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Abstract: Assume that (Gn)n∈Z is an arbitrary real linear recurrence of order k . In this paper, we examine the classical
question of polynomial interpolation, where the basic points are given by (t, Gt) (n0 ≤ t ≤ n1 ). The main result is
an explicit formula depends on the explicit formula of Gn and on the finite difference sequence of a specific sequence.
It makes it possible to study the interpolation polynomials essentially by the zeros of the characteristic polynomial of
(Gn) . During the investigations, we developed certain formulae related to the finite differences.
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1. Introduction
Let k be a positive integer, and assume that the real linear recurrent sequence (Gn)n∈Z of order k is defined
by the recurrence rule

Gn = a1Gn−1 + · · ·+ akGn−k, (n ≥ k), (1.1)

and by the real initial values G0, G1, . . . , Gk−1 , where all the coefficients are real numbers. For avoiding trivial
cases we assume that at least one of the initial values is non-zero, and ak ̸= 0 . Clearly, (1.1) together with the
initial values provides (Gn) for non-negative subscripts. For negative subscripts we consider (1.1) backward:

Gn−k =
1

ak
(Gn − a1Gn−1 − · · · − ak−1Gn−k+1) (n < k).

Probably the most known recursive sequence is the sequence of Fibonacci numbers given by F0 = 0 , F1 = 1 ,
and Fn = Fn−1 + Fn−2 . It is easy to see that its extension for negative subscripts leads to F−n = (−1)n+1Fn

(n ≥ 0) .
This paper studies the properties of the interpolation polynomials Pm(x) induced by the points

(t, Gt) for t = n0, n1 = n0 + 1, . . . , nm = n0 +m (1.2)

given in the planar Cartesian system for n0 ∈ Z and m ∈ N+ .
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There exist different ways to find Pm(x) , but here, in this paper, we apply Newton’s divided differences
method. For a wide generalization of Newton’s interpolation algorithm see [3], where the author gives a general
form of the Newton-like interpolation formula, and a general recurrence relation for divided differences.

Broadly, besides different approaches, Newton’s method provides the interpolation polynomial Qm(x)

for the points
(x0, y0), (x1, y1), . . . , (xm, ym)

having distinct abscissas. For simplicity, in accordance with our problem, we suppose that h = xt+1 − xt holds
for t = 0, 1, . . . ,m−1 , that is we deal with the so-called equidistant case. Put X = (x−x0)/h . Then Newton’s
forward divided difference formula gives

Qm(x) =

m∑
t=0

(
X

t

)
htt![y0, y1, . . . , yt], (1.3)

where (
X

0

)
= 1 and

(
X

t

)
=

X(X − 1) · · · (X − t+ 1)

t!

for t ≥ 1 . Furthermore, the notation [y0, y1, . . . , yt] stands for the divided differences. This is defined recursively
by [yi] = yi , and by

[yi, . . . , yi+t] =
[yi+1, . . . , yi+t]− [yi, . . . , yi+t−1]

xi+t − xi
,

where the denominator is obviously xi+t − xi = th .
The problem we investigate works with h = 1 , so we have X = x− x0 . Consequently, from now on

Qm(x) =

m∑
t=0

(
x− x0

t

)
t![y0, y1, . . . , yt]. (1.4)

Clearly, the crucial point is to determine the divided differences [y0, y1, . . . , yt] if xi = ni and yi = Gni

(i = 0, 1, . . . , t). If once we have [y0, y1, . . . , yt] = [Gn0
, Gn1

, . . . , Gnt
] , then

Pm(x) =

m∑
t=0

(
x− n0

t

)
t![Gn0

, Gn1
, . . . , Gnt

] =

m∑
t=0

(
x− n0

t

)
∆tGn0

, (1.5)

where ∆tGn0 = t![Gn0 , Gn1 , . . . , Gnt ] is the corresponding forward finite difference that will be introduced later
in Subsection 2.1. This formula is obviously equivalent to the recursive version

Pm(x) = Pm−1(x) +

(
x− n0

m

)
∆mGn0

. (1.6)

In this work, we analyze the forward finite differences ∆tGn0
in detail and reveal several properties.

