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Abstract: In this paper we work on preserving various types of continuity in ideal topological spaces. The accent will
be on θ -continuity and weak continuity. We will give their translations in ideal topological spaces. As a consequence
of those results, we will prove that every θ -continuous function is continuous if topologies are generated by θ -open sets
and we will give an example of a weakly continuous function which is not τθ -continuous. This will complete the diagram
of relations between continuous, τθ -continuous, θ -continuous, weakly continuous, and faintly continuous functions.
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1. Introduction
Continuity is almost as old as general topology. Both notions are first mentioned by Frèchet, topological
structure in 1906 [8], and continuity in 1910 [9]. The importance of continuity in general topology does not need
to be explained here. Later, several modifications of continuity were defined. Some of them are θ -continuity,
weak continuity, faint continuity, almost continuity, and many others.

It is interesting that θ -continuity was defined before θ -open sets. It was done by Fomin [6] in 1942. Later,
after Veličko [26] introduced θ -open and θ -closed sets, it turned out that those notions have some connections
with θ -continuity. Topology defined by θ -open sets, the θ -topology, was later studied by Herrmann [11] and
by Foroutan, Ganster and Steiner [7]. Weakly continuous functions were first mentioned by Levine in 1961 in
[16]. There he proved that a weakly continuous function which is also weakly* continuous is continuous and
vice versa.

Throughout history, some unintended overlapping occurred. For example, closure continuity was intro-
duced by Andrew and Whittlesy [3] in 1966. and it turned out that it is equivalent to θ -continuity. Almost
continuous mapping was presented the same year by Husain [12] and, by the same name, but with a slightly
different definition, by Singal and Singal [24]. Different forms of faintly continuous functions can be found in
[17] and [20]. Also, some weak forms of continuity were mentioned by Espelie and Joseph in [5].

Kuratowski was the first who considered ideals in general topology. In 1933 [14, 15] he defined the local
function, generalization of closure by an ideal. About a decade later, Vaidyanathaswamy continued the research
on this topic in [25]. Through the years ideal topological spaces became an interesting topic in topology, measure
theory, etc. (see Freud [10], Scheinberg [23]). One of the most thorough papers on the local function and ideal
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topological spaces in general was written by Janković and Hamlett [13] in 1990. This survey paper was used
later as a basis for further research, mostly for studying modifications of the local function. Thus in 2013,
Al-Omari and Noiri [1] introduced the local closure function as a generalization of θ -closure in ideal topological
spaces. In the same paper, they mentioned two new topologies obtained from the starting topology using the
local closure function.

New variations of continuity were also defined in ideal topological spaces. Such examples can be found in
the most recent works of Al-Omeri and Noiri [2], and of Powar, Mishra, and Bhadauria [22]. However, our work
will consider some basic aspects of types of continuities and their natural interpretation in ideal topological
spaces.

In Section 2 we will give basic definitions and notations. Also, we will give definitions of several topologies
obtained in ideal topological spaces in which we will work. In Section 3 we will give definitions of continuity and
its various types and present the current state of results considering relations between those types of continuity
presented as a diagram. In the following two sections we will give results obtained as the continuation of the
research started in [19] on preserving continuity in ideal topological spaces. Section 4 is reserved for results
concerning θ -continuity and its consequences in ideal topological spaces. We will give a sufficient condition
for ideals in order to θ -continuous function in topologies without ideals becomes continuous in σ , topology
obtained by the local closure function. At the end of this section, we will prove that θ -continuity implies
continuity in topologies consisting of θ -open sets, τθ -topology, which will add a new arrow on the diagram.
In Section 5 we will deal with weakly continuous functions and consequences in ideal topological spaces. A
condition on ideals when weakly continuous functions become, in ideal topological spaces, a continuous between
τ∗ and σ topologies, will be given. As a direct consequence of those results is an already known result that
weak continuity implies faint continuity. We will prove that in case when at least one of sets (set of originals
or set of images) is finite, weak continuity implies continuity in the topology of θ -open sets. Finally, we will
give an infinite example of a weakly continuous function which is not continuous in the topology of θ -open sets,
proving that those two types are incomparable in general. This example will complete the diagram in the sense
that no new arrows can be added.

2. Basic definitions
By ⟨X, τ⟩ we will denote a topological space, τ(x) will be the family of open neighbourhoods at the point x .
Closure of the set A will be written as Clτ (A) or, if it is clear, just by Cl(A) . Similarly, the interior of A will
be denoted by Int(A) or Intτ (A) . An important part of this paper will be dedicated to θ -topology. This
topology τθ consists of all θ -open sets: we say that a set U is θ -open if

∀x ∈ U ∃V ∈ τ(x) Cl(V ) ⊆ U.

Intτθ (A) will denote the interior in the topology of θ -open sets. It is obvious that τθ ⊆ τ . U is θ -open
if and only if Intθ(U) = U . Naturally, a set A is θ -closed if its complement X \A is θ -open.

