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Abstract: In this extensive note, various differential-type operators in certain domains of the complex plane will be first
introduced, a number of their comprehensive characteristic properties will be next pointed out and an extensive theorem
dealing with some argument properties for several multivalent(ly) analytic functions will be also presented. In addition,

numerous implications and suggestions, which can be obtained with the help of general result, will be determined.
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1. Presentation of introduction and preliminary information

First of all, let us present some information about multivalent functions with complex variable defined in any
domain of the familiar complex plane, which will be very important for our scientific notes. As it is well-known,
those complex functions have various different-interesting roles in the theory of complex functions. This notion
also is a natural generalization for the theory of univalent function. For n = 1,2,3, -+, an analytic function
(or meromorphically analytic function) like £(z) described in any domain & of the z-plane is called as n-valent
in & if it takes each of its values at most n times there. In other words, for any complex number w, the
number of roots of any equation £(z) = w in the set & is unable to exceed n. Right along side this most
simple family of n-valent functions, an essential role in the theory of the complex functions is also played by
functions which are n-valent in certain generalized sense. In special, one of the most active roles is that studies
involving various analytical-geometrical properties of those (multivalent) functions are still interesting for many
researchers. For more information about those functions and some of their comprehensive implications, it can
be also concentrated on the fundamental studies presented in [4, 14, 14, 21, 26, 32] in the references of this

investigation.

Moreover, as more general expression of the functions emphasized just above, in the same time, for both
our scientific investigation and the accentuated family of the multivalent functions which are analytic in the

open unit disk:

U:={z:z€Cand 2| <1},
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let us also consider the series expansions of the pointed analytic functions like £ := £(z) being of the

complex-series forms given by

£(2) = 2" + Fng 12"+ K22 4 kg™ (1.1)

where
knt; €C , 7:=1,2,3,--- and néeN.

In especial, for respective researchers, as a great variety of investigations appertaining to certain multiva-
lent(ly) analytic functions, it may be also focused on the earlier-scientific investigations given by the references
in [1-3, 5, 6, 8-10, 13, 15, 19, 20, 22-24, 34, 36, 39], which also relate to the extensive family consisting of the

n-valent(ly) analytic functions created by the series forms given in (1.1).

In addition, let us now introduce (or remind) a number of operators consisting of various different-type

derivatives. For those operators, let us denote them as the following forms:

E9(2) , DjlE(z)] , DIE(:)] and  D3,[E(2)], (1.2)

and, for any n-valent(ly) analytic function & := £(z) being of the series form given by (1.1), respectively, we

also express them in the following definitions:

€9(2) = (e(2)). (13)

- dz*
Dy [€(2)] =9 (2) + (1 = 9)2£4 (), (1.4)
d [* U
D)[¢(2)] = ﬁ@/o (f_(i)/\du, (1.5)
DI e(2)] = o (DAe(2)]) 16)
and

D5 [€(2)] = D2[Dj[E(2)]] (1.7)

where
s<m , 0<9<1, 0<A<1l, neN and seNy:=NU{0}. (1.8)

Particularly, we note that the notation I'" denotes the well-known Gamma function and it would be also
appropriate to remind some extra information here. When focusing on the comprehensive operators designed
between (1.3) and (1.7), it can be easily seen that they are various type operators, each of which includes
different-type derivative(s) in certain domains of the z-plane. It is obvious that, for any complex function &,
the operators given in (1.3) and (1.4) are the ordinary-differential operators and the operators given by (1.5)
and (1.6) also denote the operator of fractional-order derivative(s). In addition, the last operator given by (1.7)
is also a special operator defined by a combination of the mentioned operators in (1.3)-(1.6). When one centers
on all derivative operators and/or chooses the relevant parameters appropriately there, an excessive number of

characteristic properties as well as special relationships can be also obtained. Some of those properties (and/or
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relationships) will be emphasized in the second part of this paper as various specific consequences of our main
results are to be determined. However, especially, for the interested researchers, it is suggested to look over the
recent papers presented in [17, 18], which consist of both the various characteristics of those operators between

(1.3)-(1.7) and for some interesting applications of the respective operators.