Especially, we can have an explicit formula for ∆tGn0
, which leads to nice results if the recurrence (Gn) is

relatively simple. Although the main result is theoretical, one may apply our approach to given families of
linear recurrences to find general features (see, for instance, Example 3).
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The paper is organized as follows. In Section Preliminaries, we recall the notion of finite differences and
the principal theorem of homogeneous linear recurrences. Theorem 2.1 admits a useful connection between a
result of Flajolet and Sedgewick [2] and weighted sums in Pascal’s triangle [1] when the weight sequences is
recursive. The next section prepares the proof of the main theorems (Theorem 4.1-4.3) of this study. Here
Theorem 3.1 yields a new expansion for finite differences of the product of two arbitrary complex sequences.
Interestingly, the so-called trinomial coefficients appear in the description. Later we will apply the specific case
of the corollary of this statement when one of the sequences is a linear polynomial. Theorem 3.6 examines the

finite differences of the sequence h
(r)
n = nrωn , later this result will be combined with the fundamental theorem

of linear recurrences. Finally, in the last section, Theorem 4.1 provides an explicit formula for Pm(x) (via
Pm(x) − Pm−1(x)) if neither zero of the characteristic polynomial of the linear recurrence is 1. Theorem 4.3
deals with this remaining exceptional case. Then two examples illustrate the results, and finally, Example 3
handles the general case of ternary recurrences with simple zeros of the characteristic polynomial.

2. Preliminaries
2.1. Finite differences
Assume that (fn)n∈Z ∈ C∞ is an arbitrary complex sequence. As usual, the forward differences of (fn) are
defined by ∆fn = fn+1−fn . The iterated differences are given by ∆Kfn = ∆(∆K−1fn) = ∆K−1fn+1−∆K−1fn

for K ≥ 1 . It is known (see, for example, Section 1 of [2]) that

∆Kfn =

K∑
i=0

(
K

i

)
(−1)K−ifn+i, (2.1)

which is closely related to the so-called Euler transform of (fn) .
If (fn) is a recursive sequence, then Theorem 3.1 of [1] makes it possible to find the sequence (∆Kfn)

∞
K=0

appears in (2.1) as a recursive sequence, say (DK)∞K=0 , determined by its recurrence relation (and explicitly
under favourable circumstances). Note that the order of (fn) and (Dn) coincide. Here we record the
consequence of Theorem 3.1 [1] for the specific case (2.1). Recall that we deal with the recurrence (Gn) of
order k given in (1.1), i.e. fn = Gn is valid now.

Theorem 2.1 If K ≥ k , then we have (with DK = ∆Kfn )

DK = −DK−1 −
k−1∑
j=1

(
k − 1

j

)
(DK−j +DK−j−1) +

k∑
i=1

ai

k−i∑
j=0

(
k − i

j

)
Dk−i−j .

Proof Apply Theorem 3.1 [1] with the local parameters r = 1 , q = p = 0 , x = −1 , y = 1 , and with
ω = (K − 0)/(0 + 1) = K . 2

Example 2.2 Let fn denote the sequence of Tribonacci numbers (i.e. f0 = f1 = 0 , f2 = 1 , and fn =

fn−1 + fn−2 + fn−3 ; A000073 in [6]). Then Theorem 2.1 provides immediately the formula

DK = −2DK−1 + 2DK−3

1934



MUFID and SZALAY/Turk J Math

for DK = ∆Kfn with initial values D0 = ∆0fn = fn , D1 = ∆1fn = fn+1 − fn , and D2 = ∆2fn =

fn+2 − 2fn+1 + fn . To illustrate the rule above we obtain immediately

∆3fn = D3 = −2(fn+2 − 2fn+1 + fn) + 2fn + (fn+3 − fn+2 − fn+1 − fn︸ ︷︷ ︸
0

)

= fn+3 − 3fn+2 + 3fn+1 − fn.