θ -closure Clθ(A) is an operator in the starting topology. It is defined by

Clθ(A) = {x ∈ X : Cl(U) ∩A ̸= ∅ for each U ∈ τ(x)}.

A set A is θ -closed if and only if it is equal to its θ -closure. It is important to notice that θ -closure of a set
does not have to be θ -closed, but it is always a closed set. We have Cl(A) ⊆ Clθ(A) , for each set A . In order
to distinguish closure in τθ from the operator Clθ , the prior will be denoted by Clτθ .
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We will use small Greek letters α, β, γ, . . . , ω, . . . to denote ordinals. The family of all ordinals is denoted
by ON . Letters λ and κ will be used for cardinals, while ℵ0 is the first infinite cardinal.

An ideal on a nonempty set X is a family I ⊂ P (X) such that
(1) ∅ ∈ I ,
(2) If A ∈ I and B ⊆ A , then B ∈ I ,
(3) If A,B ∈ I , then A ∪B ∈ I .

If ⟨X, τ⟩ is a topological space, then an ideal topological space is a triple ⟨X, τ, I⟩ .
In an ideal topological space ⟨X, τ, I⟩ , the local function (see [15]) can be defined as follows

A∗
(τ,I) = {x ∈ X : A ∩ U ̸∈ I for each U ∈ τ(x)}.

If it is clear which topology and ideal are considered, we write briefly A∗ . It is monotone operator and
(A∗)∗ ⊆ A∗ . Clearly, if I = {∅} , then A∗ = Cl(A) .

Basic properties of the local function can be found in the survey paper of Janković and Hamlett [13].
Using the local function, a new topology τ∗(I) can be defined using the closure operator Cl∗(A) = A∪A∗ .

Therefore, τ∗(I) can be described as

τ∗(I) = {U ⊆ X : Cl∗(X \ U) = X \ U}.

Note that τ ⊆ τ∗ ⊆ P (X) .
Several modifications of the local function have been studied throughout history. We will deal with the

one given by Al-Omari and Noiri [1]. They defined the local closure function as a generalization of θ -closure
in ideal topological spaces. The local closure function in an ideal topological space ⟨X, τ, I⟩ is defined as

Γ(τ,I)(A) = {x ∈ X : Cl(U) ∩A ̸∈ I for each U ∈ τ(x)}.

If the topology and the ideal are given, we write briefly Γ(A) . It is a monotone operator, but there is no
general relation between A and Γ(A) , and it is not idempotent. Notice that if I = {∅} then, for each set A ,
we have Γ(A) = Clθ(A) .

Some basic properties of the local closure function can be found in [1], and further analysis of its properties
and relations with the local function in [21] and [18].

Al-Omari and Noiri [1] also studied a variant of θ -interior in ideal topological spaces. They denoted this
operator by ψΓ(A) and defined it by

ψΓ(A) = X \ Γ(X \A).

Using ψΓ(A) they defined a new topology σ using the operator ψΓ :

A ∈ σ ⇔ A ⊆ ψΓ(A).

F is a closed set in the topology σ iff Γ(F ) ⊆ F . It is important to point out that τθ ⊆ σ , and if I = {∅} , we
have τθ = σ .

Since we are dealing with functions, we will always deal with two topologies. To distinguish them,
sometimes we will put the index of the set next to the topology, like τX , or σY . But, when it is clear what is
the carrier set of the topology we are talking about, that index will be omitted, especially when the name of
the topology has to be part of the closure or interior operator.
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3. Several types of continuity

In this section, we will give definitions of various types of continuity and their known relations. All are defined
in classical topological spaces without ideals.

The notation is standard. If f : X → Y , for A ⊆ X and B ⊆ Y , direct image of the set A is defined by
f [A] = {f(x) : x ∈ A} and preimage of B is defined by f−1[B] = {x ∈ X : f(x) ∈ B} .

The following definition belongs to the folklore of general topology.

Definition 3.1 A function f : X → Y is continuous at the point x ∈ X if and only if for each neighbourhood
V of f(x) there is a neighbourhood U of x such that

f [U ] ⊆ V.

f : X → Y is continuous if and only if f is continuous at each point x ∈ X .

Proposition 3.2 [4, Proposition 1.4.1] For f : ⟨X, τX⟩ → ⟨Y, τY ⟩ the following conditions are equivalent
a) f is continuous.
b) For each O ∈ τY we have f−1[O] ∈ τX .
c) For each A ⊆ X we have f [Cl(A)] ⊆ Cl(f [A]) .
d) For each B ⊆ Y we have Cl(f−1[B]) ⊆ f−1[Cl(B)] .
e) For each B ⊆ Y we have f−1[Int(B)] ⊆ Int(f−1[B]) .

