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Abstract: Motivated by circular complex interval arithmetic, some operations on closed balls in Cn are considered.
Essentially, the properties of possible multiplications for closed balls in Cn , related either to the Hadamard product of
vectors or to the 2 -fold vector cross product when n ∈ {3, 7} , are studied. In addition, certain equations involving the
defined multiplications are solved.
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1. Introduction

Circular complex interval arithmetic, as can be seen in the books [2], due to Alefeld and Herzberger, and
[11], by Petković and Petković, deals with closed balls in C . Over the years, research related to interval
mathematics, namely [8] and [10], has been produced. In reference [8], Gargantini and Henrici apply circular
complex interval arithmetic to the determination of polynomial zeros. Johansson, in [10], exhibits the advantages
of ball arithmetic for rigorous algebraic computation with real numbers. More recently, in [6], Beites, Nicolás,
and Vitória presented an arithmetic for closed balls in Rn ; the particular case n = 2 can be identified with C .

In the present work, some operations on closed balls in Cn are considered. To start with, in section 2, we
recall definitions and results related to the complex vector space Cn endowed with a 2 -fold vector cross product
when n ∈ {3, 7} , closed balls and the Hadamard product of vectors. Nontrivial 2 -fold vector cross products exist
for 3 and 7-dimensional vector spaces (see [3–5], and cited references), a consequence of the generalized Hurwitz
Theorem: over a field of characteristic not 2 , a finite-dimensional Hurwitz algebra is isomorphic either to the
base field, a separable quadratic extension of the base field, a generalized quaternion algebra or a generalized
octonion algebra.

In section 3, an addition for closed balls in Cn is examined. In section 4, properties of possible
multiplications for these closed balls, related either to the Hadamard product of vectors or to the 2 -fold vector
cross product when n ∈ {3, 7} , are established. (Anti-)Commutativity, (power-)associativity, the existence of a
neutral element and reciprocal of each element, and also its square root(s), are studied. Inclusion monotonicity
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– the basis for diverse applications of interval arithmetic, [2] – and the (sub)distributivity of each multiplication
relative to the addition are analysed. Finally, certain equations involving the defined multiplications are solved.

2. Preliminaries

Throughout the work, consider the usual complex vector space Cn . In addition, Cn×n denotes the set of all
n× n complex matrices, and we identify Cn×1 with Cn .

Also throughout the work, we do not use different notations to distinguish scalars from vectors, but what
the objects are is clear from the context in which the undifferentiated notation is used.

The complex vector space Cn , together with the standard Hermitian inner product (·, ·)h : (Cn)2 → C ,

is a complex inner product space. Recall that, for all x =
[
x1 . . . xn

]T , y =
[
y1 . . . yn

]T ∈ Cn ,

(x, y)h =
n∑

t=1

xtyt

and, for all x, y, z ∈ Cn , α, β ∈ C ,

(αx+ βy, z)h = α(x, z)h + β(y, z)h (linearity in the first coordinate), (2.1)

(x, y)h = (y, x)h (conjugate or Hermitian symmetry), (2.2)

(x, x)h ∈ R+
0 and (x, x)h = 0 ⇔ x = 0 (positive definiteness). (2.3)

Also, (2.1) and (2.2) imply conjugate or Hermitian linearity in the second coordinate, that is,

(x, αy + βz)h = α(x, y)h + β(x, z)h. (2.4)

The complex vector space Cn , together with the norm ‖ · ‖ : Cn → R induced by (·, ·)h , is also a normed
linear space. Recall that, for all x ∈ Cn ,

‖x‖ =
√
(x, x)h,

where
√
· stands for the real, positive or null root, and, for all x, y ∈ Cn , α ∈ C ,

‖x‖ ∈ R+
0 and ‖x‖ = 0 ⇔ x = 0, (2.5)

‖αx‖ = |α|‖x‖, (2.6)

‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality), (2.7)

where | · | stands for the modulus of a complex number.
The closed ball A in Cn with center a ∈ Cn and radius r ∈ R+

0 is defined by

A = 〈a; r〉 = {x ∈ Cn : ‖x− a‖ ≤ r}.

The set of closed balls in Cn is denoted by BC , and by B+
C or B0

C if, respectively, r ∈ R+ or r = 0 .
Let A = 〈a; r1〉, B = 〈b; r2〉 ∈ BC . The closed balls A and B are equal (A = B) if set-theoretic equality

holds, that is, a = b and r1 = r2 . A is contained in B (A ⊆ B) if set-theoretic inclusion is valid.
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Let ∗BC : BC × BC → BC be a binary operation. The operation ∗BC is inclusion monotonic if, for
all Am, Bm ∈ BC such that Am ⊆ Bm , m ∈ {1, 2} , A1 ∗BC A2 ⊆ B1 ∗BC B2 . The operation ∗BC is
power-associative if, for all A ∈ BC and for all m, s ∈ N , As ∗BC Am = As+m . The operation ∗BC is
subdistributive with respect to another binary operation ⊞BC : BC × BC → BC if, for all A,B,C ∈ BC ,
A ∗BC (B ⊞BC C) ⊆ (A ∗BC B)⊞BC (A ∗BC C) .

Let x =
[
x1 . . . xn

]T ∈ Cn . The ∞ -norm ‖ · ‖∞ of x is defined by ‖x‖∞ = max
j∈{1,...,n}

|xj | ∈ R+
0 ,

where | · | stands for the modulus of a complex number.

Let x =
[
x1 . . . xn

]T
, y =

[
y1 . . . yn

]T ∈ Cn . The Hadamard (componentwise) product ◦ of
x and y is x ◦ y ∈ Cn with k, 1 entry, k ∈ {1, . . . , n} , given by xkyk .

Endow the complex vector space Cn with the nondegenerate symmetric bilinear form (·, ·) defined by

(x, y) = (x, y)h.

