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Abstract: This article presents an efficient method for obtaining approximations for the solutions of linear neutral
delay differential equations. This numerical matrix method, based on collocation points, begins by approximating y′(u)

using a truncated series expansion of Clique polynomials. This method is constructed using some basic matrix relations,
integral operations, and collocation points. Through this method, the neutral delay problem is transformed into a system
of linear algebraic equations. The solution of this algebraic system determines the coefficients of the approximate solution
obtained by this method. The efficiency, accuracy, and error analysis of this method are demonstrated by applying it to
several numerical problems. All calculations in this method have been performed using the computer program MATLAB
R2021a.
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1. Introduction
Neutral delay differential equations hold significant importance in various scientific areas. Many problems in
these domains can be addressed by modeling them with neutral delay differential equations. Applications can
be found in mechanics, economics, biology, electrodynamics, and more. [1, 6, 9, 11, 17, 18, 31, 32].

Some of the methods applied to solve delay differential equations are [4, 5, 7, 8, 15, 16, 19, 20, 24, 30,
35, 42, 45]. Additionally, various matrix methods have been used, employing Taylor, Legendre, Bessel, and
Legendre polynomials to obtain approximate solutions for these types of problems [26, 29, 37–41, 49, 52, 53].
Moreover, a recent matrix method utilizing Clique polynomials for approximate solutions of coupled differential
equations systems can be observed in [28].

Using the aforementioned information, we present a new method that employs Clique polynomials to
approximate solutions for the linear neutral delay differential equation defined in [27] as

y′(u) = H(u)y(u) +

J∑
i=1

Pi(u)y(λiu) +

K∑
j=1

Qj(u)y
′(µju) + g(u), 0 ≤ a ≤ u ≤ b (1)

with the initial condition
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y(a) = γ. (2)

Here, y (u) is an unknown function and H (u) , Pi (u) , Qj (u) and g (u) are the known functions that
are defined on 0 ≤ a ≤ u ≤ b and λi , µj and γ are the constants.

This work introduces a new method based on Clique polynomials, as introduced in [21, 22], for the
problem (1)-(2).

The method starts by assuming that y′(u) in the problem has a series expansion based on Clique
polynomials, given by

y′(u) =

M∑
i=0

aih(u,Ki), (3)

where ai , for i = 0, 1, 2, . . . ,M , are the coefficients of Clique polynomials to be determined. Clique
polynomials are defined as

h(u,Ki) =

i∑
j=0

(
i

j

)
uj

for the complete graph Ki with i vertices, where i = 0, 1, 2, . . . ,M , and h(u,K0) = 1 .
For example, for i = 1, 2, 3 , some expansions of Clique polynomials are:

h(u,K1) = 1 + u,

h(u,K2) = 1 + u+ u2,

h(u,K3) = 1 + u+ u2 + u3.

2. Basic matrix relations
In this section, the Clique polynomial approximation of y′(u) is expressed in matrix form using some basic
matrix relations, as commonly used in many articles [2, 28, 37–39]. The approximate solution y(u) is obtained
by employing some integral operations instead of the derivative operations typically used in most articles. Now,
let us explore these basic matrix relations.

First, let C(u) = h(u,Ki) , for i = 0, 1, 2, . . . ,M . Clique polynomials can be expressed in matrix form as

CT (u) = DUT (u) ⇔ C (u) = U (u)DT (4)

with

C (u) =
[
h (u,K0) h (u,K1) h (u,K2) · · · h (u,KM )

]
,

U (u) =
[
1 u u2 · · · uM

]
,
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and

D =



(
M
0

)
0 0 · · · 0(

M
0

) (
M
1

)
0 · · · 0(

M
0

) (
M
1

) (
M
2

)
· · · 0

...
...

... . . . ...(
M
0

) (
M
1

) (
M
2

)
· · ·

(
M
M

)

 .

Now, we can write the relation (3) in the matrix form as

y′ (u) = U (u)DTA (5)

where
A =

[
a0 a1 a2 · · · aM

]T .

Integrating equation (5) from a to u , we get

y (u)− y (a) =

∫ u

a

M∑
i=0

aih (ξ,Ki) dξ =

∫ u

a

U (ξ)DTAdξ ⇒

y (u) = y (a) +

(∫ u

a

[
1 ξ ξ2 · · · ξM

]
dξ

)
DTA ⇒

y (u) = y (a) +
[
(u− a) u2

2 − a2

2
u3

2 − a3

2 · · · uM+1

2 − aM+1

2

]
DTA

= y (a) +
[
Ũ (u)− Ũ (a)

]
DTA (6)

where
Ũ (u) =

[
u u2

2
u3

3 · · · uM+1

M+1

]
.

