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Abstract: Let Q = ( a,bR ) denote the quaternion algebra over the reals which is by the Frobenius Theorem either split or
the division algebra H of Hamilton’s quaternions. We have presented explicitly in [4] the matrix of a typical derivation
of Q . Given a derivation d ∈ Der(H) , we show that the matrix D ∈ M3(R) that represents d on the linear subspace
H0 ≃ R3 of pure quaternions provides a pair of idempotent matrices AdjD and −D2 that correspond bijectively to the
involutary matrix Σ of a quaternion involution σ and present several equations involving these matrices. In particular,
we deal with commuting derivations of H and introduce some results to guarantee commutativity. We also mention
briefly eigenspace decomposition of a derivation.
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1. Introduction
It is well known by the Frobenius Theorem that a quaternion algebra over the field of reals is either split or
the set of Hamilton’s quaternions. We have explicitly determined in [4] derivations of such an algebra in their
matrix forms and it is well known that any derivation of such an algebra is always inner. Following Hilbert
symbol we denote by Q = (a,bR ) the quaternion algebra over R equipped with the quaternionic multiplication.
Since Q is central, its center is R so that one might consider the decomposition Q = R⊕Q0 where Q0 is the
set of all quaternions without scalar part (i.e. pure quaternions) and is identified with R3 .

A linear map d : Q → Q satisfying the Leibnitz rule is called a derivation for Q and since it must be
inner there exists a quaternion p ∈ Q such that d = ad(p) which means d(q) = pq − qp for every q ∈ Q . It
follows at once from the definition that d as a map sends the center of Q to zero and hence the matrix that
represents it (w.r.t. the standard quaternionic basis) reduces actually to a 3 × 3 submatrix, say D . This is
because the first row and first column of matrix d are trivial subspaces of R4 . We prove that d distributes the
quaternionic multiplication for pure quaternions according to Leibnitz rule. More precisely, we have for every
p,q in Q0 both equations d(〈p,q〉) = 〈dp,q〉+ 〈p, dq〉 and d(p× q) = (dp× q) + (p× dq) .

On the other hand, a typical involutive automorphism of σ : Q → Q -as a linear map that is both
(anti)-homomorphism and self-inverse- is given by σu(q) = −uqu where u ∈ Q0 is a unit vector. A simple
computation shows that the matrix, say Σ, that represents σu (or simply σ ) is indeed involutary and a well-
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known fact from linear algebra says that given an involutary matrix S the mapping g(S) = (I ±S)/2 provides
idempotent matrices associated to S . Reciprocally, if A is an idempotent matrix then f(A) = 2A − I results
an involutary matrix. In the present context we show that idempotent variants of D that correspond in an
bijective way to Σ are the adjoint matrix AdjD of D and −D2 . Note that the negative sign here makes the
difference since D2 fails to be idempotent as we emphasize.

It should be also noted that neither derivations nor involutions commute in general. Hence we also provide
some simple conditions to ensure commuting derivations. On the other hand, as a real skew-symmetric matrix,
D admits either zero or purely imaginary eigenvalues. In fact, λ = 0,±i (complex i) are the only eigenvalues of
D and hence Q might be also decomposed as Q = E(0)⊕E(i)⊕E(−i) where E(λ) = {q ∈ Q : (D−λI)q = 0}
is the eigenspace corresponding to the eigenvalue λ ∈ {0,±i} . In particular, E(0) is spanned by the fixed vector
u while E(±i) represents a plane passing through the origin generated by the real and imaginary part of the
complex eigenvector q ± ip corresponding to ±i .

The paper is organized as follows: In Section 2, we give a quite brief exposition on real quaternion
algebras that will be useful for the rest of the article. Section 3 treats quaternion derivation matrices. We
focus on idempotent variants of such a matrix and show in the last section how these variants become closely
related to quaternion involutions. We also deal with characteristic polynomial of a quaternion derivation that
reveal further interesting insights about quaternion derivations. In the last section 4 we deal with quaternion
involutions and show that associated with the matrix of such an involution one might correspond in a bijective
manner to a pair of idempotent matrices derived from quaternion derivations.