Now consider n ∈ {3, 7} and equip Cn also with the 2 -fold vector cross product × : (Cn)2 → Cn . Recall that
× is the bilinear map that, for any x, y ∈ Cn ,

(x× y, x) = (x× y, y) = 0, (2.8)

(x× y, x× y) =

∣∣∣∣ (x, x) (x, y)
(y, x) (y, y)

∣∣∣∣ . (2.9)

The trilinear map (· × ·, ·) is skew-symmetric due to (2.8), and so × is anticommutative.
The 2 -fold vector cross product in Cn , n ∈ {3, 7} , can be approached from a matrix point of view, [7, 9].

Let a =
[
a1 . . . an

]T ∈ Cn . Consider the linear mapping

a× : Cn → Cn

x 7→ a×(x) = a× x.

For each a ∈ Cn , there exists a unique matrix Sa ∈ Cn×n such that

a× x = Sax, (2.10)

where, for n = 3 ,

Sa =

 0 −a3 a2
a3 0 −a1

−a2 a1 0

 (2.11)

and, for n = 7 ,

Sa =



0 −a3 a2 −a5 a4 −a7 a6
a3 0 −a1 −a6 a7 a4 −a5

−a2 a1 0 a7 a6 −a5 −a4
a5 a6 −a7 0 −a1 −a2 a3

−a4 −a7 −a6 a1 0 a3 a2
a7 −a4 a5 a2 −a3 0 −a1

−a6 a5 a4 −a3 −a2 a1 0


. (2.12)

For n = 7 , these skew-symmetric matrices were studied by Beites, Nicolás and Vitória in [7]. An earlier study
for n = 3 , due to Gross, Trenkler and Troschke, can be found in [9].
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3. Addition

Throughout this section, consider the usual complex vector space Cn . Consider also the binary operation
+BC : BC ×BC → BC , hereinafter called addition +BC , defined by

A+BC B = 〈a; r1〉+BC 〈b; r2〉 := 〈a+ b; r1 + r2〉 .

The subsequent results establish several properties related to +BC .

Theorem 3.1 The addition +BC is commutative and associative. Moreover, 〈0; 0〉 is the neutral element
relative to +BC .

Proof Owing to the commutativity and to the associativity of the addition in Cn , as well as to the
commutativity and to the associativity of the addition in R , it is straightforward to prove that, for all
A,B,C ∈ BC , A +BC B = B +BC A and (A +BC B) +BC C = A +BC (B +BC C) . Taking into account
the neutral elements of Cn and R relative to the respective additions, it is also direct to prove that 〈0; 0〉 is
the neutral element relative to +BC . 2

Corollary 3.2 (BC,+BC) is a commutative monoid.

Proof A straightforward consequence of Theorem 3.1. 2

Corollary 3.3 The set of elements of BC which possess reciprocal relative to the addition +BC is B0
C .

Furthermore, the reciprocal of 〈a; 0〉 ∈ B0
C relative to +BC is 〈−a; 0〉 .

Proof Let E = 〈0; 0〉 . Let A = 〈a; r1〉 ∈ BC . Suppose that A′ = 〈a′; r′1〉 ∈ BC is the reciprocal of A relative
to +BC . From A+BC A

′ = E , we have a′ = −a and r′1 = −r1 . 2

Lemma 3.4 Let A,B ∈ BC . Then A+BC B = {x+ y : x ∈ A ∧ y ∈ B} .

Proof Let A = 〈a; r1〉 , B = 〈b; r2〉 ∈ BC .
(⊆) Let u ∈ A +BC B = 〈a + b; r1 + r2〉 . Then ‖u − (a + b)‖ ≤ r1 + r2 . If r1 + r2 = 0 then the

inclusion holds since u = a + b . If r1 + r2 6= 0 then the inclusion also holds since u = v + (u − v) with
v = αu + (1 − α)(a + b) − b ∈ A , α = r1

r1+r2
, and u − v ∈ B . In fact, ‖v − a‖ = α‖u − (a + b)‖ ≤ r1 and

‖u− v − b‖ = (1− α)‖u− (a+ b)‖ ≤ r2 .
(⊇) Let x ∈ A and y ∈ B . Then ‖x−a‖ ≤ r1 , ‖y− b‖ ≤ r2 and ‖x+ y− (a+ b)‖ ≤ ‖x−a‖+ ‖y− b‖ ≤

r1 + r2 . Therefore, x+ y ∈ A+BC B = 〈a+ b; r1 + r2〉 . 2

Theorem 3.5 The addition +BC is inclusion monotonic.

Proof Let Am, Bm ∈ BC such that Am ⊆ Bm , m ∈ {1, 2} . By Lemma 3.4, A1 +BC A2 = {x + y : x ∈
A1 ∧ y ∈ A2} ⊆ {x+ y : x ∈ B1 ∧ y ∈ B2} = B1 +BC B2 . 2
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4. Multiplications

Throughout this section, unless stated otherwise, consider the usual complex vector space Cn . We start with
an auxiliary result for the following subsections, each devoted to a possible multiplication for closed balls in
Cn .

Lemma 4.1 Let A = 〈a; r1〉, B = 〈b; r2〉 ∈ BC . Then A ⊆ B if and only if ‖a − b‖ ≤ r2 − r1 . In particular,
if A and B are concentric then A ⊆ B if and only if r1 ≤ r2 .

Proof (⇒) Suppose that A ⊆ B . Assume that ‖a− b‖ > r2 − r1 . Consider the line passing through a and
b . This line intersects the border of A at a point x such that ‖x− b‖ = ‖a− b‖+ ‖x− a‖ > r2 − r1 + r1 = r2 ,
which leads to the contradiction x /∈ B .

(⇐) Let x ∈ A . Then ‖x− a‖ ≤ r1 . Hence, x ∈ B since ‖x− b‖ ≤ ‖x− a‖+ ‖a− b‖ ≤ r2 .
The particular result for concentric balls is immediate. 2

4.1. Multiplication ◦BC,r

Consider the binary operation ◦BC,r : BC ×BC → BC , hereinafter called multiplication ◦BC,r , defined by

A ◦BC,r B = 〈a; r1〉 ◦BC,r 〈b; r2〉 := 〈a ◦ b+ r2a+ r1b; r1r2〉 .