In addition, for the operator of certain fractional order, one may refer to the earlier works given by
[6, 30, 34, 35]. All in the same breath, for some of various applications of the fractional-order operators, one can
also center on the earlier papers given by [7, 11, 25, 27, 30, 35]. We also note here that the relevant function
&(z), which is situated in the definition of the fractional-order derivative operator in (1.5) (and also in (1.6)),
is specifically an analytic function in a simply-connected region of the complex plane covering the origin, and

A

the multiplicity of the term (z —u)~" is eliminated by necessitating log(z — u) to be real when z —u > 0, as

principally indicated as in [26].

More particularly, in establishing of our fundamental results, of course, under the similar conditions
accentuated in (1.8), we also need to determine some computational results of an analytic function being of the
following-complex power form:

s(z)==2" (p>-1;2€0).

Indeed, by considering this complex function just above and also making use of the mentioned operators
introduced by (1.3)-(1.7), the following-extensive results can be easily calculated as some elementary examples

in relation to the complex function just above.

Remark 1.1 Let s<p, 0<9 <1, 0<A<1 and s € Nyg. Then, the following-comprehensive expressions

are true:
() = V()2 (peN), (1.9)
D[] = [0 + (1 = 9)(p — )Vs(p)2"~* (p€N), (1.10)
D2["] = Wa(p)2" ™ (p>—1) (1.11)
DI = (0= AWWa(p)2" (o> —1), (1.12)
and
D527 = D2 [D;[]]
= [0+ (1= 0)(p— )]V, (p— 5)D2[" "] (1.13)
=W+ (1=9)(p—8)Vasalp)z¥ 7,
where
Velp) = I‘(l;(f_l:i)l) (p—k>-1;2€0). (1.14)

Under the pertinent conditions presented by (1.8), by taking into account the definitions of the men-
tioned operators between (1.3)-(1.7) (or, in the light of the elementary results between (1.9)-(1.13) in Remark
1.1), the following-comprehensive propositions, which will be also encountered in the section 2, can be easily

demonstrated.
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Remark 1.2 Let s<n, 0<9<1, 0<A<1, neN and s € Ng. Then, for the function & := £(z) being of

the complex-series form given by (1.1), the following results are also true:

= anvs(j)zj , (1.15)

o0

2Dy [&( Z W0+ (1 =0)(G = 9)Vs(h)2 (1.16)
D¢ Zn]w (1.17)
ZHADIH ¢ Z ki (G — AWa(5)2 (1.18)
and
ZHDFE(2)] = Z Ri[0+ (1= 9)(F — $)Vsrn(5)? (1.19)

where Kk, :=1 and the notation V,(k) also denotes the mathematical expression formulated by the function in

(1.14).

When one concentrates on the operators stated in (1.2), it can be easily recognized that each of the
respective definitions adds different meaningful value to this scientific study in many ways. Especially, it is
easily seen that each of the elementary results stated with Remark 1.1 and Remark 1.2 also include quite
comprehensive-important results which either consist of various type derivatives or are produced by the men-
tioned operators in (1.3)-(1.7). Moreover, in terms of literature, we think that some extra information about
both those derivative operators and their possible implications would be beneficial. As it has been pointed out,
those operators are ordinary-type operators and both contain higher-order derivatives, and their effects on any
complex function £ (being of the form in (1.1)) are certain multivalent(ly)-type analytic functions. Namely,
those complex functions, which are analytic in the open set U, will either be in any form of the multivalent(ly)-
analytic functions or the normalized-analytic functions. For such complex functions, one can center upon the

comprehensive results (or relationships) in the recent studies given in [19, 20].

In addition, some operators designated by the operators given with (1.5) and (1.6) are fractional-type
operators of various orders, but they are different types of fractional operators that can be also encountered as
the Srivastava-Owa-type operator in the mathematical literature. They also have any one of the similar forms
constituted by (1.11) and (1.12) (or (1.17) and (1.18)). For some of those applications, the earlier investigations

given in [11, 18, 30, 37] can also be examined.