Definition 3.3 (Levine, [16]) A function f : X → Y is weakly continuous at the point x ∈ X if and only
if for each neighbourhood V of f(x) there is a neighbourhood U of x such that f [U ] ⊆ Cl(V ) . A function
f : X → Y is weakly continuous if and only if f is weakly continuous at each point x ∈ X .

An equivalent condition for weak continuity can be given in terms of preimage.

Theorem 3.4 (Levine, [16]) A function f : X → Y is weakly continuous if and only if f−1[V ] ⊆
Int(f−1[Cl[V ]]) for each open subset V of Y .

Definition 3.5 (Fomin, [6]) A function f : X → Y is θ -continuous in x0 ∈ X iff for each open neighbour-
hood V of f(x0) there exists open neighbourhood U of x0 such that f [Cl(U)] ⊆ Cl(V ) . The same definition is
given in [3], but there it is called closure continuity.

It is important to mention that θ -continuity is not the same as continuity in topologies of θ -open sets.
Therefore, to make a difference, the second type of continuity we will call τθ -continuity. The following result
gives a sufficient condition for preserving θ -continuity when topology τ on the domain is replaced with the
finer topology τ∗ .

Theorem 3.6 (Janković, Hamlett, [13]) If X = X∗ then f : ⟨X, τ⟩ → Y is θ -continuous iff f : ⟨X, τ∗⟩ →
Y is θ -continuous.
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Definition 3.7 (Long and Herrington, [17]) A function f : ⟨X, τX⟩ → ⟨Y, τY ⟩ is faintly continuous at
the point x ∈ X if and only if for each θ -open neighbourhood V of f(x) there is an open neighbourhood U of
x such that

f [U ] ⊆ V.

f : X → Y is faintly continuous if and only if f is faintly continuous at each point x ∈ X .

Directly from the definition follows that f : ⟨X, τX⟩ → ⟨Y, τY ⟩ is faintly continuous iff f : ⟨X, τX⟩ →
⟨Y, (τθ)Y ⟩ is continuous. In the same paper, it is proved that continuity implies τθ -continuity.

Theorem 3.8 (Long and Herrington, [17]) If f : ⟨X, τX⟩ → ⟨Y, τY ⟩ is continuous then f : ⟨X, (τθ)X⟩ →
⟨Y, (τθ)Y ⟩ is continuous.

The following result is obvious, but it is given since it will represent one arrow at the diagram which will
be given at the end of the section.

Theorem 3.9 (Long and Herrington, [17]) If f : ⟨X, (τθ)X⟩ → ⟨Y, (τθ)Y ⟩ is continuous then f : ⟨X, τX⟩ →
⟨Y, (τθ)Y ⟩ is continuous, i.e. f : ⟨X, τX⟩ → ⟨Y, τY ⟩ is faintly continuous.

Theorem 3.10 (Long and Herrington, [17]) If f : ⟨X, τX⟩ → ⟨Y, τY ⟩ is a weakly continuous function then
f : ⟨X, τX⟩ → ⟨Y, τY ⟩ is faintly continuous.

Trivially, θ -continuous function is weakly continuous. So, so far, the following diagram, presented in
Figure 1, illustrates currently known relations between various types of continuity. It is also known that
opposite implications do not hold in general.

Continuity

θ -continuity

weak continuity faint continuity

τθ -continuity

Figure 1. Current state of knowledge concerning various types of continuity

4. θ -continuity and local closure function

Theorem 4.1 Let ⟨X, τX , IX⟩ and ⟨Y, τY , IY ⟩ be ideal topological spaces. If f : ⟨X, τX⟩ → ⟨Y, τY ⟩ is a
θ -continuous function and for all I ∈ IY we have f−1[I] ∈ IX , then there hold the following equivalent
conditions:

a) ∀A ⊆ X f [Γ(A)] ⊆ Γ(f [A]);

b) ∀B ⊆ Y Γ(f−1[B]) ⊆ f−1[Γ(B)].
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Proof Let us prove that a) holds. Suppose that there exists A ⊆ X such that there exists y ∈ f [Γ(A)]\Γ(f [A]) .
So, there exists x ∈ Γ(A) such that f(x) = y and

∀U ∈ τX(x) Cl(U) ∩A ̸∈ IX . (4.1)

Since y ̸∈ Γ(f [A]) , there exists W ∈ τY (y) such that Cl(W ) ∩ f [A] ∈ IY . By θ -continuity, there exists
V ∈ τX(x) such that f [Cl(V )] ⊆ Cl[W ] . So f [Cl(V )] ∩ f [A] ∈ IY , implying f−1[f [Cl(V )] ∩ f [A]] ∈ IX , and
since we have

Cl(V ) ∩A ⊆ f−1[f [Cl(V )]] ∩ f−1[f [A]] ⊆ f−1[f [Cl(V )] ∩ f [A]],

we conclude Cl(V ) ∩A ∈ IX , which contradicts (4.1). This proves a).
Let us show that b) is equivalent to a). Suppose a) holds and let B ⊆ Y . Then f [Γ(f−1[B])] ⊆