Even though ◦BC,r is not inclusion monotonic, the following properties hold for ◦BC,r .

Theorem 4.2 The multiplication ◦BC,r is commutative and associative. Moreover, 〈0; 1〉 is the neutral element
relative to ◦BC,r .

Proof As the Hadamard product ◦ of vectors is commutative and associative on Cn , so is the multiplication
◦BC,r . It is straightforward that, for all 〈a; r1〉 ∈ BC , 〈a; r1〉 = 〈a; r1〉 ◦BC,r 〈0; 1〉 . 2

Corollary 4.3 (BC, ◦BC,r) is a commutative monoid.

Proof A straightforward consequence of Theorem 4.2. 2

Theorem 4.4 The set of elements of BC which possess reciprocal relative to the multiplication ◦BC,r is

R = {A = 〈a; r1〉 ∈ B+
C : a =

[
a1 . . . an

]T ∈ Cn ∧ al 6= −r1, l ∈ {1, . . . , n}} . Furthermore, the

reciprocal of 〈a; r1〉 ∈ R relative to ◦BC,r is 〈b; 1
r1
〉 with b =

[
b1 . . . bn

]T ∈ Cn such that bl = − al

r1(r1+al)
,

l ∈ {1, . . . , n} .

Proof Let A=〈a; r1〉 ∈ B+
C . Let b =

[
b1 . . . bn

]T ∈ Cn such that 〈a; r1〉 ◦BC,r 〈b; 1/r1〉 = 〈0; 1〉 . As
a ◦ b+ 1

r1
a+ r1b = 0 , we get albl +

1
r1
al + r1bl = 0, l ∈ {1, . . . , n}. 2

Let A ∈ BC . We define the powers of A relative to ◦BC,r by

A0 = 〈0; 1〉 and Ak = Ak−1 ◦BC,r A for k ∈ N.

Denote
[
1 . . . 1

]T by a◦0 and a◦(k−1) ◦ a by a◦k for k ∈ N .
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Theorem 4.5 The multiplication ◦BC,r is power-associative.

Proof Due to Theorem 4.2, for all A ∈ BC , A2 ◦BC,r A = A ◦BC,r A
2 and (A2 ◦BC,r A) ◦BC,r A = A2 ◦BC,r A

2

are valid. The result follows since, invoking [1], this suffices to prove that, for all A ∈ BC and for all m, s ∈ N ,
As ◦BC,r A

m = As+m . 2

Theorem 4.6 Let A = 〈a; r1〉 ∈ BC . Relative to the multiplication ◦BC,r , for all k ∈ N ,

Ak = 〈
∑k

j=1

(
k
j

)
rk−j
1 a◦j ; rk1 〉 .

Proof We use induction on k . The equality obviously holds for k = 1 . Suppose that it is true for k . Then
we have

Ak+1 = Ak ◦BC,r A

= 〈
∑k

l=1

(
k
l

)
rk−l
1 a◦l; rk1 〉 ◦BC,r 〈a; r1〉

= 〈
∑k

l=1

(
k
l

)
rk−l
1 a◦(l+1) +

∑k
l=1

(
k
l

)
rk+1−l
1 a◦l + rk1a; r

k+1
1 〉

= 〈a◦(k+1) +
∑k

l=2

[(
k

l−1

)
+
(
k
l

)]
rk+1−l
1 a◦l + (k + 1)rk1a; r

k+1
1 〉

= 〈
∑k+1

l=1

(
k+1
l

)
rk+1−l
1 a◦l; rk+1

1 〉.

2

Theorem 4.7 Let A = 〈a; r1〉 ∈ BC with a =
[
a1 . . . an

]T ∈ Cn . The square roots of A relative

to the multiplication ◦BC,r are given by A1/2 = 〈b;√r1〉 , with b =
[
b1 . . . bn

]T ∈ Cn such that bl =

−√
r1 ±

√
r1 + al for l ∈ {1, . . . , n} , where

√
· stands, accordingly, for the real, positive or null root and for the

complex roots.

Proof Let B = 〈b; s〉 ∈ BC such that A = B2 . As 〈a; r1〉 = 〈b◦2 + 2sb; s2〉 , we have s2 = r1 and
b2l + 2sbl − al = 0 for l ∈ {1, . . . , n} . Thus, bl = −s±

√
s2 + al . 2

Theorem 4.8 The multiplication ◦BC,r is distributive with respect to the addition +BC .

Proof Owing to the distributivity of ◦ with respect to the addition in Cn , to the distributivity of the
multiplication with respect to the addition in R , as well as to mixed distributivities, it is straightforward to
prove that, for all A,B,C ∈ BC , A ◦BC,r (B +BC C) = (A ◦BC,r B) +BC (A ◦BC,r C) . 2

Corollary 4.9 (BC,+BC , ◦BC,r) is a semiring.

Proof A straightforward consequence of Theorem 3.1, Theorem 4.2 and Theorem 4.8. 2

Theorem 4.10 Let A = 〈a; r1〉 ∈ B+
C such that a =

[
a1 . . . an

]T ∈ Cn with ak 6= −r1 , k ∈ {1, . . . , n} .
Let B = 〈b; r2〉 ∈ BC . Then the unique solution of the equation A ◦BC,r X = B is given by X = 〈x; r3〉 ∈ BC ,

where x =
[
x1 . . . xn

]T ∈ Cn , with

xk = (ak + r1)
−1(bk − r3ak), k ∈ {1, . . . , n}, and r3 = r−1

1 r2.
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Proof From the definition of ◦BC,r , the equation A ◦BC,r X = B assumes the form 〈a ◦x+ r3a+ r1x; r1r3〉 =
〈b; r2〉 , which leads to (ak + r1)xk = bk − r3ak , k ∈ {1, . . . , n} , and r1r3 = r2 . 2

Theorem 4.11 Let B = 〈b; r2〉 , C = 〈c; r1〉 ∈ BC . Then, the solutions of the equation X2 = B ◦BC,rX+BC C

are given by X = 〈x; r3〉 ∈ BC , where x = [x1 . . . xn]
T ∈ Cn . If r1 > 0 , then

xk = 2−1

(
bk −

√
r22 + 4r1 ±

√
(bk + r2)2 + 4(r1 + ck)

)
, k ∈ {1, . . . , n}, and r3 = 2−1

(
r2 +

√
r22 + 4r1

)
.