It is straightforward to see that
∆Kfn = K![fn, fn+1, . . . , fn+K ]

(we already foreshadowed this fact in (1.5)). Thus we can obtain Pm(x) in (1.6) with respect to the sequence
(fn) = (Gn) via (∆KGn) . But we intend to give a more detailed description of (∆KGn) (and then Pm(x))
by constructing a new explicit formula for this sequence. In order to do that we collect a short list about the
features of finite differences. Three properties are presented for arbitrary complex sequences (fn) and (gn) .
The first two identities are known facts. The third one is made up as a theorem (Theorem 3.1, see later). We
will prove it in the next section, and the proof implies an important corollary.

Properties.

1. Linearity: ∆(cfn + dgn) = c∆(fn) + d∆(gn) , (c, d ∈ C).

2. Product rule: ∆(fngn) = fn(∆gn) + (∆fn)gn + (∆fn)(∆gn) .

2.2. Linear recurrences
The real companion polynomial of the sequence (Gn) given in (1.1) is the polynomial

g(x) = xk − a1x
k−1 − · · · − ak. (2.2)

Denote α1, . . . , αs ∈ C the distinct zeros of the companion polynomial g(x) , which now can be written in the
form

g(x) = (x− α1)
m1 · · · (x− αs)

ms (2.3)

with m1 +m2 + · · · +ms = k . Note that we assumed ak ̸= 0 , therefore αi ̸= 0 for 1 ≤ i ≤ s . The following
result plays a key role in the theory of linear recurrence sequences (see e.g. [5]).

Theorem 2.3 Let (Gn) be a sequence satisfying relation (1.1) with ak ̸= 0 , and g(x) its companion polynomial
with distinct roots α1, . . . , αs , be given in the form (2.3). Then there exist uniquely determined polynomials
gi(x) ∈ C[x] of degree less than mi (i = 1, . . . , s) such that

Gn = g1(n)α
n
1 + · · ·+ gs(n)α

n
s (n ∈ Z). (2.4)

Corollary 2.4 If the zeros of g(x) are simple, then s = k holds in the previous theorem, and

Gn = c1α
n
1 + · · ·+ ckα

n
k (n ∈ Z), (2.5)

where c1, . . . , ck are suitable complex numbers.
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3. Preparation of the proof of the main theorem
The next theorem can be considered as the third property of the finite differences.

Theorem 3.1 Assume that K is a non-negative integer. Using the notations above, we have

∆K(fngn) =

K∑
i=0

K∑
j=i

(
K

i,K − j, j − i

)
(∆K−ifn)(∆

jgn). (3.1)

Here the trinomial coefficient
(

K
i,K−j,j−i

)
is located in the K th layer of the Pascal tetrahedron. It is

known that if k1 + k2 + k3 = K for non-negative integers k1, k2, k3 , then we have(
K

k1, k2, k3

)
=

K!

k1! · k2! · k2!
. (3.2)

Proof We use the technique of induction on K . For K = 0 the statement is obvious. If K = 1 , then we have(
1

0, 1, 0

)
(∆fn)gn +

(
1

0, 0, 1

)
(∆fn)(∆gn) +

(
1

1, 0, 0

)
fn(∆gn),

which is the right-hand side of Property 2 in the list above.
Assume that the statement is true for some K ≥ 2 . Then

∆K+1(fngn) = ∆

 K∑
i=0

K∑
j=i

(
K

i,K − j, j − i

)
(∆K−ifn)(∆

jgn)


=

K∑
i=0

K∑
j=i

(
K

i,K − j, j − i

)
∆

(
(∆K−ifn)(∆

jgn)
)
.

These equalities rely on the assumption for K , and Property 1, respectively. Applying Property 2 we find that

∆K+1(fngn) =

K∑
i=0

K∑
j=i

(
K

i,K − j, j − i

)
×

((∆K+1−ifn)(∆
jgn) + (∆K−ifn)(∆

j+1gn) + (∆K+1−ifn)(∆
j+1gn)).