Lastly, the next formation also is an operator formed by various type derivatives which both include
the operators given by (1.3) and (1.5) and also their implications as in (1.7), (1.13) and (1.19). It is a very
comprehensive operator and it also includes so many special results. For this special operator and also some
of its possible implications, it is strongly recommended to center on the recent results in the paper given by
(19, 20, 38] again.
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2. Presentation of an auxiliary theorem and related results together with their implications

In the light of the extensive information in the section 1, in this section, an auxiliary theorem, which is Lemma
2.1 (just below), will be necessary for both the stating of the main result and its demonstrating. Firstly, we
shall need to introduce that essential theorem. For its details and also a number of its implications, one can

concentrate on the main papers in [28, 29] and also see the earlier results given in [19, 24].

Lemma 2.1 Let the function v(z) with v(0) = 1 be analytic in U and also let r be any real number with

|r| > 1. If there exists a point 0 # zo € U such that

Re{v(z)} >0 when |z <[z <1 (2.1)

and
Re{v(z0)} =0 (v(z0) #0), (2.2)

then
200" (20) = irv(20) - (2.3)

Next, for the sake of convenience in establishing the main result together with its implications, there is
a need to describe an extensive definition. Under the conditions particularized as in (1.7) and for a function
& := &(z) possessing the complex-series form given in (1.1), let us now present its expression in the following
form:

T i 1)
Js,ﬁ{g( )} ' @54_)\[5(2)]

(2.4)
where 0 < A <1 and z € U.

In consideration of the definitions of the operators given by (1.2), we can now state our main result and

then demonstrate it.

Theorem 2.2 Let

s<n , 0<A<1l , 0<9<1 , neN and seN (2.5)

and also let the function £(z) possess the series expansion given the form in (1.1). Then, the following

implication is also satisfied:
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ary (= [ots] ) ¢ {0.7) (2.6

— Re(R,1EE)}) > Bn—s - ), (2.7)
where

z€elU and 0<8< (2.8)

n—s—M\

Proof Firstly, let z € U and also let the mentioned function £(z) have the series form as in (1.1). Through the
instrument of the information in relation to the definitions of the different-type-derivative operators between
(1.3)-(1.7) and by considering the definition given by (2.4), one can easily get the following-comprehensive

correlations between the operators given in (1.2):

\ el PETEC)
Js,ﬂ{f( )} . ©3+>\[€(Z)]

DI [Dyle(2)]
= DD (29)
DI [ (2) + (1 — 920+ (2)]

D00 (=) + (1 D)z ()]

and so, in the light of the information given by (1.13)-(1.19) and (2.9), and, in particular, by making use of the
complex-series expansion given by (1.1), the following-elementary results associating with the analytic function
£(2):

DL (2)]

A z
Bol€C) = 5o )

Xt k0 + (L =9) (G — 8)Viksa(h)7
D R S V) (PN

(2.10)

) . w? +J i
n—s—A+3 7, ((n+]787)\)ﬁ>nn+jz]

o7} W? ('fH’j) i
1+ ZFl (7@;(“) ) Fntj 20

can be next calculated (by the help of the combining of the computational results given by (1.16), (1.19) and
(2.10) when Ky, := 1), where
I'j+1)

WY =10+ (1= 9)(j - 5)]m-

(2.11)

We want to use the mentioned lemma for the pending proof of Theorem 2.2. Additionally, for the related

proof, we also want to consider Lemma 2.1 together with the extensive information in Remark 1.1 and Remark
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1.2. For that, we have to define a complex function like the accentuated function in the lemma. For this, firstly,
under the conditions of the definitions in (2.5), (2.8) and (2.11), and with the help of the information generated

in (2.10), let us now define an analytic function like v(z) in Lemma 2.1, which is given by the following-implicit

form:

o) . W2\ (n+j i
n—s—/\+2j:1((n+j—S—A)W)Knﬂzﬂ

Joolé(2)} = N
5 oo (Wiia(nty) i
1 + Z]:l( W‘Egj—)\(n) >Kln+j2,’-7

E(n—s—/\)[1+clz+6222+-~- ]
=(n—s—-A)[B+(1-pB)v(z)], (2.12)
where z € U and WY (j) is also defined by (2.11).