If r1 = 0 , then

xk = 2−1
(
bk + r2 ±

√
(bk + r2)2 + 4ck

)
, k ∈ {1, . . . , n}, and r3 = 0,

or

xk = 2−1
(
bk − r2 ±

√
(bk + r2)2 + 4ck

)
, k ∈ {1, . . . , n}, and r3 = r2.

Proof From the definition of ◦BC,r , the equation X2 = B ◦BC,r X +BC C takes the form 〈x ◦ x +

2r3x; r
2
3〉 = 〈b ◦ x + r3b + r2x + c; r3r2 + r1〉 . So, r23 − r2r3 − r1 = 0 and r3 = 2−1

(
r2 ±

√
r22 + 4r1

)
.

Also, since r2 −
√
r22 + 4r1 ∈ R+

0 if and only if r1 = 0 , we have r3 = 0 or r3 = r2 if r1 = 0 . On
the other hand, for each k ∈ {1, . . . , n} , we have x2

k + (2r3 − bk − r2)xk − (r3bk + ck) = 0 , which leads

to xk = 2−1
(
bk −

√
r22 + 4r1 ±

√
(bk + r2)2 + 4(r1 + ck)

)
when r1 > 0 . If r1 = r3 = 0 then we obtain

x2
k − (bk + r2)xk − ck = 0 and xk = 2−1

(
bk + r2 ±

√
(bk + r2)2 + 4ck

)
. If r1 = 0 and r3 = r2 then we get

x2
k + (r2 − bk)xk − (r2bk + ck) = 0 and xk = 2−1

(
bk − r2 ±

√
(bk + r2)2 + 4ck

)
. 2

Corollary 4.12 Let E = 〈0; 1〉 . Then the solutions of the equation X2 = X +BC E are given by the golden

balls X = 〈x; 1+
√
5

2 〉 , with x =
[
x1 . . . xn

]T ∈ Rn such that xk ∈ {−
√
5, 0} for k ∈ {1, . . . , n} and where

√
· stands for the real, positive root.

Proof By Theorem 4.2, the equation X2 = X +BC E can be rewritten as X2 = E ◦BC,r X +BC E . Then, the
result follows from Theorem 4.11. 2

4.2. Multiplication ◦BC,c

Consider the binary operation ◦BC,c : BC ×BC → BC , hereinafter called multiplication ◦BC,c , defined by

A ◦BC,c B = 〈a; r1〉 ◦BC,c 〈b; r2〉 := 〈a ◦ b; r1‖b‖∞ + r2‖a‖∞ + r1r2〉.

Although ◦BC,c is not associative, as presented below, ◦BC,c possesses diverse properties.

Theorem 4.13 The multiplication ◦BC,c is commutative. Moreover, 〈1; 0〉 is the neutral element relative to
◦BC,c .
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Proof As the Hadamard product ◦ of vectors is commutative on Cn , it is clear that ◦BC,c is commutative.

Denote
[
1 . . . 1

]T ∈ Cn by 1 . Let A = 〈a; r〉 ∈ BC . Then we get A ◦BC,c 〈1; 0〉 = 〈a ◦ 1; r〉 = A . 2

Theorem 4.14 The set of elements of BC which possess reciprocal relative to the multiplication ◦BC,c is

R = {A = 〈a; 0〉 ∈ B0
C : a =

[
a1 . . . an

]T ∈ Cn ∧ al 6= 0, l ∈ {1, . . . , n}} . Furthermore, the reciprocal of

〈a; 0〉 ∈ R relative to ◦BC,c is 〈b; 0〉 with bl = a−1
l , l ∈ {1, . . . , n} .

Proof Let A = 〈a; r〉 ∈ BC . Suppose that B = 〈b; s〉 is the reciprocal of A relative to ◦BC,c . Then we have
A◦BC,cB = 〈a; r〉◦BC,c 〈b; s〉 = 〈a ◦ b; r‖b‖∞ + s‖a‖∞ + rs〉 = 〈1; 0〉 . Hence, bl = a−1

l , l ∈ {1, . . . , n} , whenever
al 6= 0 . In addition, r‖b‖∞ + s‖a‖∞ + rs = 0 , which allows to arrive at r = s = 0 . 2

Let A ∈ BC . We define the powers of A relative to ◦BC,c by

A0 = 〈1; 0〉 and Ak = Ak−1 ◦BC,c A for k ∈ N.

Denote
[
1 . . . 1

]T by a◦0 and a◦(k−1) ◦ a by a◦k for k ∈ N .

Theorem 4.15 The multiplication ◦BC,c is power-associative.

Proof To prove that, for all A ∈ BC and for all m, s ∈ N , As ◦BC,c A
m = As+m , invoking [1], it suffices

to show that A2 ◦BC,c A = A ◦BC,c A
2 and (A2 ◦BC,c A) ◦BC,c A = A2 ◦BC,c A

2 . By Theorem 4.13, the former
equality holds. As for the latter equality, let A = 〈a; r〉 ∈ BC . On the one hand,

A2 ◦BC,c A = 〈a◦2; 2r‖a‖∞ + r2〉 ◦BC,c 〈a; r〉
= 〈a◦3; r‖a◦2‖∞ + ‖a‖∞(2r‖a‖∞ + r2) + r(2r‖a‖∞ + r2)〉
= 〈a◦3; 3r‖a‖2∞ + 3r2‖a‖∞ + r3〉

and
(A2 ◦BC,c A) ◦BC,c A = 〈a◦3; 3r‖a‖2∞ + 3r2‖a‖∞ + r3〉 ◦BC,c 〈a; r〉

= 〈a◦4; 4r‖a‖3∞ + 6r2‖a‖2∞ + 4r3‖a‖∞ + r4〉.