Using the condition (2) in equation (6), we can obtain

y (u) = γ +
[
Ũ (u)− Ũ (a)

]
DTA. (7)

The expression Ũ (u) in equation (7) can be expressed in the form

Ũ (u) =
[
u u2

2
u3

3 · · · uM+1

M+1

]
= uU (u)M (8)

where

M =


1 0 0 · · · 0
0 1

2 0 · · · 0
0 0 1

3 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
M+1

 .

Hence, if equation (8) is written in equation (6), then it gives

y (u) = γ + [uU (u)M− aU (a)M]DTA. (9)
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Substituting u → λiu into equation (9), we obtain

y (λiu) = γ + [λiuU (λiu)M− aU (a)M]DTA. (10)

The relation between U (u) and U (λiu) can be given by

U (λiu) = U (u)B (λi) (11)

where

B (λi) =


λ0
i 0 0 · · · 0
0 λ1

i 0 · · · 0
0 0 λ2

i · · · 0
...

...
... . . . ...

0 0 0 · · · λM
i

 .

Hence, equation (10) can be written as

y (λiu) = γ + [λiuU (u)B (λi)M− aU (a)M]DTA. (12)

Putting u → µju in equation (5), we can write

y′ (µiu) = U (µiu)D
TA

= U (u)B (µj)D
TA. (13)

Here, B (µj) can be seen from B (λi) in equation (11).

3. Method of solution
In this section, the method which gives the approximate solution y (u) of the problem (1)-(2) is given by using 
the matrix relations introduced in Section 2.

Now substituting equations (5), (9), (10), (12) and (13) into equation (1), we deduce the basic matrix
relation of equation (1) as

U (u)DTA = H (u)
(
γ + [uU (u)M− aU (a)M]DTA

)
+

J∑
i=1

Pi (u)
[
γ + [λiuU (u)B (λi)M− aU (a)M]DTA

]

+

K∑
j=1

Qj (u)U (u)B (µj)D
TA+ g (u)

where 0 ≤ a ≤ u ≤ b . Rearranging this expression, we get
U (u)DT −H (u) [uU (u)− aU (a)]MDT

−
J∑

i=1

Pi (u) [λiuU (u)B (λi)− aU (a)]MDT

−
K∑
j=1

Qj (u)U (u)B (µj)D
T

A

= g (u) + γH (u) +
J∑

i=1

γPi (u) . (14)
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Let us define the collocation points as

us = a+
b− a

M
s, s = 0, 1, 2, . . . , M .

Writing u → us in equation (14), we have


U (us)D

T −H (us) [usU (us)− aU (a)]MDT

−
J∑

i=1

Pi (us) [λiusU (us)B (λi)− aU (a)]MDT

−
K∑
j=1

Qj (us)U (us)B (µj)D
T

A

= g (us) + γH (us) +

J∑
i=1

γPi (us) . (15)

The system (15) can be written in the matrix form


UDT −

[
HŪU− aH̄Ua

]
MDT

−
J∑

i=1

[
λiPiŪUB (λi)− aP̄iUa

]
MDT

−
K∑
j=1

QjUB (µj)D
T

A

= G+ γH̄+ γ

J∑
i=1

P̄i (16)

where

H =


H (u0) 0 0 · · · 0

0 H (u1) 0 · · · 0
0 0 H (u2) · · · 0
...

...
... . . . ...

0 0 0 · · · H (uM )

 , H̄ =


H (u0)
H (u1)
H (u2)

...
H (uM )

 ,

U =


U (u0)
U (u1)
U (u2)

...
U (uM )

 , Ua =


U (a)
U (a)
U (a)

...
U (a)

 , Ū =


u0 0 0 · · · 0
0 u1 0 · · · 0
0 0 u2 · · · 0
...

...
... . . . ...

0 0 0 · · · uM

 ,
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Pi =


Pi (u0) 0 0 · · · 0

0 Pi (u1) 0 · · · 0
0 0 Pi (u2) · · · 0
...

...
... . . . ...