2. Quaternion algebra

An algebra A over F means a finite-dimensional vector space over F equipped with an associative multiplication
with identity 1 that relates to vector addition and scalar multiplication according to appropriate and well-known
laws for algebras. We will sometimes refer to an algebra A over the field F simply as an F -algebra and identify
F with the subalgebra F1 of A , since the map r 7→ r1 is an isomorphic embedding of F into A . We say that
an F -algebra A is central if its center is F , that is, Z(A) = F .

The following well-known way of constructing a quaternion algebra might be found in many textbook
but we refer to [3] and define a quaternion algebra via generators and relations as follows:

Definition 2.1 An algebra A over a field F of characteristic not 2 is a quaternion algebra if there is a basis
1, i, j, k for A as an F -vector space such that

i2 = a, j2 = b, and ij = k = −ji (2.1)

for some non-zero a, b ∈ F .

It follows from (2.1) that k2 = −ab ,jk = −bi = −kj and ki = −aj = −ik . For 0 6= a, b ∈ F we
denote by Q = (a,bF ) (Hilbert symbol) the quaternion algebra over F with F -basis 1, i, j, k subject to the
multiplication (2.1). And by an element (i.e. a quaternion) of Q we will understand q = r + x0i + y0j + z0k

with r, x0, y0, z0 ∈ F .
Note that any quaternion algebra with char(F ) 6= 2 is given by this way: If A is a quaternion algebra

over F then there exist non-zero a, b ∈ F such that A ' (a,bF ) . Since a quaternion algebra is generated by the
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generators i, j satisfying (2.1), the map that interchanges i and j gives a natural isomorphism (a,bF ) ' ( b,aF ) .

According to this set up, when F = R , varying the Hilbert symbols we get 4 possibilities: (i) (−1,1
R ), (ii)

( 1,−1
R ), (iii) ( 1,1R ) and (iv) (−1,−1

R ) . However, up to isomorphism (i) and (ii) means the same algebra and
hence we reduce to 3 possibilities. On the other hand, the Frobenius Theorem says that up to isomorphism
there are only two real quaternion algebras: ( 1,1R ) 'M2(R) the algebra of 2× 2 -matrices with real entries and

(−1,−1
R ) = H, the algebra of Hamilton’s quaternions. Finally, since ( 1,−1

R ) 'M2(R) (and hence by transitivity

(−1,1
R ) ' ( 1,1R )) it follows that (i)-(ii)-(iii) actually means the same algebra and thus we have indeed only two

quaternion algebras over R . It is also clear that a quaternion algebra Q over F is central.

Remark 2.2 What is considered in [7] as generalized quaternion algebra over the real numbers is actually
the Definition (2.1) itself with a R-basis e0, e1, e2, e3 subject to the multiplication e21 = ae0 , e22 = be0 and
e1e2 = e3 = −e2e1 where a = −α and b = −β for some α, β ∈ R \ {0} .

As usual, if q = r + x0i+ y0j + z0k ∈ Q we let q = x0i+ y0j + z0k to stand for its vector part and use
the representation q = r + q whenever it is more convenient for formatting. In particular, if q ∈ H = (−1,−1

R )

then we say q is real if q ∈ R , and we say q is pure (or imaginary) if q = x0i+ y0j + z0k . However, the notion
of pure quaternion is not addressed exclusively to a particular basis and one might define a pure quaternion
for a quaternion algebra Q = (a,bF ) with a, b ∈ F \ {0} . In fact, if q = r + x0i + y0j + z0k ∈ Q is a non-zero
element, then r = 0 is equivalent to say that q /∈ F and q2 ∈ F .

We denote by Q0 the linear subspace of Q = (a,bR ) spanned by {i, j, k} which consists of only pure
quaternions. In particular, we have the set

Q0 \ {0} = {q ∈ Q : q /∈ R, q2 ∈ R}

of non-zero pure quaternions and hence Q = R ⊕ Q0 . Given q = r + x0i + y0j + z0k ∈ Q we define the
quaternionic conjugation map J on Q by

J(q) = q = r − x0i− y0j − z0k

and the norm map N on Q by

N(q) = qq = qq = r2 − ax2
0 − by20 + abz20 ∈ R.