On the other hand, we get

A2 ◦BC,c A
2 = 〈a◦2; 2r‖a‖∞ + r2〉 ◦BC,c 〈a◦2; 2r‖a‖∞ + r2〉

= 〈a◦4; 4r‖a‖3∞ + 6r2‖a‖2∞ + 4r3‖a‖∞ + r4〉.

2

Theorem 4.16 Let A = 〈a; r〉 ∈ BC . Relative to the multiplication ◦BC,c , for all k ∈ N ,
Ak = 〈a◦k; (‖a‖∞ + r)k − ‖a‖k∞〉 .
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Proof We proceed by induction on k . The equality clearly holds for k = 1 . Suppose that it is also valid for
k . Then we have

Ak+1 = Ak ◦BC,c A

= 〈a◦k;
∑k

l=1

(
k
l

)
rl‖a‖k−l

∞ 〉 ◦BC,c 〈a; r〉
= 〈a◦(k+1); r‖a◦k‖∞ +

∑k
l=1

(
k
l

)
rl‖a‖k+1−l

∞ +
∑k

l=1

(
k
l

)
rl+1‖a‖k−l

∞ 〉
= 〈a◦(k+1); (k + 1)r‖a‖k∞ +

∑k
l=2

[(
k
l

)
+
(

k
l−1

)]
rl‖a‖k+1−l

∞ + rk+1〉
= 〈a◦(k+1);

∑k+1
l=1

(
k+1
l

)
rl‖a‖k+1−l

∞ 〉
= 〈a◦(k+1); (‖a‖∞ + r)k+1 − ‖a‖k+1

∞ 〉.

2

Theorem 4.17 Let A = 〈a; r〉 ∈ BC with a =
[
a1 . . . an

]T ∈ Cn . The square roots of A relative to the

multiplication ◦BC,c are given by A1/2 = 〈a◦1/2;
√
r + ‖a‖∞ −

√
‖a‖∞〉 , with a◦1/2 = (

√
a1, . . . ,

√
an) , where

√
· stands, accordingly, for the real, positive, or null root and for the complex roots.

Proof Let B = 〈b; s〉 ∈ BC such that A = B2 . From 〈a; r〉 = 〈b◦2; s2 + 2s‖b‖∞〉 we have b = a◦1/2 and
s2 + 2

√
‖a‖∞s− r = 0 . 2

Theorem 4.18 The multiplication ◦BC,c is inclusion monotonic.

Proof Let Am = 〈am; rm〉 , Bm = 〈bm; sm〉 ∈ BC such that Am ⊆ Bm , m ∈ {1, 2} . We aim to prove that
A1 ◦BC,c A2 ⊆ B1 ◦BC,c B2 . By Lemma 4.1, ‖bm − am‖ ≤ sm − rm , m ∈ {1, 2} , and it is enough to prove that

‖b1 ◦ b2 − a1 ◦ a2‖ ≤ s1‖b2‖∞ + s2‖b1‖∞ + s1s2 − r1‖a2‖∞ − r2‖a1‖∞ − r1r2.

Observe that
‖b1 ◦ b2 − a1 ◦ a2‖ = ‖b1 ◦ b2 − b1 ◦ a2 + b1 ◦ a2 − a1 ◦ a2‖

≤ ‖b1 ◦ (b2 − a2)‖+ ‖(b1 − a1) ◦ a2‖
≤ ‖b1‖∞‖b2 − a2‖+ ‖a2‖∞‖b1 − a1‖
≤ ‖b1‖∞(s2 − r2) + ‖a2‖∞(s1 − r1).

In addition, we have

s1‖a2‖∞ ≤ s1‖b2‖∞ + s1‖a2 − b2‖∞ ≤ s1‖b2‖∞ + s1(s2 − r2),
−r2‖b1‖∞ ≤ −r2‖a1‖∞ + r2‖a1 − b1‖∞ ≤ −r2‖a1‖∞ + r2(s1 − r1).

The former and the latter inequalities lead to the result. 2

Theorem 4.19 The multiplication ◦BC,c is subdistributive with respect to the addition +BC .

Proof Let A = 〈a; r1〉 , B = 〈b; r2〉, C = 〈c; r3〉 ∈ BC . Applying Lemma 4.1,

A ◦BC,c (B +BC C) = 〈a; r1〉 ◦BC,c (〈b; r2〉+BC 〈c; r3〉)
= 〈a ◦ (b+ c); r1‖b+ c‖∞ + (r2 + r3)‖a‖∞ + r1(r2 + r3)〉
= 〈a ◦ b+ a ◦ c; r2‖a‖∞ + r1r2 + r3‖a‖∞ + r1r3 + r1‖b+ c‖∞〉
⊆ 〈a ◦ b+ a ◦ c; r1‖b‖∞ + r2‖a‖∞ + r1r2 + r1‖c‖∞ + r3‖a‖∞ + r1r3〉
= (A ◦BC,c B) +BC (A ◦BC,c C).

2
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Theorem 4.20 Let A = 〈a; r1〉 ∈ BC such that a =
[
a1 . . . an

]T ∈ Cn with ak 6= 0 , k ∈ {1, . . . , n} . Let
B = 〈b; r2〉 ∈ BC . Then the unique solution of the equation A ◦BC,c X = B is given by X = 〈x; r3〉 ∈ BC ,

where x =
[
x1 . . . xn

]T ∈ Cn , with

xk = a−1
k bk, k ∈ {1, . . . , n}, and r3 = (‖a‖∞ + r1)

−1(r2 − r1‖x‖∞).