Since the complex function v(z), which is suitable for Lemma 2.1, is an analytic function in the complex

domain U with v(0) = 1, by differentiating of this function v(z) (with respect to the complex variable z), it
can easily stated by the following relation:

4 (Roten) =1 =B —s- () (zeU). (2.13)

Now, let us assume that there is a point like zp € U (with zy # 0) as underlined in the related lemma.

Namely, there exists a point zy possessing the condition there, which is
Re(v(z0)) =0 (20 € U—{0}). (2.14)

In the same time, this assumption (2.14) also requires the condition v(zp) = iw with w # 0 as it was
indicated in (2.2).

Therefore, for the related proof, by making allowances for the apparent result (2.3) given by Lemma ?7?,

the following relations:

ro= L (1 een)| )

(
= Arg((l —B)n—s— )\)irv(zo)>
(

=Arg( - (1-08)(n—s— )\)rw) (2.15)

can be easily created through the instrument of the relation given by (2.13) under the bordered conditions
indicated as before. When we focus on the presented conditions of all the parameters in the relationships in

(2.15), that is, when the conditions given in (2.5) and (2.8) are taken into account there, first of all, we have to

consider the conditions given by

n—s—A>0 and 0<f8<1/[n—s—A.
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Particularly, by having regard to the special information just above, when the concerned conditions of

the real parameters w and r are considered, the following assertions:
[r>1andw>0] = Arg(— (1-8)(n—s5—Arw) =m,
[r>1and w<0] = Arg(—(1—8)(n—s—A)rw) =0,

[r<-landw>0] = Arg(—(1—8)(n—s—A)rw) =0

and
[r<-landw<0] = Arg(—(1—-8)(n—s—Nrw) =7

are easily determined. However, these argument values (just above) are contradictions with the earlier argument
values presented by (2.6) in the theorem. This situation also tells us that there is no point zy involved by the
open set U. Thereby, with the help of the hypothesis of the lemma, of course, under the conditions in (2.5) and
(2.8), from (2.12), we then arrive at:

Re { — 5 (J?’““Z” - 5) } = Re{v()} > 0. (2.16)

n—s—N\

Thus, under the conditions given by (2.8), the inequality, which is presented by the condition in (2.16), also
necessitates the known provision of the theorem, which is the inequality given by (2.7). For this reason, the

inevitable proof ends. O

In this last section, for our interested researchers, some specific conclusions regarding our main result will
be highlighted or some specific recommendations will be also presented. Especially, when one takes cognizance
of the extensive information emphasised in the last part of the first chapter, it can be naturally seen that the
main result presented just above also has an excessive number of special consequences. In order to reveal those,
it will be sufficient to either choose the parameters in the relevant theorem appropriately or accurately determine
the extensive relationships between those operators given in (1.2). Of course, the definition constituted in (2.4)
will play a very important role in determining the accentuated results. Now, let us try to give some information
associated with those special results.

As the first-special information, for all appropriate values of the mentioned parameters given by the
restricted conditions as in (1.8) and also for all n-valent(ly) analytic function possessing the form like the
complex function £(z) given by (1.1), when taking the value of the parameter A\ as A := 0 in the definition
stated in (2.9), a quite special relationship, which can be easily achieved by the mentioned operators defined by

(1.3)-(1.7), can also be determined in the following form:

0 qea — ZDVTTOLER)

Js,ﬁ{g( )} ©f9+0[§(2)]

_ DHO[Dle(2)]
DY [Dj[¢(2)]]

_ ZDIFOIEW (2) + (1 — 9) 2 (2)]
D [960) (2) + (1 — ) 2€ (=) (2)]
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_ ZDY[0EW (2) + (1 — 9) 26079 (2)]
DY [195(5)(2) + (1 - 19)25(5“)(2)]

2€£0+9) (2) + 926C3+9) (2)
IO () + (1 - 9)2€6T0(2)

(z €U). (2.17)

In the same time, of course, if the current parameters s and ¢ in the special result given just above are
chosen differently and appropriately, many complex functions with similar fractional types can be formed by
the help of the function £(z) there. As more special forms of that rational type function, given by (2.13), we

also want to present only extra two of them, which are in the rational forms given by

2§'(2) +92¢"(2)

s:=0 = J§4{&(2)} = 9E(2) + (1 —0)2€(2)

(2.18)

and
_ () + 02" ()
¢ (z) + (1 = 9)2¢"(2)

si=1 = 19 4{&(2)} (2.19)

for some z € U and 0 <9 < 1.