Note that J(pq) = J(q)J(p) and J(p+ q) = J(p) + J(q) for every p, q ∈ Q and we denote the matrix of J by
the same letter J = diag{1,−I} with I being the identity matrix. One might consider the slightly different
versions of the familiar dot and cross product in R3 as follows:

v ×w = det

 −bi −aj k
v1 v2 v3
w1 w2 w3

 (2.2)

and
〈v,w〉 = −av1w1 − bv2w2 + abv3w3 (2.3)
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for v = (v1, v2, v3), w = (w1, w2, w3) ∈ R3 and a, b < 0 . Note that Q = (a,bR ) ' H which occurs
if and only if a < 0 and b < 0 . Given p, q ∈ Q the quaternionic multiplication on Q is defined by
pq = rs − 〈p,q〉 + sp+rq+ p× q where p = r + p and q = s + q with r, s ∈ R . In particular, we have
the following significant formula for Q0 :

pq = −〈p,q〉+ p× q (2.4)

which simply says the set Q0 is not closed under multiplication.

3. Quaternion derivations

Derivations of an algebra might be useful for exploring the algebraic structure. We have presented in [4] the
matrix of an arbitrary derivation of the quaternion algebra Q = (a,bR ) over the reals and our main purpose here
is to connect derivations and involutions of Q . Hence, we find it convenient to start with some basic definitions
for the sake of clarity.

Definition 3.1 A linear map d : A → A of an algebra A satisfying the Leibnitz law d(xy) = d(x)y + xd(y)

for all x, y ∈ A is called a derivation of A . In particular, associated to an element x ∈ A one has an inner
derivation d = ad(x) defined by d(y) = xy − yx for every y ∈ A .

Denote by Der(A) the vector space of all derivations of A . From now on, we mean by A the quaternion
algebra Q = (a,bR ) unless otherwise explicitly stated. For further references, we quote our earlier result that
states a typical derivation of Q in its matrix form as follows:

Lemma 3.2 (Theorem 3.5,[4]) If d is a derivation of the quaternion algebra Q = (a,bR ) over R , then its matrix
(also denoted by d) is of the form d = diag{0, D} with D as

D =

 0 − b
az y

z l ax
1
by x l

 , (3.1)

for some z, y, x, l ∈ R such that l = l(b) is zero if b 6= 0 and non-zero otherwise.

We usually prefer the bold face letters (i.e. 0 = (0, 0, 0) ∈ R3 ) to denote 3-vectors in space and combine
the scalars z, y, x in D to form u = xi+yj+zk (in this order). The reason is that Q has only inner derivations
and hence given a derivation d there corresponds a 3-vector whose adjoint is equal to d on Q0 . Sometimes we
will simply say u is associated to D ∈M3(R) rather than d ∈ Der(Q) . In particular, when Q = H the matrix
D reads as

D =

 0 −z y
z 0 −x
−y x 0

 (3.2)

and hence col1(D) = d(i) = zj − yk, col2(D) = d(j) = −zi + xk and col3(D) = d(k) = yi − xj . If Q

is split then the columns of D are such that col1(D) = d(i) = zj + yk, col2(D) = d(j) = zi + xk and
col3(D) = d(k) = yi− xj .
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It is obvious that different choices of u result in different inner derivations and once we fix u = xi+yj+zk

and consider d(q) where d = ad(u) and q = r + x0i+ y0j + z0k we need to distinguish u and the vector part
x0i + y0j + z0k of q . In Section 4 where we treat quaternion involutions, u will be additionally chosen with
norm N(u) = 1 which is of course not essential for a quaternion derivation.

It should be noted that the above Lemma provides also derivations of (split)semi-quaternions for which
b is identically zero. Since the quaternion algebra Q = (a,bR ) is either Hamiltonian or split we restrict our
attention to either a = b = −1 or a = −1 , b = 1 and hence the diagonal entries of D are all zero here and D

is a singular traceless matrix independently from the choice of a, b ∈ R \ {0} and u ∈ R3 \ {0} . In particular, if
Q ' H then D is such that DT = −D which means transpose of a derivation d ∈ Der(H) is still a derivation,
a fact that does not hold in general. If Q is split then D is neither symmetric nor skew-symmetric in general
but continues to be a derivation, too.

An observation shows that a derivation d ∈ Der(Q) might appear as a transpose of another derivation
if their associated vectors differ only by the same opposite sign in each coordinate as we prove in the next.