0 0 0 · · · Pi (uM )

 , P̄i =


Pi (u0)
Pi (u1)
Pi (u2)

...
Pi (uM )

 ,

Qj =


Qj (u0) 0 0 · · · 0

0 Qj (u1) 0 · · · 0
0 0 Qj (u2) · · · 0
...

...
... . . . ...

0 0 0 · · · Qj (uM )

 and G =


g (u0)
g (u1)
g (u2)

...
g (uM )

 .

Therefore, the basic matrix equation (15) of equation (1) can be expressed as

WA = F or [W;F] (17)

where

W = UDT −
[
HŪU− aH̄Ua

]
MDT −

J∑
i=1

[
λiPiŪUB (λi)− aP̄iUa

]
MDT

−
K∑
j=1

QjUB (µj)D
T

and

F = G+ γH̄+ γ

J∑
i=1

P̄i.

Finally, the matrix A , whose entries are unknown coefficients, can be found by solving the linear algebraic
system (16). Then, substituting the determined matrix A into equation (7), we deduce the approximate solution
as

yM (u) = γ +
[
Ũ(u)− Ũ(a)

]
DTA. (18)

4. Error estimation
In this section, an error estimation is provided for the Clique polynomial solution (18) by utilizing the residual
error function [33]. Subsequently, an improved Clique polynomial solution (18) is obtained. Let us now consider
the following theorem for the error estimation.

Theorem 1 Assume that y (u) is the exact solution and yM (u) is the approximate solution of the present
method with M -th degree for the problem (1)-(2). Then the error problem can be expressed as
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e′M (u) = H (u) eM (u) +

J∑
i=1

Pi (u) eM (λiu) +

K∑
j=1

Qj (u) e
′
M (µju)−RM (u) (19)

with the initial condition
eM (a) = 0 (20)

where eM (u) = y (u)− yM (u) and RM (u) is the residual function of the problem (1)-(2).

Proof Putting the approximate solution (18) in equation (1), we have the residue function as

RM (u) = y′M (u)−H (u) yM (u)−
J∑

i=1

Pi (u) yM (λiu)−
K∑
j=1

Qj (u) y
′
M (µju)− g (u)

or we can write

y′M (u) = H (u) yM (u) +

J∑
i=1

Pi (u) yM (λiu) +

K∑
j=1

Qj (u) y
′
M (µju) + g (u) +RM (u) . (21)

Subtracting equation (21) from equation (1) side-by-side, we get

y′ (u)− y′M (u) = H (u) (y (u)− yM (u)) +

J∑
i=1

Pi (u) (y (λiu)− yM (λiu))

+

K∑
j=1

Qj (u) (y
′ (µju)− y′M (µju))−RM (u) . (22)

If we write the error function as
y (u)− yM (u) = eM (u)

then we have
y′ (u)− y′M (u) = e′M (u) .

Using these error functions, we can write equation (22) as

e′M (u) = H (u) eM (u) +

J∑
i=1

Pi (u) eM (λiu) +

K∑
j=1

Qj (u) e
′
M (µju)−RM (u) . (23)

On the other hand, the approximate solution (18) satisfies the condition (2). So we have the condition

eM (a) = y (a)− yM (a) = 0. (24)

Thus, equations (23) and (24) give the required result. 2

Using the same method in Section 3, by taking the truncation boundary as L instead of M where
L > M , we begin the method with

e′M,L (u) =

L∑
i=0

aih (u,Ki) .
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After the application of the method, we find the approximate solution as

eM,L (u) =
[
Ũ (u)− Ũ (a)

]
DTA.

Corollary 1.1 The function eM,L(u) is the estimated error function, which is an approximation for the actual
error function eM (u) .

Corollary 1.2 We can obtain a better approximate solution, called the improved approximate solution yM,L(u) ,
by adding the approximate solution yM (u) and the estimated error function eM,L(u) , i.e., yM,L(u) = yM (u) +

eM,L(u) .

Corollary 1.3 If we subtract the improved approximate solution yM,L(u) from the approximate solution yM (u) ,
we obtain the improved error function as EM,L(u) = y(u)− yM,L(u) .

5. Numerical examples

In this section, the method presented in Section 3 is applied to some numerical examples. Additionally, graphs
and tables illustrating approximate solutions, comparisons of different methods, and error analysis as shown in
Section 4 are provided. All calculations, graphs, and tables were generated using MATLAB R2021a.