Now we separate the three terms of the sum after the trinomial coefficients. One can easily see that

K∑
i=0

K∑
j=i

(
K

i,K − j, j − i

)
(∆K+1−ifn)(∆

jgn) =

K+1∑
i=0

K+1∑
j=i

(
K

i,K − j, j − i

)
(∆K+1−ifn)(∆

jgn),

K∑
i=0

K∑
j=i

(
K

i,K − j, j − i

)
(∆K−ifn)(∆

j+1gn) =

K+1∑
i=0

K+1∑
j=i

(
K

i− 1,K + 1− j, j − i

)
(∆K+1−ifn)(∆

jgn),

K∑
i=0

K∑
j=i

(
K

i,K − j, j − i

)
(∆K+1−jgn)(∆

j+1gn) =

K+1∑
i=0

K+1∑
j=i

(
K

i,K + 1− j, j − i− 1

)
(∆K+1−ifn)(∆

jgn).
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The addition rule in Pascal tetrahedron admits(
K

i,K − j, j − i

)
+

(
K

i− 1,K + 1− j, j − i

)
+

(
K

i,K + 1− j, j − i− 1

)
=

(
K + 1

i,K + 1− j, j − i

)
,

therefore the sums of the three right-hand sides above together provide the desired result. 2

Corollary 3.2 Assume that the sequence (gn) takes polynomial values of a given polynomial g(x) (i.e. gn =

g(n)) of degree kg with complex coefficients. Put κ = min{kg,K} . Then we have

∆K(fngn) =

κ∑
i=0

κ∑
j=i

(
K

i,K − j, j − i

)
(∆K−ifn)(∆

jgn). (3.3)

Proof Now the sequence (gn) is a polynomial sequence of degree kg , so ∆Kgn = 0 if K > kg . Thus, from the
layer kg +1 it is sufficient to consider only a particular infinite triangular prism part of the Pascal tetrahedron.
The summation of Theorem 3.1 will be modified from K to κ = min{kg,K} at the upper limit. Clearly, we
need the whole Pascal tetrahedron as far as layer kg (see Figure 1 if kg = 1). 2

x
y

0 fg(     )0,0,0

1 (Df )g(     )0,1,0
1 f (Dg)(     )1,0,0

2 2
(D f )g(     )0,2,0

3 3(D f )g(     )0,3,0

z

-z

3

3

2

1

2(D f )(Dg)

3(D f )(Dg)

2
(D f )(Dg)

(Df )(Dg)

(     )

(     )

(     )

(    )

1,2,0

0,2,1

0,1,1

2 (Df )(Dg)(     )1,1,0

0,0,1

Figure 1. Illustration of Corollary 3.2 with linear g(x) .

This corollary will be applied with kg = 1 later. If kg = 1 , then κ = 1 , and the double sum in (3.3)
contains only three terms. Now we turn our attention to the finite differences of certain well-defined sequences
(fn) .

Lemma 3.3 Assume that fn = ωn (n ∈ Z), where ω ̸= 0 is an arbitrary complex number. Then for the integer
t ≥ 0 we have

∆tfn = (ω − 1)tωn.
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Proof The case ω = 1 is trivial with the convention 00 = 1 . Assume now that ω ̸= 1 . Then we prove the
lemma by induction on t . For t = 0 , the statement is obvious. Suppose the statement holds for t = k , i.e.

∆kfn = (ω − 1)kωn.

By changing the index n into n + 1 on the above expression, we obtain ∆kfn+1 = (ω − 1)kωn+1. Now for
t = k + 1 , we have ∆k+1fn = ∆kfn+1 −∆kfn = (ω − 1)k

(
ωn+1 − ωn

)
= (ω − 1)k+1ωn. 2

Lemma 3.4 Assume that hn = nωn (n ∈ Z), where the non-zero ω ∈ C is arbitrary. Then for ω ̸= 1

∆thn = ((ω − 1)n+ ωt) (ω − 1)t−1ωn

holds for t ≥ 0 .