Proposition 3.3 Let d1 = ad(u1) and d2 = ad(u2) be two derivations of Q for some u1,u2 ∈ Q0 . Then
d1 = dT2 (resp. d2 = dT1 ) if and only if u2 = −u1 (resp. u1 = −u2 ) and this holds if and only if Q ' H .

Proof Let u1 = x1i+ y1j + z1k and u2 = x2i+ y2j + z2k . It follows at once that

D1 =

 0 − b
az1 y1

z1 0 ax1
1
by1 x1 0

 =

 0 z2
1
by2

− b
az2 0 x2

y2 ax2 0

 = DT
2

which occurs if and only if (i) x2 = ax1, y2 = by1, az2 = −bz1 and (ii) x1 = ax2, y1 = by2, az1 = −bz2 . Thus,
D1 = DT

2 (resp. D2 = DT
1 ) if and only if a = b = −1 which implies in turn u2 = −u1 (resp. u1 = −u2 ).

For the split case, it is evident by the signature∗ −,+,+ (resp. +,−,+ and +,+,−) that u2 (resp.
u1 ) is in general not the opposite of u1 (resp. u2 ). 2

It is also quite clear that the composition d1d2 (resp. d2d1 ) of two derivations d1 and d2 of Q may fail
to be a derivation and d1d2 and d2d1 might be different (whenever exist). A simple commuting result is given
below:

Proposition 3.4 Given u1,u2 ∈ Q0 and let d1 = ad(u1) and d2 = ad(u2) . Then d1d2 = d2d1 if and only if
u1 ‖ u2 .

Proof Let u1 = x1i+ y1j + z1k and u2 = x2i+ y2j + z2k . If we write each Dn (n = 1, 2) associated to un

and apply standard matrix multiplication we see that D1D2 = D2D1 if and only if x1y2 = x2y1, x1z2 = x2z1

and y1z2 = y2z1 . However, these conditions define each component of the cross product

u1 × u2 = −b(y1z2 − y2z1)i+ a(x1z2 − x2z1)j + (x1y2 − x2y1)k

to be zero and this completes the proof. 2

∗By the signatures −,+,+ ; +,−,+ ; +,+,− we mean for (a, b) the possibilities (−1, 1) , (1,−1) and (1, 1) . Hence, u2 = −u1

(or u1 = −u2 ) iff the signature is −,−,− that correspond to (a, b) = (−1,−1) .
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Note that the first column of d spans a trivial subspace of R4 since d(1)1 = d(1)i = d(1)j = d(1)k = 0 for
the basis element 1, i, j, k . To see that the first row row1(d) of d also consists of only zeros one has to solve the
equations (as we have done in [4]) D(i2) = D(i)i+ iD(i), D(j2) = D(j)j+jD(j) and D(k2) = D(k)k+kD(k) .
However, the following Proposition justifies in an alternative way why this should be indeed the case without
solving the above equations.

Lemma 3.5 Let d ∈ Der(Q) . Then d maps the center of Q to zero, that is, derivations of Q are center
annihilating.

Proof An immediate computation shows that d(1) = d(1 · 1) = d(1)1 + 1d(1) and hence d(1) = 0 which
implies d(r) = d(r1) = rd(1) = 0 for every r ∈ R = Z(Q) . 2

Despite its simplicity, Lemma 3.5 might be quite useful to derive some other results. For example,
〈dp,q〉 + 〈p, dq〉 = 0 as we prove in the next Proposition and since d(〈p,q〉) = 0 it seems that d maintains
the Leibnitz rule on the product 〈·, ·〉 . Since the cross product × and 〈·, ·〉 together completely determine the
quaternionic multiplication for pure quaternions in Q0 one might ask if d behaves in a similar manner also on
the product × . For the one thing, d(p × q) 6= dp × dq if we take Q = H and consider d = diag{0, D} with
D such that d(i) = zj − yk, d(j) = −zi + xk and d(k) = yi − xj . It follows that d(i × j) = d(k) = yi − xj

while d(i) × d(j) = xzi + yzj + z2k = zu so that d(i × j) 6= d(i) × d(j) . Nonetheless, we prove below that d

distributes × according to the Leibnitz rule:

Proposition 3.6 Let d ∈ Der(Q) . Then d(〈p,q〉) = 〈dp,q〉 + 〈p, dq〉 = 0 and d(p × q) = (dp × q) + (p ×
dq), ∀p,q ∈ Q0 .