Example 5.1 [53] Let us apply the present method to the following linear neutral delay differential equation:

y′(u) = y(u)− sin(0.2u)y′(0.25u) + cos(0.25u)y(0.2u) + cos(u)− sin(u), 0 ≤ u ≤ 1 (25)

with the initial condition

y(0) = 0.

The exact solution of this problem is y(u) = sin(u) . Let the approximation for y′(u) by the truncated series of
Clique polynomials be

h(u,KM ) =

3∑
j=0

(
3

j

)
uj .

Comparing the equations of this example with equations (1) and (2), it can be easily seen that H(u) = 1 ,
P1(u) = cos(0.25u) , λ1 = 0.2 , Q1(u) = sin(0.2u) , µ1 = 0.25 , g(u) = cos(u) − sin(u) , a = 0 , γ = 0 , and
M = 3 . For M = 3 , the set of collocation points is obtained as

{
u0 = 0, u1 = 1/3, u2 = 2/3, u3 = 1

}
.

Also, using equation (16), we obtain the fundamental matrix equation as

{
UDT −HŪUMD

T − λ1P1ŪUB (λ1)MDT −Q1UB (µ1)D
T
}
A = G

where

2105



YÜZBAŞI and TAMAR/Turk J Math

H =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , H̄ =


1
1
1
1

 ,

U =


1 0 0 0
1 1/3 1/9 1/27
1 2/3 4/9 8/27
1 1 1 1

 , Ū =


0 0 0 0
0 1/3 0 0
0 0 2/3 0
0 0 0 1

 ,

P1 =


1 0 0 0
0 1723/1729 0 0
0 0 427/433 0
0 0 0 187/193

 , P̄1 =


1

1723/1729
427/433
427/433

 ,

Q1 =


0 0 0 0
0 −90/1351 0 0
0 0 −247/1858 0
0 0 0 −209/1052

 ,G =


1

1419/2297
361/2155

−1005/3337

 .

Then we have the augmented matrix as

[W;G] =


1 1 1 1 ; 1

1221/1831 2741/1815 620/343 1081/587 ; 1419/2297
384/1147 1710/1001 1523/553 1975/658 ; 361/2155
84/17189 3608/2261 1780/491 2027/463 ; −1005/3337

 .

If this system is solved, then the coefficients of Clique polynomial solution can be found as

A =


322/323
662/3557
−84/319
303/3773

 .

Thus, the approximate solution of this problem for M = 3 can be obtained as

y3 (u) = (1.0000e+ 00)u+ (4.6444e− 003)u2 − (1.8302e− 001)u3

+ (2.0077e− 002)u4.

By the same operations, we find the approximate solutions for M = 5 and M = 8 respectively as

y5 (u) = (1.0000e+ 000)u− (2.5817e− 005)u2 − (1.6647e− 001)u3

− (5.8641e− 004)u4 + (9.2222e− 003)u5 − (6.6455e− 004)u6

and

y8 (u) = (1.0000e+ 000)u+ (1.5357e− 009)u2 − (1.6667e− 001)u3

+ (1.3459e− 007)u4 + (8.3329e− 003)u5 + (1.0176e− 006)u6

− (1.9974e− 003)u7 + (9.9488e− 007)u8 + (2.4041e− 006)u9.
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The numerical values of y(u) = sin (u) and yM (u) can be seen in Table 1. Also, the numerical values of the
error fuctions eM (u) for Bessel polynomial approach method (BPAM) of [53] and for the present method can
be seen in Table 2. Additionally, for a visual comparison of the error functions, you can refer to Figures 1–3.

Table 1. Numerical values of y(u) and yM (u) of equation (25) for the present method.

ui y(ui) = sin(ui) y3(ui) y5(ui) y8(ui)

0 0 0 0 0

0.2 0.198669330795 0.198753775035 0.198669137704 0.198669330801

0.4 0.389418342309 0.389544075711 0.389418171174 0.389418342327

0.6 0.564642473395 0.564742579305 0.564642223290 0.564642473450

0.8 0.717356090900 0.717491914996 0.717355816631 0.717356091050

1 0.841470984808 0.841705663862 0.841470450399 0.841470985182

Table 2. Numerical values of eM (ui) of equation (25) for the methods.