Γ(f [f−1[B]]) ⊆ Γ(B) . Now we have Γ(f−1[B]) ⊆ f−1[f [Γ(f−1[B])]] ⊆ f−1[Γ(B)] .
Now suppose b) holds. Then f−1[Γ(f [A])] ⊇ Γ(f−1[f [A]]) ⊇ Γ(A) . By taking the image by f of both

sets we obtain Γ(f [A]) ⊇ f [f−1[Γ(f [A])]] ⊇ f [Γ(A)] . 2

In the following theorem, we will show how closure in σ topology can be obtained by transfinite recursion.

Theorem 4.2 Let CLΓ0(A) = A , CLΓα+1(A) = CLΓα(A) ∪ Γ(CLΓα(A)) , and CLΓγ(A) =
∪

α<γ CLΓ
α(A) ,

for any A ⊂ X , any ordinal α and limit ordinal γ . Then
a) For each α < β , CLΓα(A) ⊆ CLΓβ(A) .
b) For each α ∈ ON , CLΓα(A) ⊆ Clσ(A) .
c) If there exists α0 ∈ ON such that CLΓα0(A) = CLΓα0+1(A) , then CLΓα0(A) = CLΓα(A) for each

α ≥ α0 .
d) There exists α0 ∈ ON such that CLΓα0(A) = CLΓα(A) for each α ≥ α0 .
e) For such α0 (and all ordinals larger than it) CLΓα0(A) = Clσ(A) .

Proof a) Obviously, CLΓα(A) ⊆ CLΓα(A) ∪ Γ(CLΓα(A)) = CLΓα+1(A) and CLΓγ(A) ⊇ CLΓα(A) for limit
ordinal γ and each α < γ . So, ⟨CLΓα(A) : α ∈ ON⟩ is nondecreasing sequence indexed by the class of all
ordinals.

b) Obviously Γ(Clσ(A)) ⊆ Clσ(A) and A = CLΓ0(A) ⊆ Clσ(A) . Applying Γ on the last inclusion
we get Γ(CLΓ0(A)) ⊆ Γ(Clσ(A)) ⊆ Clσ(A) . So, CLΓ1(A) ⊆ Clσ(A) . Suppose that for each α < β holds
CLΓα(A) ⊆ Clσ(A) . Let us prove it for β . If β is a limit ordinal, then it holds directly from the property of
union, and if β = δ + 1 for some δ ∈ ON , then the proof is similar to the case of CLΓ1(A) .

c) Suppose that, for each α ∈ [α0, β) we have CLΓα0(A) = CLΓα(A) , where β > α0 . Let us prove that
it holds for β .

If β = δ + 1 , then CLΓα0(A) = CLΓδ(A) , so Γ(CLΓα0(A)) = Γ(CLΓδ(A)) , implying CLΓα0+1(A) =

CLΓδ+1(A) , so CLΓα0(A) = CLΓβ(A) .
If β is a limit ordinal, then, for each α ∈ [α0, β) we have CLΓα0(A) = CLΓα(A) , and, due to the

increasing property, CLΓβ(A) =
∪α<β

CLΓα(A) =
∪
CLΓα0(A) = CLΓα0(A) .

d) Since ⟨CLΓα(A) : α ∈ ON⟩ is a nondecreasing sequence, it can not strictly increase forever, since
there are no more than |P (X)| different sets. So, there exists α0 such that CLΓα0(A) = CLΓα0+1(A) , and d)
follows from c).
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e) Obviously A ⊆ CLΓα0(A) ⊆ Clσ(A) . If we prove that CLΓα0(A) is a closed set in topology σ , the proof
is over. Since CLΓα0(A) = CLΓα0+1(A) = CLΓα0(A) ∪ Γ(CLΓα0(A)) , we have Γ(CLΓα0(A)) ⊆ CLΓα0(A) ,
witnessing that Γ(CLΓα0(A)) is closed. 2

Theorem 4.3 Let ⟨X, τX , IX⟩ and ⟨Y, τY , IY ⟩ be ideal topological spaces. If f : ⟨X, τX⟩ → ⟨Y, τY ⟩ is a
θ -continuous function and for all I ∈ IY we have f−1[I] ∈ IX , then there hold:

a) ∀A ⊆ X f [CLΓα(A)] ⊆ CLΓα(f [A]) , for each ordinal α .
b) ∀A ⊆ X f [Clσ(A)] ⊆ Clσ(f [A]) ;
c) f : ⟨X,σX⟩ → ⟨Y, σY ⟩ is a continuous function.