Proof The statement is trivially true for t = 0 . Suppose t ≥ 1 . Put gn = n , a linear polynomial sequence,
and let fn = ωn . Clearly, ∆gn = 1 , and ∆tgn = 0 for t ≥ 2 , moreover ∆tfn is given in Lemma 3.3. Now we
apply property (3.3) with κ = min{1, t} = 1 . Hence

∆t(fngn) =

1∑
i=0

1∑
j=i

(
t

i, t− j, j − i

)
(∆t−ifn)(∆

jgn)

=

(
t

0, t, 0

)
(∆tfn)(gn) +

(
t

0, t− 1, 1

)
(∆tfn)(∆gn) +

(
t

1, t− 1, 0

)
(∆t−1fn)(∆gn)

= (ω − 1)tωnn+ t(ω − 1)tωn + t(ω − 1)t−1ωn

=

{
((ω − 1)n+ ωt) (ω − 1)t−1ωn, if ω ̸= 1,
0tn+ t0t + t0t−1 if ω = 1.

The upper case justifies the main result of the theorem. 2

Remark 3.5 If ω = 1 , then hn = n , and the second case at the end of the previous proof implies

∆t(hn) =


n, if t = 0,
1, if t = 1,
0, if t ≥ 2.

Theorem 3.6 Let h
(r)
n = nrωn (r ∈ N) with ω ∈ C \ {0} . Then assuming ω ̸= 1

∆th(r)
n = Ωt,ω

r (n)(ω − 1)t−rωn

holds for t ≥ 0 . Here Ωt,ω
r (n) is a univariate polynomial in variable n of degree t with parameters r, t and ω

that satisfies the equality

Ωt,ω
r (n) = (n+ t)Ωt,ω

r−1(n) + tΩt−1,ω
r−1 (n), r ≥ 1.
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Proof Suppose ω ̸= 1 . Then Lemma 3.3 shows that if r = 0 , then the statement is true with the constant
polynomial Ωt,ω

0 (n) = 1 . Lemma 3.4 justifies the theorem for r = 1 with the polynomial Ωt,ω
1 (n) = (ω−1)n+ωt .

Now assume that the theorem is true for r − 1 , and look at the case r . We apply Corollary 3.2 with

fn = h
(r−1)
n = nr−1ωn and with the linear polynomial gn = n . Obviously, h

(r)
n = h

(r−1)
n · n . From Corollary

3.2 we deduce (like in the proof of Theorem 3.4) with kg = 1 that

∆t(fngn) = ∆t(nr−1ωn)n+ t∆t(nr−1ωn) + t∆t−1(nr−1ωn)

= (n+ t)∆t(nr−1ωn) + t∆t−1(nr−1ωn)

= (n+ t)Ωt,ω
r−1(n)(ω − 1)t−(r−1)ωn + tΩt−1,ω

r−1 (n)(ω − 1)(t−1)−(r−1)ωn

= (ω − 1)t−rωn
(
(n+ t)Ωt,ω

r−1(n) + tΩt−1,ω
r−1 (n)

)
︸ ︷︷ ︸

Ωt,ω
r (n)

.

2

Here we list up the first few polynomials Ωt,ω
r (n) . Put B = (ω − 1)n+ ωt .

Ωt,ω
0 (n) = 1,

Ωt,ω
1 (n) = (ω − 1)n+ ωt = B,

Ωt,ω
2 (n) = (ω − 1)2n2 + 2(ω − 1)ωtn+ (ωt− 1)ωt = B2 − ωt,

Ωt,ω
3 (n) = (ω − 1)3n3 + 3(ω − 1)2ωtn2 + 3(ω − 1)(ωt− 1)ωtn+ (ω2t2 − 3ωt+ ω + 1)ωt

= B3 − 3ωtB + ωt(ω + 1).

Remark 3.7 If ω = 1 , then h
(r)
n = nr , and Ω̂t

r(n) = ∆tnr gives a sequence of polynomials with descending
degree as r is increasing. In particular, degn(∆

tnr) = r − t if t ≤ r , and ∆tnr = 0 holds when t > r . For
example, let r = 3 . Then ∆n3 = 3n2 + 3n + 1 , ∆2n3 = 6n + 6 , and ∆3n3 = 6 . One can show the following
more general statements:

Ω̂t
r(n) = (n+ t)Ω̂t

r−1(n) + tΩ̂t−1
r−1(n),

Ω̂1
r(n) =

r∑
i=1

(
r

i

)
nr−i,

Ω̂2
r(n) =

r∑
i=2

(
r

i

)(
2i − 2

)
nr−i,

Ω̂r−2
r (n) =

r!