ui
BPAM

for N = 3
BPAM

for N = 7
Present method

for N = 3
Present method

for N = 7

0 1.2530e − 17 0 0 0

0.2 1.1506e − 004 7.8343e − 010 8.4444e − 005 2.2596e − 010

0.4 1.7847e − 004 9.2046e − 010 1.2573e − 004 2.6435e − 010

0.6 5.1456e − 005 1.0483e − 009 1.0011e − 004 3.3941e − 010

0.8 2.1418e − 004 9.7238e − 009 1.3582e − 004 4.6650e − 010

1 2.0442e − 003 5.4000e − 007 2.3468e − 004 8.0256e − 010

Example 5.2 [14] Let us see the following problem

y′ (u) =
1

2
y (u) +

1

2
e

u
2 y

(u
2

)
, 0 ≤ u ≤ 1 (26)

and the initial condition
y (0) = 1.

The exact solution of this problem is y (u) = eu .
Comparing the equations of this example by equations (1) and (2) it can be easily seen that H (u) = 1

2 ,
P1 (u) =

1
2e

u
2 , λ1 = 1

2 , a = 0 , γ = 1 and g (u) = 0. Also, the following basic matrix equation can be obtained
by using equation (16) as {

UDT −HŪUMD
T − λ1P1ŪUB (λ1)MDT

}
A = G.

Using the present method for M = 3 , M = 6 , and M = 8 , the approximate solutions can be obtained as

y3 (u) = 1 + (1.0000e+ 00)u+ (5.0743e− 01)u2 + (1.4141e− 01)u3

+ (6.9888e− 02)u4,
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Figure 1. Comparison of the error function eM (u) for equation (25) when M = 3 , 5 , 8 .
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Figure 2. Comparison of the error functions eM (u) and EM,L(u) for equation (25) when M = 5 and L = 6 .
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Figure 3. Comparison of error functions eM (u) and eM,L(u) for equation (25) when M = 5 and L = 6 .

y6 (u) = 1 + (1.0000e+ 000)u+ (5.0000e− 001)u2 + (1.6669e− 001)u3

+ (4.1571e− 002)u4 + (8.5363e− 003)u5 + (1.1572e− 003)u6

+ (3.2973e− 004)u7

and

y8 (u) = 1 + (1.0000e+ 000)u+ (5.0000e− 001)u2 + (1.6667e− 001)u3

+ (4.1666e− 002)u4 + (8.3351e− 003)u5 + (1.3850e− 003)u6

+ (2.0362e− 004)u7 + (2.0593e− 005)u8 + (4.5700e− 006)u9.

The numerical values of the error fuctions eM (u) for Spline method (SM) of [13], Taylor series method (TSM)
of [38], and the present method can be compared by Table 3. Beside, comparison of the graphs of the solutions
and the error functions can be seen in Figures 4–7, respectively.

Table 3. Numerical values of eM (ui) of equation (26) for different methods.

ui
SM

for m = 2
TSM

for N = 8
Present method

for M = 8

0.2 0.198e − 007 1.440e − 012 7.3663e − 012

0.4 0.473e − 007 1.440e − 012 6.2642e − 012

0.6 0.847e − 007 2.953e − 008 5.4516e − 011

0.8 0.135e − 006 4.018e − 007 1.8917e − 010

1 0.201e − 006 3.059e − 006 5.2791e − 010
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Figure 5. Comparison of the error function eM (u) for equation (26) when M = 3 , 6 , 8 .
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Figure 6. Comparison of error functions eM (u) and eM,L(u) for equation (26) when M =6 and L=7 .
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Figure 7. Comparison of error functions eM (u) and EM,L(u) for equation (26) when M =6 and L=7 .
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Example 5.3 [7] Now, let us look for the following problem

y′ (u) = −y (u) + 0.1y (0.8u) + 0.5y′ (0.8u) + (0.32u− 0.5)e(−0.8u) + e(−u), 0 ≤ u ≤ 1 (27)

and the initial condition
y (0) = 0.

The exact solution is y (u) = ue−u for this problem. If one compares the equations of this example by equations
(1) and (2), then it can be easily seen that H (u) = −1 , P1 (u) = 0.1 , λ1 = 0.8 , Q1 (u) = 0.5 , µ1 = 0.8 ,
g (u) = (0.32u − 0.5)e(−0.8u) + e(−u) , a = 0 , and γ = 0 . Also, we have the following fundamental matrix
equation by using equation (16) as{

UDT −HŪUMD
T − λ1P1ŪUB (λ1)MDT −Q1UB (µ1)D

T
}
A = G.