Proof a) By definition of CLΓ0 , it holds for α = 0 . Suppose it holds for every β < α . Let us prove that it
holds for α . Ih α is a consecutive ordinal, then α = δ + 1 . So, using Theorem 4.2, we have

f [CLΓα(A)] = f [CLΓδ+1(A)] = f [CLΓδ(A) ∪ Γ(CLΓδ(A))]

= f [CLΓδ(A)] ∪ f [Γ(CLΓδ(A))]

⊆ CLΓδ(f [A]) ∪ Γ(f [CLΓδ(A)])

⊆ CLΓδ(f [A]) ∪ Γ(CLΓδ(f [A]))

= CLΓδ+1(f [A])

= CLΓα(f [A]).

If α is a limit ordinal, then

f [CLΓα(A)] = f [
∪
γ<α

CLΓγ(A)] =
∪
γ<α

f [CLΓγ(A)]

⊆
∪
γ<α

CLΓγ f [A] = CLΓα f [A].

b) Since, by Theorem 4.2 e), there exists an ordinal α0 such that CLΓα0(A) = Clσ(A) and ordinal α1 such
that CLΓα1(f [A]) = Clσ(f [A]) , so, for β = max{α0, α1} holds

f [Clσ(A)] = f [CLΓβ(A)] ⊆ CLΓβ(f [A]) = Clσ(f [A]).

c) is equivalent to b). 2

If we in the previous theorem take I = {∅} , we obtain a relation between θ -continuous functions and
τθ -continuity.

Corollary 4.4 If f : ⟨X, τX⟩ → ⟨Y, τY ⟩ is a θ -continuous function then f : ⟨X, (τθ)X⟩ → ⟨Y, (τθ)Y ⟩ is
continuous.

This is an improvement of the result obtained by Long and Herrington [17, Th. 8], stated in Theorem
3.8, which says that continuity implies τθ -continuity.

It is well known that the opposite of the previous corollary does not have to be true.
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Example 4.5 [τθ -continuity does not imply θ -continuity] [17, Ex. 2] Let X = {0, 1} with topology τX =

{∅, {1}, {0, 1}} and let Y = {a, b, c} with topology τY = {∅, {a}, {b}, {a, b}, {a, b, c}} and f : X → Y is defined
by f(0) = a and f(1) = b . Let x0 = 0 . Then V = {a} be a neighbourhood of f(x0) = a , and Cl(V ) = {a, c} .
On the other hand, the only neighbourhood of the point 0 ∈ X is U = {0, 1} , which is, at the same time, its
closure. But f [Cl(U)] = f [{0, 1}] = {a, b} ̸⊆ {a, c} , so, f is not θ -continuous. But, the only nonempty θ -open
set in Y is Y , and its preimage is X , which is also θ -open, implying that f : ⟨X, (τθ)X⟩ → ⟨Y, (τθ)Y ⟩ is
continuous.

5. Weakly continuous functions and local closure function

Theorem 5.1 Let ⟨X, τX , IX⟩ and ⟨Y, τY , IY ⟩ be ideal topological spaces. If f : ⟨X, τX⟩ → ⟨Y, τY ⟩ is a weakly
continuous function and for all I ∈ IY we have f−1[I] ∈ IX , then there hold the following equivalent conditions:

a) ∀A ⊆ X f [A∗] ⊆ Γ(f [A]);

b) ∀B ⊆ Y (f−1[B])∗ ⊆ f−1[Γ(B)].

Proof Let us prove that a) holds. Suppose that there exists A ⊆ X such that there exists y ∈ f [A∗]\Γ(f [A]) .
So, there exists x ∈ A∗ such that f(x) = y . So,

∀U ∈ τX(x), U ∩A ̸∈ IX . (5.1)

Since y ̸∈ Γ(f [A]) , there exists W ∈ τY (y) such that Cl(W ) ∩ f [A] ∈ IY , and by weak continuity, there exists
V ∈ τX(x) such that f [V ] ⊆ Cl[W ] . So f [V ] ∩ f [A] ∈ IY , implying f−1[f [V ] ∩ f [A]] ∈ IX , and since we have

V ∩A ⊆ f−1[f [V ]] ∩ f−1[f [A]] ⊆ f−1[f [V ] ∩ f [A]],

we conclude V ∩A ∈ IX , which contradicts (5.1). This proves a).
Let us show that b) is equivalent to a). Suppose a) holds and let B ⊆ Y . Then f [(f−1[B])∗] ⊆

Γ(f [f−1[B]]) ⊆ Γ(B) . Now we have (f−1[B])∗ ⊆ f−1[f [(f−1[B])∗]] ⊆ f−1[Γ(B)] .
Now suppose b) holds. Then f−1[Γ(f [A])] ⊇ (f−1[f [A]])∗ ⊇ A∗ . By taking image by f of both sets we

obtain Γ(f [A]) ⊇ f [f−1[Γ(f [A])]] ⊇ f [A∗] . 2

Theorem 5.2 Let ⟨X, τX , IX⟩ and ⟨Y, τY , IY ⟩ be ideal topological spaces. If f : ⟨X, τX⟩ → ⟨Y, τY ⟩ is a weakly
continuous function and for all I ∈ IY we have f−1[I] ∈ IX . Then f : ⟨X, τ∗X⟩ → ⟨Y, σY ⟩ is a continuous
function.