2
n2 +

(r − 2)r!

2
n+

(r − 2)(3r − 5)r!

24
,

Ω̂r−1
r (n) = r!n+

(r − 1)r!

2
,

Ω̂r
r(n) = r!.
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4. Main results
Assume that the coefficient polynomials gi(x) ∈ C[x] (i = 1, . . . , s) in (2.4) have the form

gi(x) = a
(i)
mi−1x

mi−1 + a
(i)
mi−2x

mi−2 + · · ·+ a
(i)
0 .

Consequently,

Gn =

s∑
i=1

pi(n)α
n
i =

s∑
i=1

mi−1∑
j=0

a
(i)
j njαn

i .

Hence, if every zeros of the companion polynomial satisfies αi ̸= 1 , then from Property 1 and Theorem 3.6 we
conclude

∆tGn = ∆t

 s∑
i=1

mi−1∑
j=0

a
(i)
j njαn

i

 =

s∑
i=1

mi−1∑
j=0

a
(i)
j ∆t

(
njαn

i

)

=

s∑
i=1

αn
i

mi−1∑
j=0

a
(i)
j Ωt,αi

j (n)(αi − 1)t−j .

Putting all the things we need together, (1.5) can be given as follows.

Theorem 4.1 Using the notation above the interpolation polynomial Pm(x) crossing the points (nt, Gnt
)

(t = 0, 1 . . . ,m) has the form

Pm(x) = Pm−1(x) +

(
x− n0

m

) s∑
i=1

αn0
i

mi−1∑
j=0

a
(i)
j Ωt,αi

j (n0)(αi − 1)t−j . (4.1)

Obviously, expression (4.1) can be converted to the form of (1.5) to obtain a non-recursive explicit, but more
complicated formula. This can be also done with (4.2), too.

Example 4.2 Let Gn = (3n2−n+1)2n+(−2n+1)3n−15 , and consider P7(x) if n0 = −1 . The interpolation
polynomial P7(x) (see Figure 2) crosses the points

(−1,−18.5), (0,−13), (1, 18), (2, 2), (3, 80), (4, 138), (5, 100), (6,−1442).

The coefficient polynomials are g1(x) = 3x2 − x+1 , g2(x) = −2x+1 , g3(x) = −15 , and the companion
polynomial is

g(x) = (x− 2)3(x− 3)2(x+ 1) = x6 − 11x5 + 45x4 − 77x3 + 22x2 + 84x− 72,

the recurrence rule is given by

Gn = 11Gn−1 − 45Gn−2 + 77Gn−3 − 22Gn−4 − 84Gn−5 + 72Gn−6.

Further we see that s = 3 , α1 = 2 , m1 = 3 , α2 = 3 , m2 = 2 , α3 = −1 , m3 = 1 . Moreover

Ωt,αi

0 (−1) = 1, Ωt,α1

1 (−1) = 2t− 1, Ωt,α2

1 (−1) = 3t− 2, Ωt,α1

2 (−1) = 4t2 − 6t+ 1.
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Figure 2. The base points and P7(x) .

Finally, Theorem 4.1 provides

P7(x) =

(
x+ 1

0

)
· 18.5 +

(
x+ 1

1

)
· (−31.5) + · · ·+

(
x+ 1

7

)
·
(
− 547

1120

)
= − 547

1120
x7 +

11443

1440
x6 − 7741

180
x5 +

36749

288
x4 − 24181

240
x3 − 37547

360
x2 +

62737

420
x− 13.

If αi = 1 holds for certain i ∈ {1, 2, . . . } , then we handle separately this exceptional case. The next
theorem follows from the considerations above.