Proof The rewriting of the stated equation A ◦BC,c X = B leads to 〈b; r2〉 = 〈a ◦ x; r1‖x‖∞ + r3‖a‖∞ + r1r3〉
From here, we have akxk = bk , k ∈ {1, . . . , n} , and (‖a‖∞ + r1)r3 = r2 − r1‖x‖∞ . 2

Theorem 4.21 Let B = 〈b; r2〉 , C = 〈c; r1〉 ∈ BC . Then, the solutions of the equation X2 = B ◦BC,cX+BC C

are given by X = 〈x; r3〉 ∈ BC , where x =
[
x1 . . . xn

]T ∈ Cn , with

xk = 2−1

(
bk ±

√
b2k + 4ck

)
, k ∈ {1, . . . , n},

r3 = 2−1
(
r2 + ‖b‖∞ − 2‖x‖∞ +

√
(r2 + ‖b‖∞ − 2‖x‖∞)2 + 4(r1 + r2‖x‖∞)

)
,

where
√
· stands for the real, positive root, and

r3 = 0 if r1 = 0 and r2‖x‖∞ = 0.

Proof From the definition of ◦BC,c , the equation X2 = B ◦BC,c X +BC C takes the form 〈x ◦ x; 2r3‖x‖∞ +

r23〉 = 〈b ◦ x + c; r2‖x‖∞ + r3‖b‖∞ + r2r3 + r1〉 . So, r23 + (2‖x‖∞ − ‖b‖∞ − r2) r3 − ‖x‖∞r2 − r1 = 0 and,

thus, we arrive at r3 = 2−1
(
‖b‖∞ + r2 − 2‖x‖∞ +

√
(‖b‖∞ + r2 − 2‖x‖∞)2 + 4(r1 + r2‖x‖∞)

)
. Notice that

‖b‖∞+ r2−2‖x‖∞−
√

(‖b‖∞ + r2 − 2‖x‖∞)2 + 4(r1 + r2‖x‖∞) ∈ R+
0 if and only if r1+ r2‖x‖∞ = 0 , in which

case r3 = 0 . On the other hand, for each k ∈ {1, . . . , n} we must have that x2
k = bkxk + ck , which leads to

xk = 2−1(bk ±
√

b2k + 4ck) . 2

Corollary 4.22 Let E = 〈1; 0〉 . Then the solutions of the equation X2 = X +BC E are given by the balls

X = 〈x; 0〉 , with x =
[
x1 . . . xn

]T ∈ Rn such that xk = 2−1(1±
√
5) for k ∈ {1, . . . , n} , where

√
· stands

for the real, positive root.

Proof By Theorem 4.13, the equation X2 = X +BC E can be rewritten as X2 = E ◦BC,c X +BC E . Then,
the result follows from Theorem 4.21. 2

4.3. Multiplication ×BC,r

Throughout this subsection, consider the usual complex vector space Cn with n ∈ {3, 7} . Consider also the
binary operation ×BC,r : BC ×BC → BC , hereinafter called multiplication ×BC,r , defined by

A×BC,r B = 〈a; r1〉 ×BC,r 〈b; r2〉 := 〈a× b+ r2a+ r1b; r1r2〉 .

Even though commutativity, anticommutativity, associativity, and inclusion monotonicity do not hold, ×BC,r

satisfies the subsequent properties.
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Theorem 4.23 The neutral element relative to the multiplication ×BC,r is 〈0; 1〉 .

Proof Let A = 〈a; r1〉 ∈ BC . Then we have 〈a; r1〉 ×BC,r 〈0; 1〉 = 〈a; r1〉 = 〈0; 1〉 ×BC,r 〈a; r1〉 . 2

Corollary 4.24 The set of elements of BC which possess reciprocal relative to the multiplication ×BC,r is B+
C .

Furthermore, the reciprocal of 〈a; r1〉 ∈ B+
C relative to ×BC,r is 〈− 1

r21
a; 1

r1
〉 .

Proof Let A = 〈a; r1〉 ∈ B+
C . Then we obtain 〈a; r1〉×BC,r

〈
− 1

r21
a; 1

r1

〉
= 〈0; 1〉 =

〈
− 1

r21
a; 1

r1

〉
×BC,r 〈a; r1〉 .

2

Let A ∈ BC . We define the powers of A relative to ×BC,r by

A0 = 〈0; 1〉 and Ak = Ak−1 ×BC,r A for k ∈ N.

Theorem 4.25 The multiplication ×BC,r is power-associative.

Proof To prove that, for all A ∈ BC and for all m, s ∈ N , As ×BC,r A
m = As+m , invoking [1], it suffices to

show that A2 ×BC,r A = A×BC,r A
2 and (A2 ×BC,r A)×BC,r A = A2 ×BC,r A

2 . Let A = 〈a; r1〉 ∈ BC . Then
we get

A2 ×BC,r A = 〈2r1a; r21〉 ×BC,r 〈a; r1〉

= 〈3r21a; r31〉

= 〈a; r1〉 ×BC,r 〈2r1a; r21〉

= A×BC,r A
2,

(A2 ×BC,r A)×BC,r A = 〈3r21a; r31〉 ×BC,r 〈a; r1〉

= 〈4r31a; r41〉

= 〈2r1a; r21〉 ×BC,r 〈2r1a; r21〉

= A2 ×BC,r A
2.

2

Theorem 4.26 Let A = 〈a; r1〉 ∈ BC . Relative to the multiplication ×BC,r , for all k ∈ N , Ak = 〈krk−1
1 a; rk1 〉 .