Proof Let A ⊂ X . Then its closure in τ∗X equals A ∪ A∗ , and by Theorem 4.2 b) we have that closure of
f [A] contains A ∪ Γ(A) . By the previous theorem we have that for each A holds f [A∗] ⊆ Γ(f [A]) . Therefore

f [Clτ∗
X
(A)] = f [A ∪A∗] = f [A] ∪ f [A∗]

⊆ f [A] ∪ Γ(f [A])

⊆ Clσ(f [A]).

2

For I = {∅} , as a consequence, we obtain an already known result.
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Corollary 5.3 [17, Th. 10] If f : ⟨X, τX⟩ → ⟨Y, τY ⟩ is a weakly continuous function then f : ⟨X, τX⟩ →
⟨Y, (τθ)Y ⟩ is continuous, which is equivalent to faint continuity of f : ⟨X, τX⟩ → ⟨Y, τY ⟩ .

Example 5.4 (τθ -continuity does not imply weak continuity) Example 4.5 also witnesses that continu-
ity of f : ⟨X, (τθ)X⟩ → ⟨Y, (τθ)Y ⟩ does not imply that f is weakly continuous.

Now, the only open question which needed to be answered to completely fill the diagram given at the end of
Section 3 states: Does weak continuity imply τθ -continuity?

We will show that when either X or Y is finite, we have a positive answer to the previous question.

Theorem 5.5 If f : ⟨X, τX⟩ → ⟨Y, τY ⟩ is weakly continuous and not τθ -continuous, then both X and Y have
to be infinite.

Proof Let f : ⟨X, τX⟩ → ⟨Y, τY ⟩ be weakly continuous and not continuous as a function of their θ - topologies.
Therefore there exists a set A ⊆ X such that f [Clτθ (A)] ̸⊂ Clτθ (f [A]) . Since σ from Theorem 4.2 is equal
to τθ for the trivial ideal {∅} , and since f [A] = f [CLΓ0(A)] ⊂ Clτθ (f [A]) , there exists α ∈ ON such that
f [CLΓα(A)] ⊂ Clτθ (f [A]) and f [CLΓα+1(A)] ̸⊂ Clτθ (f [A]) . So, there exists x1 ∈ CLΓα+1(A) = CLΓα(A) ∪
Clθ(CLΓ

α(A)) = Clθ(CLΓ
α(A)) such that y1 = f(x1) ̸∈ Clτθ (f [A]) . For that y1 ∈ Y \ Clτθ (f [A]) ∈ (τθ)Y ,

there exists V1 ∈ τY (y1) such that y1 ∈ V1 ⊂ Cl(V1) ⊂ Y \Clτθ (f [A]) . Due to weak continuity of f there exists
U1 ∈ τX(x1) such that

f [U1] ⊆ Cl(V1). (5.2)

From x1 ∈ Clθ(CLΓ
α(A)) , we conclude that Cl(U1)∩CLΓα(A) ̸= ∅ . Namely, let x2 ∈ Cl(U1)∩CLΓα(A) .

Since x2 ∈ Cl(U1) , we know that
∀U ∈ τX(x2) U ∩ U1 ̸= ∅, (5.3)

and if x̃ ∈ U ∩ U1 , then f(x̃) ̸∈ Clτθ (f [A]) .
Let y2 = f(x2) . Suppose that there exists V ∈ τY (y2) such that V ⊆ Clτθ (f [A]) . Then, since f if weakly

continuous, there exists U2 ∈ τX(x2) such that f [U2] ⊆ Cl(V ) ⊆ Clτθ (f [A]) (since the last one is closed). But
this is in contradiction with (5.3) and the remark right after it. So, for each V ∈ τY (y2) there holds

V \ Clτθ (f [A]) ∈ τY \ {∅}

i.e. V \ Clτθ (f [A]) is an nonempty open set disjoint with Clτθ (f [A]) .
Let us consider the intersection of all V ∈ τY (y2) , denoted by O . Such set contains y2 . Let us prove that

O is not open. If we assume that it is open, we have two possibilities. Firstly O ⊂ Clτθ (f [A]) , which we already
discussed is impossible. So, there exists y ∈ Y \Clτθ (f [A]) such that each neighbourhood of y2 intersects {y} ,
implying y2 ∈ Cl({y}) ⊂ Cl(Vy) , where Vy is an arbitrary neighbourhood of y . This implies that the closure
of arbitrary neighbourhood of y intersects Clτθ (f [A]) , implying y ∈ Clτθ (f [A]) , which is impossible. So, as a
consequence, we have that τY (y2) can not be finite (since the finite intersection of open sets is always open),
which implies infinity of τY , and, therefore infinity of Y .