Theorem 4.3 Assume that one zero of the characteristic polynomial g(x) is 1, say α1 = 1 . Then

Pm(x) = Pm−1(x) +

(
x− n0

m

)m1−1∑
j=0

a
(1)
j Ω̂t

jn0) +

(
x− n0

m

) s∑
i=2

αn0
i

mi−1∑
j=0

a
(i)
j Ωt,αi

j (n0)(αi − 1)t−j . (4.2)

Example 4.4 Put Gn = (n2 − 2n + 3) , n0 = −1 , and consider the interpolation polynomial P4(x) belonging
to the points (−1, 6), (0, 3), (1, 2), (2, 3), (3, 6) . The companion polynomial is g(x) = (x − 1)3 . Now s = 1 ,
α1 = 1 , m1 = 3 , furthermore

Ω̂j
j(n) = j! (j = 0, 1, 2); Ω̂0

1(n) = n; Ω̂0
2(n) = n2; Ω̂1

2(n) = 2n− 1.

Thus Theorem 4.3 implies

P4(x) =

(
x+ 1

0

)
· 6 +

(
x+ 1

1

)
· (−3) +

(
x+ 1

2

)
· 2 = x2 − 2x+ 3,

and this result was obvious in advance.

Consider now the case when all the zeros of the companion polynomial g(x) in (2.2) are simple (belonging
to the sequence (Gn) given by (1.1) with arbitrary initial values, and they are different from 0 and 1). Now in

formula (4.1) we have s = k , mi = 1 . We will simply write ci instead of a
(i)
0 . We even have Ωt,αi

0 (n0) = 1 .
This specific case can be reformulated in
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Corollary 4.5 With the condition above we have

∆tGn =

k∑
i=1

ci(αi − 1)tαn
i , in particular ∆tG0 =

k∑
i=1

ci(αi − 1)t, (4.3)

and then

Pm(x) = Pm−1(x) +

(
x− n0

m

) k∑
i=1

ci(αi − 1)tαn0
i . (4.4)

The expression
∑k

i=1 ci(αi−1)tαn0
i in (4.4) is exactly an explicit formula of a linear recursive sequence of order

k , when the zeros of the characteristic polynomial are αi − 1 (i = 1, 2, . . . , k ), and the initial values imply the
constant multipliers ciα

n0
i . For instance, in case of k = 3 , Theorem 2.1 provides the following recursive rule

for the sequence.

Example 4.6 Let Gn = a1Gn−1 + a2Gn−2 + a3Gn−3 such that the three zeros α1 , α2 and α3 of the
characteristic polynomial g(x) = x3 − a1x

2 − a2x− a3 are distinct.
Firstly, Theorem 2.1 (independently of the simple zeros) returns with

Dt = (a1 − 3)Dt−1 + (2a1 + a2 − 3)Dt−2 + (a1 + a2 + a3 − 1)Dt−3,

subsequently, we obtain

Pm(x) = Pm−1x+

(
x− n

m

)
Dm.

On the other hand, a1 = α1 + α2 + α3 , a2 = −(α1α2 + α1α3 + α2α3) , a3 = α1α2α3 . A straightforward
manipulation shows that

a⋆1 = (α1 − 1) + (α2 − 1) + (α3 − 1) = a1 − 3,

a⋆2 = −(α1 − 1)(α2 − 1)− (α1 − 1)(α3 − 1)− (α2 − 1)(α3 − 1) = 2a1 + a2 − 3,

a⋆3 = (α1 − 1)(α2 − 1)(α3 − 1) = a1 + a2 + a3 − 1,

i.e. the characteristic polynomial of the recursive sequence (Dt) = (∆tGn) has zeros α1−1 , α2−1 , and α3−1 ,
each is simple.

Note that in the specific case when a1 = a2 = a3 = 1 we find a⋆1 = −2 , a⋆2 = 0 , and a⋆3 = 2 , which are
the coefficients in Dt = −2Dt−1 + 2Dt−3 , see Example 2.2 after (2.1) with the Tribonacci sequence.)

5. Conclusion
This work addresses the polynomials which interpolated from linear recurrences. While such polynomials can
be generated using the interpolation method (e.g., Newton’s divided differences), we show that they can be
obtained by using a new approach concentrating on the inner structure of the explicit formula of the recurrence.
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