The numerical values of the error function eM (u) where M = 4 and M = 6 , eM,L(u) and EM,L(u) for M = 6

and L = 7 can be seen in Table 4. Also, the graphs of the solutions can be seen in Figure 8. Beside, the graphs
of the error functions eM (u) of different methods which are TSORKM for two-stage order-one Runge-Kutta
method of [3], BWM for Bernoulli wavelets method of [25], BPAM for Bessel polynomial approach method of
[53], and SM for spectral method of [36] can be compared with the present method in Figure 9.

Table 4. Numerical values of eM (ui) , eM,L (ui) and EM,L (ui) of equation (27) for the present method.

ui e4 (ui) e6(ui) e6,7(ui) E6,7(ui)

0 0 0 0 0

0.2 2.0798e − 005 5.3020e − 008 −5.0939e − 008 2.0814e − 009

0.4 1.6677e − 005 3.2323e − 008 −3.0983e − 008 1.3410e − 009

0.6 8.8444e − 006 2.1387e − 008 −2.0540e − 008 8.4676e − 010

0.8 8.0680e − 006 1.6528e − 008 −1.6055e − 008 4.7338e − 010

1 4.2855e − 006 1.1660e − 008 1.2802e − 008 1.1436e − 009

Example 5.4 [51] Let us consider the following pantograph equation

y′ (u) = −y (u) + 0.5y (0.5u) + 0.5y′ (0.5u) , 0 ≤ u ≤ 1 (28)

and the initial condition
y (0) = 1.

The exact solution of this problem is y (u) = e−u . Comparing this initial value problem by the (1)-(2) initial
value problem, we can see H (u) = −1 , P1 (u) = 0.5 , λ1 = 0.5 , Q1 (u) = 0.5 , µ1 = 0.5 , g (u) = 0 , a = 0 , and
γ = 1 . Moreover, the fundamental matrix equation of this problem can be obtained by equation (16) as{

UDT −HŪUMD
T − λ1P1ŪUB (λ1)MDT −Q1UB (µ1)D

T
}
A = G+ H̄+ P̄i.

The numerical values of different methods which are TSORKM for two-stage order-one Runge-Kutta method of
[3], OLM for one-leg θ -method of [46, 47], VIM for variational iteration method of [7], and BWM for Bernoulli

2112



YÜZBAŞI and TAMAR/Turk J Math

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Graphs of y(u) and y
M

(u) with different values of M for the present method

u

y(
u)

 

 

Exact Solution
Approximate Solution for M=4
Approximate Solution M N=6
Approximate Solution for M=8

Figure 8. Comparison of the solutions for equation (27) when M = 4 , 6 , 8 .

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Graphs of the methods for |e
M

(u)|

u

E
rr

or

 

 
for SM with N=6
for BPAM with N=6
for TSORKM
for BWM with l=1, P=6
for |e

6
(u)| of present method with N=6

for |e
8
(u)| of present method with N=8

Figure 9. Comparison of eM (u) of the methods for equation (27).

2113



YÜZBAŞI and TAMAR/Turk J Math

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Graphs of y(u) and y
M

(u) with different values of M for the present method

u

y(
u)

 

 

for y(u)=eu

for y
3
(u)

for y
5
(u)

for y
8
(u)

Figure 10. Comparison of the solutions for equation (28) when M = 3 , 5 , 8 .

wavelets method of [25] can be compared with the present method in Table (5).Also, the graphs of the solutions
can be seen in Figure 10. Additionally, the comparison of the graphs of eM (u) , eM,L(u) , and EM,L(u) for the
present method can be seen in Figures 11 and 12.

Table 5. Numerical values of eM (ui) of the present method and the other methods for equation (28).

ui TSORKM OLM
for θ = 0.8

VIM
for N = 7

BWM
for l=1, P=6

Present method
for M = 5

0.2 8.24e − 04 8.86e − 03 7.08e − 04 2.37e − 06 2.0022e − 007

0.4 1.35e − 03 2.66e − 02 1.29e − 03 2.46e − 06 2.3182e − 007

0.6 1.66e − 03 4.58e − 02 1.76e − 03 2.10e − 06 2.5244e − 007

0.8 1.81e − 03 6.29e − 02 2.15e − 03 1.73e − 06 2.0283e − 007

1 1.85e − 03 7.66e − 02 2.47e − 03 1.48e − 06 3.0437e − 007

Example 5.5 [44] Now, let us consider the following first order linear pantograph equation

y′ (u) = −y (0.8u)− y (u) , 0 ≤ u ≤ 1 (29)

with the initial condition
y (0) = 1.