Let us suppose that there exists x0 ∈ U1 such that x0 ∈ U for each U ∈ τX(x2) . Let y0 = f(x0) . Since
x0 ∈ U1 , we have y0 ∈ Cl(V1) . Suppose that there exists V0 ∈ τY (y0) and V ′

2 ∈ τY (y2) such that V0 ∩ V ′
2 = ∅ ,

which implies
V0 ∩ Cl(V ′

2) = ∅. (5.4)
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Then there exists U ′
2 ∈ τX(x2) such that f [U ′

2] ⊆ Cl(V ′
2) , but this is impossible, since x0 ∈ U ′

2 , so, y0 ∈ f [U ′
2] ,

which is in contradiction with (5.4).
Therefore, for each x ∈ U1 exists Ux ∈ τX(x2) such that x ̸∈ U . So, if U1 is finite, then the intersection

of all such Ux is an open set which does not intersect U1 . Therefore, U1 has to be infinite, and there are
infinitely many different open sets Ux , so X and τX have to be infinite.

2

Corollary 5.6 If f : ⟨X, τX⟩ → ⟨Y, τY ⟩ is weakly continuous and if X or Y is finite, then f is τθ -continuous.

The proof of Theorem 5.5 yielded an example of a weakly continuous function which is not τθ -continuous.

Example 5.7 Let X = {x0, x1}∪ω and Y = {y0, y1}∪ω×{0, 1} . Let us define f(x0) = y0 , f(x1) = y1 , and
f(n) = ⟨n, 1⟩ , for n ∈ ω . Let τX be defined by the neighbourhood base system

BX(xi) = {{xi} ∪ ω \K : |K| < ℵ0}, for i ∈ {0, 1}, and BX(n) = {n}.

and τY by the neighbourhood base system

BY (y0) = {{y0} ∪ {⟨k, 0⟩ : k ≥ n} : n ∈ ω},

BY (y1) = {{y1} ∪ ((ω × {1}) \K) ∪ {⟨n, 0⟩} : |K| < ℵ0, n ∈ ω},

BY (⟨n, 0⟩) = {⟨n, 0⟩},

BY (⟨n, 1⟩) = {{y1} ∪ ((ω × {1}) \K) ∪ {⟨n, 0⟩, ⟨n, 1⟩} : |K| < ℵ0, n ∈ ω}.

Let us prove that f is weakly continuous. We distinguish three cases.
1◦ x = x1 , f(x1) = y1 : For an arbitrary neighbourhood V1 = {y1} ∪ (ω × {1}) \K ∪ {⟨n, 0⟩} , we have

f−1[V1] = {x0} ∪ ω \K = U1 , which is open, so f [U1] = V1 ⊆ Cl(V1) .
2◦ x = n , f(n) = ⟨n, 1⟩ : This case is trivial, since {n} is an open singleton.
3◦ x = x0 , f(x0) = y0 : For an arbitrary neighbourhood V0 = {y0} ∪ {⟨k, 0⟩ : k ≥ n} , let us notice that

⟨k, 1⟩ ∈ Cl(V0) , for each k ≥ n , since for V1 = {y1} ∪ ((ω × {1}) \K) ∪ {⟨k, 0⟩, ⟨k, 1⟩} , a base neighbourhood
of ⟨k, 1⟩ , we have V0 ∩ V1 = {⟨k, 0⟩} , i.e. it is not empty. So, for U0 = {x0} ∪ {k : k ≥ n} which is an open
neighbourhood of x0 in X , we have f [U0] = {y0} ∪ {⟨k, 1⟩ : k ≥ n} ⊆ Cl(V0) .

Finally, let us notice that {y0} is a θ -closed set in τY , since for each other point y ∈ Y , there exist
open sets Uy0

and Uy such that y0 ∈ Uy0
, y ∈ Uy and Uy0

∩ Uy = ∅ . On the other hand f−1[{y0}] = {x0}
since each neighbourhood of x1 intersects each neighbourhood of x0 , implying x0 is in the closure of each open
neighbourhood of x1 , so x1 ∈ Clθ({x0}) . Therefore, preimage of θ -closed set {y0} is not closed in θ -topology,
since {x0} ̸= Clθ({x0}) .

So, finally, this example completes our diagram, presented in Figure 2, and we conclude that there do
not exist other implications between those five types of continuity.

Problem 5.8 Is there a nice preserving theorem in ideal topological space, like Theorems 4.3 and 5.2, for faintly
continuous functions?
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Figure 2. Relations between various types of continuity

Acknowledgment

This research was supported by the Science Fund of the Republic of Serbia, Grant No. 7750027: Set-theoretic,
model-theoretic and Ramsey-theoretic phenomena in mathematical structures: similarity and diversity–SMART

References

[1] Al-Omari A, Noiri T. Local closure functions in ideal topological spaces. Novi Sad Journal of Mathematics 2013;
43 (2): 139-149.