Proof Let p = x1i + y1j + z1k and q = x2i + y2j + z2k . By Lemma 3.5 we have d(〈p,q〉) = 0 . On the
other hand, dp = x1d(i)+ y1d(j)+ z1d(k) and dq = x2d(i)+ y2d(j)+ z2d(k) where d(i), d(j) and d(k) are the
columns of D as said earlier. It follows that

dp = (yz1 − y1z)i+ (x1z − xz1)j + (xy1 − x1y)k

and
dq = (yz2 − y2z)i+ (x2z − xz2)j + (xy2 − x2y)k.

Hence,
〈dp,q〉 = x2yz1 − x2y1z + x1y2z − xy2z1 + xy1z2 − x1yz2

and
〈p, dq〉 = x1yz2 − x1y2z + x2y1z − xy1z2 + (xy2z1 − x2yz1

so that 〈dp,q〉+ 〈p, dq〉 = 0 .
On the other hand, if we apply d to the equation in (2.4) and use the fact that d(r) = 0, ∀r ∈ R we

obtain d(pq) = −d(〈p,q〉) + d(p × q) = d(p × q) and hence (dp)q + p(dq) = d(p × q) . If we write (2.4) for
both pairs dp,q ∈ Q and p , dq ∈ Q we get (dp)q = −〈dp,q〉+ dp×q and p(dq) = −〈p, dq〉+p×dq . Thus,
(dp)q+p(dq) = −〈dp,q〉+dp×q−〈p, dq〉+p×dq = d(p×q) which holds if and only if 〈dp,q〉+ 〈p, dq〉 = 0

and dp×q+p×dq = d(p×q), as claimed. 2
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The action of the conjugation map J of Q on Der(Q) is also interesting since any derivation combined
on the left or right by J continues to be a derivation. Since the proof is essentially the same if Q is Hamiltonian
or split we provide it only in the case Q ' H as follows:

Proposition 3.7 Given d ∈ Der(H) , we have dJ = Jd = −d and, in particular, DJ = JD = −D .

Proof Given q = r + x0i+ y0j + z0k ∈ H and denote by d = ad(u) for some u = xi+ yj + zk ∈ H0 . Since
d(r) = 0 it follows that d(q) = x0d(i)+y0d(j)+z0d(k) and hence d(q) = (yz0−y0z)i+(x0z−xz0)j+(xy0−x0y)k .
Now, we write

(Jd)(q) = (y0z − yz0)i+ (xz0 − x0z)j + (x0y − xy0)k.

On the other hand,

(dJ)(q) = d(r − x0i− y0j − z0k)

= −x0d(i)− y0d(j)− z0d(k) (and hence dJ(q) = −d(q))

= (y0z − yz0)i+ (xz0 − x0z)j + (x0y − xy0)k

= (Jd)(q)

which means dJ = −d = Jd . Since both d = diag{0, D} and J = diag{1,−I} are block-diagonal matrices,
dJ = diag{0,−D} = Jd implies the second assertion. 2

Corollary 3.8 Given p,q ∈ H , it follows that (dJ)(pq) = (Jd)(pq) .

Proof In fact,(dJ)(pq) = d(J(q)J(p)) = (dJ)(q)J(p) + J(q)(dJ)(p) while (Jd)(pq) = J(d(p)q+ pd(q)) =

J(d(p)q) + J(pd(q)) and hence (Jd)(pq) = J(q)(Jd)(p) + (Jd)(q)J(p) so that (dJ)(pq) = (Jd)(pq) if and
only if dJ = Jd on H . 2

Remark 3.9 If d ∈ Der(Q) where Q = (−1,1
R ), then D is such that col1(D) = d(i) = zj + yk, col2(D) =

d(j) = zi+ xk and col3(D) = d(k) = yi− xj but the same proof above still applies also in the split case.