The exact solution of this problem does not exist. Therefore, the approximate solutions of different methods can
be compared with the present method in Table 6. Now, if we compare the equations of this example by the (1)
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Figure 11. Comparison of error functions eM (u) and eM,L(u) for equation (28) when M =5 and L=6 .
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Figure 12. Comparison of error functions eM (u) and EM,L(u) for equation (28) when M =5 and L=6 .
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- (2) {initial value problem} then it can be easily seen that H (u) = −1 , P1 (u) = −1 , λ1 = 0.8 , g (u) = 0 ,
a = 0 , and γ = 1 . Then the fundamental matrix equation can be obtained by equation (16) as

{
UDT −HŪUMD

T − λ1P1ŪUB (λ1)MDT
}
A = G+ H̄+ P̄i.

The numerical values of different methods which are WSM for Walsh series method of [34], LSM for Laguerre
series method of [23], TSM for Taylor series method of [40], HSM for Hermit series method of [49], and CMBOM
for collocation method based on Bernoulli operational matrix of [44] can be compared with the approximation
of the present method in Table 6. Moreover, the graphs of the approximate solutions of the present method,
as well as the graphs of the error functions eM,L(u) with distinct values of M and L , might be compared by
referring to Figures 13 and 14, respectively.The graphs in Figure 14 are generated using the method outlined
in Section 4, illustrating how accurately the present method approximates the solution to the problem.

Table 6. Numerical values of the approximations of different methods for the equation (29).

ui WSM LSM
for N = 20

TSM
for N = 8

HSM
for N = 8

CMBOM
for N = 6

Present method
for M = 6

0 1 0.999971 1 1 1 1

0.2 0.665621 0.664703 0.6664691 0.664691 0.66469052 0.664690929

0.4 0.432426 0.433555 0.433561 0.433561 0.43356055 0.433560744

0.6 0.275140 0.276471 0.276482 0.276482 0.27648223 0.276482309

0.8 0.170320 0.171482 0.171484 0.171484 0.17148362 0.171484083

1 0.100856 0.102679 0.102744 0.102670 0.10268323 0.102670192

Example 5.6 Finally, let’s consider the following problem

y′ (u) = y (u)− 0.5y (0.2u) + 2u− 0.98u2 − 1, 0 ≤ u ≤ 1 (30)

with the initial condition
y (0) = 1.

This problem has the polynomial exact solution y (u) = u2 +2 . Comparing this initial value problem by the

(1)-(2) initial value problem, we can see H (u) = 1 , P1 (u) = −0.5 , λ1 = 0.2 , g (u) = 2u− 0.98u2 − 1 , a = 0 ,
and γ = 1 . By this information, the following fundamental matrix equation can be obtained by using equation
(16) as {

UDT −HŪUMD
T − λ1P1ŪUB (λ1)MDT

}
A = G+ H̄+ P̄i.

For this problem, the present method gives the exact solution when M = 3 . Thus, this problem shows that the
exact solution of a problem whose exact solution is polynomial can be obtained by applying the method of this
work.
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Figure 13. Comparison of the aproximate solutions of the present method for equation (29) when M = 4 , 6 ,
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6. Conclusion
Finding solutions for most linear neutral delay differential equations is not always straightforward. As a result,
researchers have turned to polynomial approximation methods in the literature to obtain approximate solutions
for these problems. Many of these methods, which employ the collocation method, rely on differential relations.
However, in this study, a novel approximate method is presented that utilizes the series expansion of Clique
polynomials and incorporates integral relations. This leads to a polynomial approximation with a higher degree
compared to other methods for the same value of M . This is because the degree of the polynomials increases
when integration is employed, resulting in more accurate results than other approximation methods found in
the literature. This can be observed in the comparisons made in Section 5 with the results obtained from other
methods. Furthermore, the error estimation technique outlined in Section 4 is crucial as it yields results that
closely align with the actual errors. This estimation serves as a valuable metric for assessing the reliability of
results, particularly for problems with unknown exact solutions. Additionally, this estimated error function can
be used to refine solutions and subsequently reduce errors. In conclusion, this study significantly advances our
understanding of neutral delay differential equations, providing effective and efficient results.
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