopf bifurcation (because γ = 1 − β ) and co-2 Bogdanov-Takens bifurcations with the other bifurcation
parameter B . When in the cases of (H4) and (H5), then system (1.8) has either one interior equilibrium
E1 or two interior equilibria E1 and E2 . In these cases, E2 is saddle and the stability of E1 is determined
by the value of β . E1 will be a unstable node when β < βh where βh + γh = 1 ; the prey and predator
populations oscillate around E1 when β = βh ; when β > βh , E1 turns into a local stable node which means
the two interacting populations tend to a stable equilibrium at some initial conditions; when the proportion of
prey using refuge β increases further, the result shows that the considered model stabilizes at the predator-free
equilibrium under some initial conditions, that is prey reaches its environment carrying capacity of prey and
predators go extinct. When in the case of (H3), we detect a codimension-2 Bogdanov-Takens bifurcation with
parameters B and γ . For the relationship between γ and β and according to the analysis of (Figure 6), we find
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that increasing β under proper initial conditions will also increase the local stability of the interior equilibrium.
To sum up, under proper conditions, protecting a fraction of prey in the system (1.6) may alter the stability of
interior equilibria and have a stabilizing effect.

Therefore, by the mathematical results established in this paper, we should take proper actions to protect
the endangered species as soon as possible in case the quantity of the species is inferior to a certain threshold
under which the strong Allee effect can urge the species goes extinction even without predation. Because once
the number of species is below the threshold, the refuge on prey will play no role. Hence considering refuge is
a good choice for the department concerned to preserve the endangered species at the beginning.

This paper admits improvement and leaves some questions for further discussion. For starters, what if
we consider the quantity of hiding prey to be a constant number; the other one is what will happen if system
(1.8) takes the form of the original Monod-Haldane, i.e.

φ(x) =
qx

a+ bx+ x2

and incorporates a proportion of refuge on prey. We surmise the system can have bifurcations of codimension-3
as a similar outcome has been observed in [30] without the Allee effect and refuge on prey.
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