We emphasize now that some matrix variants of D become important in what follows and although the
condition N(u) = 1 for u ∈ Q0 is not essential for D we gain with this simple assumption interesting properties
of some variants of D such as AdjD , −D2 :

AdjD =

 −ax2 xy −bxz
a
bxy − 1

by
2 yz

xz − 1
ayz

b
az

2

 (3.3)

and the matrix

−D2 =

 b
az

2 − 1
by

2 −xy bxz
−a

bxy
b
az

2 − ax2 −yz
−xz 1

ayz −ax2 − 1
by

2

 (3.4)

Both matrices AdjD and −D2 (not D2 ) are (singular) idempotent (See Theorem 3.10 below) and correspond
to a certain involutary matrix. In the present context, this involutary matrix is precisely the matrix of a

1950



KIZIL et al./Turk J Math

quaternion involution, the subject of the next section. Since it is quite tedious to perform some elementary
matrix operations with AdjD , −D2 such as standard multiplication, power, etc we refer the reader to linear
algebra packages available on the web†. Since Q is either H or split we will content ourselves with one of these
(or both) cases.

Theorem 3.10 Let u ∈ H0 be such that N(u) = 1 and let D be the matrix in (3.2). It follows that both
A = AdjD and B = −D2 are (singular) symmetric idempotent matrices such that AB = BA = O (zero
matrix). Moreover, rank(AdjD) = Tr(AdjD) = 1 , rank(−D2) = Tr(−D2) = 2 (resp. rank(D2) = 2) and
hence rank(D) = 2 .

Proof If we set a = b = −1 in (3.3) and (3.4) (and use N(u) = x2 + y2 + z2 = 1 to simplify diagonal entries
of ±D2 ) we find the matrices A and −B as

A =

 x2 xy xz
xy y2 yz
xz yz z2

 and −B =

 x2 − 1 xy xz
xy y2 − 1 yz
xz yz z2 − 1

 = D2

from which the eq. −B = A− I (or I −A = B ) follows. It is straightforward to check that AA = A for which
the assumption N(u) = 1 is indispensable. It is also evident that B is idempotent since

BB = (I −A)(I −A) = I − 2A+AA = I − 2A+A = I −A = B.

Remember that the identity matrix I is the only non-singular idempotent matrix and adjoint matrix of a
singular matrix (i.e. D itself) is always singular. Hence both A and B are singular idempotent matrices. It
should be noted that −B = D2 fails to be idempotent since (−B)(−B) = (A− I)(A− I) = I −A = B .

If we multiply I −A = B by A on the right we get IA−AA = BA and hence A−A = O = BA . The
same way, we multiply I −A = B by A on the left and stay with AI −AA = AB so that A−A = O = AB .

It is well known that trace of an idempotent matrix equals its rank. A simple observation at this point
shows that TrA = 1 and TrB = 2TrA = 2 so that rank(A) = 1 and rank(B) = 2 as soon as we assume
N(u) = 1 . That rank(D) = 2 follows from the fact‡ that 2 = rank(DD) ≤ rank(D) < 3 . 2

Remark 3.11 1) It is well known (See Section 3.12 in [1]) that given a pair of idempotent matrices A,B ∈
Mn(R) then A + B = I if and only if AB = BA = O and rank(A) + rank(B) = n . By Theorem 3.10, we
already have AdjD + (−D2) = I which is in accordance with the rank criteria rank(AdjD) + rank(−D2) = 3 .

2) The validity of AdjD+(−D2) = I also follows by Cayley-Hamilton Theorem. In fact, the characteristic
polynomial pD(t) = −t3 − t of D (See the eq. (3.5) below) has no constant term (since detD = 0) and one
might obtain a formula for the adjoint that depends only on D and the coefficients of pD(t) which can be
explicitly represented in terms of traces of powers of D using complete exponential Bell polynomials. The
resulting formula for D is

AdjD =
1

2

[
(TrD)2 − Tr(D2)

]
I − (TrD)D +D2

†https://www.symbolab.com/solver/matrix-calculator
‡ rank(XY ) ≤ min{rank(X), rank(Y )}
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and hence AdjD = 1
2 (0

2 − (−2))I − 0D +D2 = I +D2 as soon as we assume N(u) = 1 .

3) Observe that the columns of A = AdjD appear as col1(A) = xuT , col2(A) = yuT and col3(A) = zuT .
If we put v = w = uT where u = (x, y, z) ∈ R3 , then wTv = uuT = N(u) = 1 and AdjD = vwT . This also
justifies in an alternative way that rank(AdjD) = 1 . See Section 3.12 in [1] on facts about idempotent matrices.