In addition, as one of the special consequences of the definition, given by (2.4), and, of course, as a result
of different selection of the relevant complex function £(z) having the series expansion like the form in (1.1),
each one of those fractional type functions with complex variable, determined in (2.13)-(2.15), is a complex
function, which has important roles in the theory of complex functions. Moreover, since the point z = 0 is a
removable singular point, each one of them is an analytic function in the domain U. Especially, in the theory
of analytic-geometric function, which is still a very active area of special research, the special roles that are
emphasized still remain important for both the multivalent(ly)-analytic functions and the normalized-analytic
functions in U (cf., e.g., [14, 20, 26, 37]).

As the second-special information, by considering the indicated explanations above, it is clear that in the
light of similar special information such as the extensive explanations constituted by (2.13)-(2.15), and using
the special selections of the parameters used in Theorem 1, a great number of special results can be revealed as
various implications of the main result. As some examples, for interested researchers, we particularly recommend
focusing on some of the results given in [19, 20]. However, we would like to create only two of the special results

indicated above.

Firstly, the following-special implication, which is Proposition 2.3 just below, can be also constituted by

considering a combining of the special information designated by (2.13) and using the main result.

Proposition 2.3 Let £(z) be an analytic function that has the series expansion in (1.1). Then, if the statement:

d ( 2€0+9) (2) 4 9262+ (2)

A {Zdz 9EC) (2) + (1 — 19>z£<s+1>(z))] 10}

is satisfied, the statement:

Re < €0 (2) + 926449 (2)

9EE) (2) + (1 — 19)25(8-&-1)(2,)) > pB(n—s),
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is also satisfied, where

s<n, 0<¥<1, neN, zeU and 0<8<

n—s_

Secondly, as a more special example in relation to our main result, when choosing the related coefficients

belonging to the analytic function £(z) like the series form in (1.1) with n:=1 as in the following forms:
1
Kpg1 = — foralln:=1,2,3,--- |
n!

the concerned-analytic function £(z) is easily arrived at the complex-series-expansion form given by the ele-

mentary function with the complex variable z:
&(z) = ze?
_ Lo 13 14
—z—l—iz +§Z —|—§z + - (zeU).

Then, in view of the definition (2.4), it is easily seen that
1.{€()} =10 {ze"} =142 (z€U).

So, in consideration of those special information just above, the following interesting example can be easily

generated.

Example 2.4 Let z € {w € U: Re(w) > 0 and Sm(w) # 0} C U. Then, the following assertions can be easily

received:
Arg{z(i(qﬂg,l{f(z)})} - Arg{zjz(z + 1)} — Arg{=}

and

1< %e(JgJ{é'(z)}) =Re(z+1) =1+ Re(z) < 2.

3. Concluding remarks

It is clear that this scientific study consists of two main sections. Moreover, in the first section, necessary basic
information and various derivative-integral operators have been first introduced and some elementary results
related to multivalent functions have been then presented. In the second section, an auxiliary theorem, the
main theorems consisting of our main results, some special forms of those theorems, and some special examples
have been also constituted. In addition, as concluding remarks and various recommendations for relevant
researchers, in the same time, as it has been underlined in various parts of this scientific note, by choosing the
appropriate values of the mentioned parameters used in Theorem 2.2, both quite extensive results (and/or an
excessive number of their special consequences) can be revealed and various elementary exemplifications can be
recreated. As some special forms of them, only one of the relevant implications and another related example

are presented as Proposition 2.3 and Example 2.4 above. Specially, as extra explanatory information, by taking
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into account the (extra) information given as in the earlier papers [19, 20], it is possible to get a great number

of those special results. We also leave those creations knowledgeable with possible implications of this scientific

note to the interests of researchers.
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