Proof Let A = 〈a; r1〉 ∈ BC . The base case obviously holds. As Ak = Ak−1 ×BC,r A = 〈(k −

1)rk−2
1 a; rk−1

1 〉 ×BC,r 〈a; r1〉 = 〈krk−1
1 a; rk1 〉 , the induction step follows. 2

Theorem 4.27 Let A = 〈a; r〉 ∈ B+
C . The square root of A relative to the multiplication ×BC,r is given by

A1/2 =

〈
1

2
√
r
a;
√
r

〉
, where

√
· stands for the real, positive root.
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Proof Let A = 〈a; r〉 ∈ B+
C . Let B = 〈b; s〉 ∈ BC such that B2 = A . Thus, s2 = r and Sbb+2sb = a , which

leads to the result by [7, Proposition 4, Property 6] and [9, Property (A)]. 2

Theorem 4.28 The multiplication ×BC,r is distributive relative to the addition +BC .

Proof Owing to the distributivity of × with respect to the addition in Cn , to the distributivity of the
multiplication with respect to the addition in R , as well as to mixed distributivities, it is straightforward to
prove that, for all A,B,C ∈ BC , A×BC,r (B +BC C) = A×BC,r B +BC A×BC,r C and (B +BC C)×BC,r A =

B ×BC,r A+BC C ×BC,r A . 2

Lemma 4.29 Let a ∈ Cn and α ∈ C . The matrix Sa + αIn is invertible if and only if α 6= 0 and α is not a
square root of −(a, a)h .

Proof From [7, Lemma 9], the result is valid for n = 7 . For n = 3 , a straightforward calculation of
det(Sa + αI3) leads to α(α2 + (a, a)h) . In the stated conditions, det(Sa + αI3) = 0 if and only if α = 0 or
α2 = −(a, a)h . 2

Theorem 4.30 Let a ∈ Cn . Let α ∈ C\{0} such that α is not a square root of −(a, a)h . Then (Sa+αIn)
−1 =

−(α2 + (a, a)h)
−1(Sa − αIn − α−1aaT ) .

Proof By [7, Theorem 10], the result holds for n = 7 . Now consider n = 3 . From Lemma 4.29, Sa + αI3 is
invertible. Invoking [9, Property (A) and Property (3.1)], we get

(Sa + αI3)(−(α2 + (a, a)h)
−1(Sa − αI3 − α−1aaT ))

= −(α2 + (a, a)h)
−1(S2

a − αSa − α−1Saaa
T + αSa − α2I3 − aaT )

= −(α2 + (a, a)h)
−1(−(a, a)hI3 − α2I3)

= I3 . 2

Theorem 4.31 Let A = 〈a; r1〉 ∈ B+
C such that r1 is not a square root of −(a, a)h . Let B = 〈b; r2〉 ∈ BC .

Then the unique solution of the equation A×BC,r X = B is given by X = 〈x; r3〉 ∈ BC , with

x = −(r21 + (a, a)h)
−1(Sa − r1In − r−1

1 aat)(b− r3a) and r3 = r−1
1 r2.

Proof By (2.10), the equation A×BC,rX = B assumes the form 〈b; r2〉 = 〈Sax+r3a+r1x; r1r3〉 , where Sa is
given by (2.11)-(2.12). From here, we arrive at (Sa + r1In)x = b − r3a and r1r3 = r2 . As r1 ∈ R\{0} ,
since r1 ∈ R+ , and r1 is not a square root of −(a, a)h , by Theorem 4.30, Sa + r1In is invertible and
(Sa + r1In)

−1 = −(r21 + (a, a)h)
−1(Sa − r1In − r−1

1 aat) . 2

Theorem 4.32 Let B = 〈b; r2〉, C = 〈c; r1〉 ∈ BC . Then,
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• if r1 = 0 , r2 ∈ R+ and r2 is not a square root of −(b, b)h , then the unique solution of the equation
X2 = B ×BC,r X +BC C is given by X = 〈x; r3〉 ∈ BC , with

x = (r22 + (b, b)h)
−1(Sb − r2In − r−1

2 bbt)c and r3 = 0;

• if r22 + 4r1 ∈ R+ and
√

r22 + 4r1 is not a square root of −(b, b)h , where
√
· stands for the real, positive

root, then the unique solution of the equation X2 = B×BC,r X +BC C is given by X = 〈x; r3〉 ∈ BC , with

x = ((r2 − 2r3)
2 + (b, b)h)

−1(Sb − (r2 − 2r3)In − (r2 − 2r3)
−1bbt)(c+ r3b),

r3 = 2−1

(
r2 +

√
r22 + 4r1

)
.

Proof From (2.10), the equation X2 = B ×BC,r X +BC C may be written as 〈Sxx+2r3x; r
2
3〉 = 〈Sbx+ r3b+

r2x+ c; r2r3+ r1〉 , where Sa is given by (2.11)-(2.12). On the one hand, we have r23 = r2r3+ r1 , which leads to
r3 = 2−1(r2±

√
r22 + 4r1) , and r2−

√
r22 + 4r1 ∈ R+

0 if and only if r1 = 0 . On the other hand, taking into account
[7, Proposition 4, Property 6] and [9, Property (A)], we have (Sb+(r2−2r3)In)x = −r3b−c . As r2−2r3 ∈ R\{0}
and r2 − 2r3 is not a square root of −(b, b)h under the stated assumptions, by Theorem 4.30, Sb +(r2 − 2r3)In

is invertible and (Sb + (r2 − 2r3)In)
−1 = −((r2 − 2r3)

2 + (b, b)h)
−1(Sb − (r2 − 2r3)In − (r2 − 2r3)

−1bbt) . 2

Corollary 4.33 Let E = 〈0; 1〉 . Then the unique solution of the equation X2 = X +BC E is given by the

golden ball X = 〈0; 1+
√
5

2 〉 , where
√
· stands for the real, positive root.

Proof By Theorem 4.23, the equation X2 = X +BC E can be rewritten as X2 = E ×BC,r X +BC E . The
result then follows from Theorem 4.32. 2

4.4. Multiplication ×BC,c

Throughout this subsection, consider the usual complex vector space Cn with n ∈ {3, 7} . Consider also the
binary operation ×BC,c : BC ×BC → BC , hereinafter called multiplication ×BC,c , defined by

A×BC,c B = 〈a; r1〉 ×BC,c 〈b; r2〉 := 〈a× b; r2‖a‖+ r1‖b‖+ r1r2〉 .