Note that if Q is split, then the matrices A = AdjD and −B = D2 are

A =

 x2 xy −xz
−xy −y2 yz
xz yz −z2

 −B =

 x2 − 1 xy −xz
−xy −y2 − 1 yz
xz yz −z2 − 1


It follows that −B = A − I and hence I − A = B = −D2 such that AA = A and BB = B again due to
the assumption N(u) = x2 − y2 − z2 = 1 . We will see later on that the idempotent matrices Adj(D) and
−D2 are in bijection with the matrix of a quaternion involution. That is, Adj(D) ←→ Σ ←→ −D2 where
AdjD = (I +Σ)/2 and −D2 = (I − Σ)/2 and ΣΣ = I (i.e. Σ is an involutary matrix).

We end this section with a few comments regarding the characteristic polynomial of a derivation since it
might be useful for further purposes to deal with eigenspaces of a derivation. For it, we ignore the center of
derivations and focus directly on decomposition of Q0 through the matrix D in its general form as in (3.1).

Assume that u = xi+ yj + zk ∈ Q0 associated to D is of norm N(u) = 1 . Then a simple computation
shows that the monic polynomial p(λ) = −λ3+c1λ

2+c2λ+c3 of D where c1 = c3 = 0 since TrD = detD = 0

and the unique non-zero coefficient is −c2 = Tr(AdjD) = −ax2− 1
by

2 + b
az

2 which is equal to 1 no matter if Q

is H or split. In fact, it is either Tr(AdjD) = x2 + y2 + z2 (i.e. a = b = −1) or Tr(AdjD) = x2 − y2 − z2 (i.e.
a = −b = −1) and both correspond to the norm on Q . Hence the characteristic polynomial of D reduces to

p(λ) = −λ3 − Tr(AdjD)λ = −λ3 − λ. (3.5)

It follows that λ = 0 and λ = ±i (complex i) are the only eigenvalues of D with algebraic multiplicity
µ(0) = µ(±i) = 1 . To obtain much sharper results we now suppose Q ' H . Then it is well known that one
might decompose H0 as

H0 = E(0) ⊕
λ=±i

E(λ)

where E(λ) = {v ∈ H0 : (D − λI)v = 0} stands for the corresponding eigenspaces. Neither of the subspaces
E(0) and E(±i) is trivial and dimE(0) = 1 while dimE(±i) = 2 . In fact, that detD = 0 provides
non-trivial solutions of the linear homogeneous system Dv = 0 and dimE(0) = 1 might be confirmed by
rank (D) + dimker(D) = 3 where rank(D) = 2 . On the other hand, the assumption N(u) = 1 implies

det(D ± iI) = ∓(x2 + y2 + z2 − 1)i = 0i = 0

which means (D ± iI)v = 0 also admits non-trivial solutions such that dimE(±i) = dimH0 − dimE(0) = 2 .

Given any v = x′i+ y′j + z′k ∈ H0 . Then Dv = 0 if and only if x′ = xz′

z , y′ = yz′

z (z 6= 0) and z′ ∈ R,
that is, E(0) = 〈u〉 since any element of this subspace is the multiple ku with k = z′/z for z 6= 0 . Since complex
eigenvectors come in conjugate it is enough to look at one of the complex eigenvectors, for instance, v = q+ ip

that corresponds to λ = i . We claim that the plane passing through the origin generated by Re(v) = q and
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Im(v) = p is the eigenspace E(i) on which u acts as a normal vector. Note that D(q+ip) = i(q+ip) = −p+iq

implies D(q) + iD(p) = −p+ iq which occurs if and only if D(q) = −p and D(p) = q . This is also equivalent
to say D2q = −Dp = −q and D2p = Dq = −p (resp. Bq = q and Bp = p with B = −D2 ).

Hence, the components of v = q+ ip belong to the −1 -eigenspace of D2 (resp. +1 -eigenspace of −D2 )
for which λ = −1 (resp. λ = 1) is the unique non-zero eigenvalue with the algebraic multiplicity µ(−1) = 2

(resp. µ(1) = 2).
The geometry between E(0) and E(i) (resp. E(−i)) might be clearly viewed for particular matrices

D1 = ad(i), D2 = ad(j) and D3 = ad(k) that actually combine D . For instance, D2 has the same characteristic
polynomial p(λ) = −λ3 − λ of D and we have the xz -plane E2(i) = 〈(0, 0, 1) + (1, 0, 0)i〉 whose normal vector
is u = j . For D = xD1 + yD2 + zD3 and u = xi + yj + zk we conclude that E(±i) is a plane passing from
the origin such that its normal vector is parallel to u .