[2] Al-Omeri W, Noiri T. On almost e -I -continuous functions. Demonstratio Mathematica 2021; 54 (1): 168-177.
https://doi.org/10.1515/dema-2021-0014

[3] Andrew DR, Whittlesy EK. Classroom Notes: Closure Continuity. American Mathematical Monthly 1966; 73 (7):
758-759. https://doi.org/10.2307/2313990

[4] Engelking R. General Topology, vol. Tom 60 of Monografie Matematyczne. Warsaw: PWN-Polish Scientific
Publishers, 1977. Translated from the Polish by the author.

[5] Espelie MS, Joseph JE. Remarks on two weak forms of continuity. Canadian Mathematical Bulletin. Bulletin
Canadien de Mathématiques 1982; 25 (1): 59-63. https://doi.org/10.4153/CMB-1982-008-8

[6] Fomin S. Extensions of topological spaces. Annals of Mathematics. Second Series 1943; 44: 471-480.
https://doi.org/10.2307/1968976

[7] Foroutan A, Ganster M, Steiner M. The θ -topology - some basic questions. Questions and Answers in General
Topology 2008; 26 (2): 59-66.

[8] Fréchet M. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo 1906; (22):
1-74.

[9] Fréchet M. Les dimensions d’un ensemble abstrait. Mathematische Annalen 1910; 68 (2): 145-168.
https://doi.org/10.1007/BF01474158

[10] Freud G. Ein Beitrag zu dem Satze von Cantor und Bendixson. Acta Mathematica. Academiae Scientiarum
Hungaricae 1958; 9: 333-336, https://doi.org/10.1007/BF02020262

[11] Herrmann RA. θ -ridigity and the idempotent θ -closure. Kobe University. Mathematics Seminar Notes 1978; 6 (2):
217-219.

[12] Husain T. Almost continuous mappings. Prace Matematyczno 1966; 10: 1-7.

[13] Janković D, Hamlett TR. New topologies from old via ideals. American Mathematical Monthly 1990; 97 (4):
295-310. https://doi.org/10.2307/2324512

[14] Kuratowski K. Topologie I. Warszawa, 1933.

2096



NJAMCUL and PAVLOVIĆ/Turk J Math

[15] Kuratowski K. Topology. Vol. I. New edition, revised and augmented. Translated from the French by J. Jaworowski.
Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966.

[16] Levine N. A decomposition of continuity in topological spaces. American Mathematical Monthly 1961; 68: 44-46.
https://doi.org/10.2307/2311363

[17] Long PE, Herrington LL. The Tθ -topology and faintly continuous functions. Kyungpook Mathematical Journal
1982; 22 (1): 7-14.

[18] Njamcul A, Pavlović A. On closure compatibility of ideal topological spaces and idempotency of the local closure
function. Periodica Mathematica Hungarica 2022; 84 (2): 221-234. https://doi.org/10.1007/s10998-021-00401-1

[19] Njamcul A, Pavlović A. On preserving continuity in ideal topological spaces. Georgian Mathematical Journal 2022;
29 (4): 567-574. https://doi.org/doi:10.1515/gmj-2022-2161

[20] Noiri T, Popa V. Weak forms of faint continuity. Bulletin Mathématique de la Société des Sciences Mathématiques
de la République Socialiste de Roumaine. Nouvelle Série 1990; 34 (82) (3): 263-270.

[21] Pavlović A. Local function versus local closure function in ideal topological spaces. Univerzitet u Nišu. Prirodno-
Matematički Fakultet. Filomat 2016; 30 (14): 3725-3731. https://doi.org/10.2298/FIL1614725P

[22] Powar PL, Mishra VN, Bhadauria S. Several generalizations of is*g-continuous functions in ideal topologi-
cal spaces. Journal of Physics: Conference Series jan 2021; 1724 (1): 012029. https://doi.org/10.1088/1742-
6596/1724/1/012029

[23] Scheinberg S. Topologies which generate a complete measure algebra. Advances in Mathematics 1971; 7: 231-239.
https://doi.org/10.1016/S0001-8708(71)80004-X

[24] Singal MK, Singal AR. Almost-continuous mappings. Yokohama Mathematical Journal 1968; 16: 63-73.

[25] Vaidyanathaswamy R. The localisation theory in set-topology. Proceedings of the Indian Academy of Sciences –
Section A 1944; 20: 51-61.

[26] Velichko NV. The localisation theory in set-topology. Matematiceski Sbornik (N.S.) 1966; 70 (112) (1): 98-112.

2097


	Introduction
	Basic definitions
	Several types of continuity
	-continuity and local closure function
	Weakly continuous functions and local closure function