Even though commutativity, anticommutativity, associativity, the existence of a neutral element, and power-
associativity do not hold, ×BC,c satisfies the subsequent properties.

Theorem 4.34 Let A = 〈0; r〉 ∈ BC . The square roots of A relative to the multiplication ×BC,c are given by

A1/2 = 〈b;−‖b‖+
√
‖b‖2 + r〉 , with b ∈ Cn , where

√
· stands for the real, positive or null root.

Proof Let A = 〈0; r〉 ∈ BC . Let B = 〈b; s〉 ∈ BC such that B2 = A . From s2 + 2‖b‖s − r = 0 , we have
s = −‖b‖+

√
‖b‖2 + r ∈ R+

0 . 2

Theorem 4.35 The multiplication ×BC,c is inclusion monotonic.
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Proof Let Am = 〈am; rm〉 , Bm = 〈bm; sm〉 ∈ BC such that Am ⊆ Bm , m ∈ {1, 2} . We aim to prove that
A1 ×BC,c A2 ⊆ B1 ×BC,c B2 . From Lemma 4.1, ‖am − bm‖ ≤ sm − rm , m ∈ {1, 2} . We also have

A1 ×BC,c A2 = 〈a1 × a2; r2‖a1‖+ r1‖a2‖+ r1r2〉

and

B1 ×BC,c B2 = 〈b1 × b2; s2‖b1‖+ s1‖b2‖+ s1s2〉.

As

‖a1 × a2 − b1 × b2‖

= ‖ − b2 × (a1 − b1) + b1 × (a2 − b2) + (a1 − b1)× (a2 − b2)‖

≤ ‖b2‖‖a1 − b1‖+ ‖b1‖‖a2 − b2‖+ ‖a1 − b1‖‖a2 − b2‖

≤ ‖b2‖(s1 − r1) + ‖b1‖(s2 − r2) + (s1 − r1)(s2 − r2)

and

−‖bm‖ ≤ −‖am‖+ ‖am − bm‖ ≤ −‖am‖+ sm − rm,m ∈ {1, 2},

we obtain ‖a1 × a2 − b1 × b2‖ ≤ β − α , where β = s2‖b1‖ + s1‖b2‖ + s1s2 and α = r2‖a1‖ + r1‖a2‖ + r1r2 .
Once again by Lemma 4.1, the result follows. 2

Theorem 4.36 The multiplication ×BC,c is subdistributive with respect to the addition +BC .

Proof Let A = 〈a; r1〉, B = 〈b; r2〉, C = 〈c; r3〉 ∈ BC . Lemma 4.1 leads to

A×BC,c (B +BC C) = 〈a; r1〉 ×BC,c 〈b+ c; r2 + r3〉

= 〈a× (b+ c); (r2 + r3)‖a‖+ r1‖b+ c‖+ r1(r2 + r3)〉

⊆ 〈a× b+ a× c; r2‖a‖+ r1‖b‖+ r1r2 + r3‖a‖+ r1‖c‖+ r1r3〉

= A×BC,c B +BC A×BC,c C

Thus, left subdistributivity holds. An analogous reasoning leads to the right subdistributivity. 2

Theorem 4.37 Let A = 〈a; r1〉, B = 〈b; r2〉 ∈ BC such that ‖a‖ and r1 are not simultaneously null, (a, a)h 6= 0

and (a, b)h = 0 . Then the solutions of the equation A×BC,c X = B are given by X = 〈x; r3〉 ∈ BC , with

x = −(a, a)−1
h Sab+ λa, λ ∈ C, and r3 = (‖a‖+ r1)

−1(r2 − r1‖x‖).

Proof By (2.10), the equation A ×BC,c X = B assumes the form 〈b; r2〉 = 〈Sax; r3‖a‖ + r1‖x‖ + r1r3〉 ,
where Sa is given by (2.11)-(2.12). Hence, we have Sax = b and (‖a‖+ r1)r3 = r2 − r1‖x‖ . The solutions, as
(a, a)h 6= 0 and (a, b)h = 0 , are a consequence of [7, Theorem 14] and [9, Theorem 2]. 2
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Theorem 4.38 Let B = 〈b; r2〉, C = 〈c; r1〉 ∈ BC such that (b, b)h 6= 0 and (b, c)h = 0 . Then the solutions of
the equation X2 = B ×BC,c X +BC C are given by X = 〈x; r3〉 ∈ BC , with

x = (b, b)−1
h Sbc+ λb, λ ∈ C,

r3 = 2−1
(
r2 + ‖b‖ − 2‖x‖+

√
(r2 + ‖b‖ − 2‖x‖)2 + 4(r1 + r2‖x‖)

)
,

where
√
· stands for the real, positive or null root, and

r3 = 0 if r1 = 0 and r2‖x‖ = 0.

Proof From (2.10), the equation X2 = B ×BC,c X +BC C may be written in the form 〈Sxx; 2r3‖x‖ +

r23〉 = 〈Sbx + c; r2‖x‖ + r3‖b‖ + r2r3 + r1〉 , where Sb is given by (2.11)-(2.12). Observe that, applying
[7, Proposition 4, Property 6] and [9, Property (A)], we have Sbx = −c , whose solutions follow from [7,
Theorem 14] and [9, Theorem 2]. In addition, r23 − (r2 + ‖b‖ − 2‖x‖)r3 − r1 − r2‖x‖ = 0 , that is, r3 =

2−1
(
r2 + ‖b‖ − 2‖x‖ ±

√
(r2 + ‖b‖ − 2‖x‖)2 + 4r1 + 4r2‖x‖

)
.

Observe that 2−1
(
r2 + ‖b‖ − 2‖x‖ −

√
(r2 + ‖b‖ − 2‖x‖)2 + 4r1 + 4r2‖x‖

)
∈ R+

0 if and only if 4r1+4r2‖x‖ =

0 . 2
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