4. Quaternion involutions

An automorphism of Q = (a,bR ) is a bijective map on Q that preserves the algebraic structure of Q . An (anti)-
automorphism is the same, except that it reverses the multiplicative structure, as in part (i) of the following
definition.

Definition 4.1 A map σ : Q → Q is called an involution of the first kind if it is a linear map satisfying for
all p, q ∈ Q , (i) σ(pq) = σ(q)σ(p) , and (ii) σ(σ(q)) = q for all q in Q . Alternatively put, an involution is an
involutive (anti)-automorphism.

We state the following simple Proposition, [6], without proof.

Proposition 4.2 If σ : Q→ Q is an automorphism (resp. (anti)-automorphism) then σ is the identity on R
and maps Q0 onto itself.

As is said earlier, a quaternion algebra Q = (a,bR ) is either M2(R) or Q ' H . Hence, involutions of

Q = (a,bR ) might be mainly considered in two categories: split and Hamilton’s quaternions. In fact, we have
characterized in [5],[6] that all involutive automorphisms and (anti)-automorphisms (for H and split case) arise
in terms of inner automorphisms (and eigenspace decomposition). Thus, in what follows we constrain our
attention only to involution matrices of either reel or split quaternions.

We start fixing Q as H and selecting u = xi+yj+zk ∈ H0 such that N(u) = 1 . Denote by σ : H → H

the involution defined by σ(q) = −uqu . We remember that σ keeps the center of H invariant and hence the
first row and the first column of σ in its matrix form is the quaternion 1+0i+0j+0k , that is, σ = diag{1,Σ}
is a block-diagonal matrix with

Σ =

 2x2 − 1 2xy 2xz
2xy 2y2 − 1 2yz
2xz 2yz 2z2 − 1

 (4.1)

such that col1(Σ) = σ(i), col2(Σ) = σ(j) and col3(Σ) = σ(k) .

Remark 4.3 If we consider instead an (anti)-involution q 7→ −uqu , then it will appear −Σ .
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We quote without proof the following well-known fact that fits well here:

Lemma 4.4 If A ∈ Mn(R) is idempotent, then S = 2A − I is involutary. Conversely, if S ∈ Mn(R) is
involutary, then A1 = 1

2 (I + S) and A2 = 1
2 (I − S) are idempotent. Hence, SAn = ±An (n = 1, 2) and the

mapping f(A) = 2A− I from the idempotent matrices to involutary matrices is a bijection.

In the present context, we reveal that idempotent matrices that correspond to an involutary matrix are
the idempotent matrices AdjD and −D2 and the matrix Σ above. This way one might establish a relationship
between quaternion derivation and quaternion involution matrices for real quaternion algebras. Hence we end
our exposition by introducing the following remarkable

Theorem 4.5 Let D and Σ be as in (3.2) and (4.1), respectively. Then ΣAdjD = AdjD and ΣD2 = −D2 .

Proof If we compare the matrices Σ and AdjD we immediately write Σ = 2AdjD − I and hence AdjD =
1
2 (I +Σ) . The same way we obtain Σ = I + 2D2 so that −D2 = 1

2 (I − Σ) . Then it follows at once that

ΣAdj(D) =
1

2
Σ(I +Σ) =

1

2
(ΣI +ΣΣ) =

1

2
(Σ + I) = AdjD

and Σ(−D2) = 1
2Σ(I − Σ) = − 1

2 (I − Σ) = −(−D2) = D2 (and hence ΣD2 = −D2 ). 2

It is known that (ref. Skolem-Noether Theorem) any automorphism of central simple algebras (abrev.
CSA) is inner and the same is also true for derivations. From the beginning, our main purpose was to connect
inner derivations with involutive inner automorphisms of quaternions that obviously form a subclass of CSA.
Hence, the preceding theorem provides an interesting connection in this sense.
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