Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
tüвітак
Research Article

Turk J Math
(2023) 47: 898 - 909
© TÜBİTAK
doi:10.55730/1300-0098.3402

Duality approach to regularity problems for the Navier-Stokes equations

Gregory SEREGIN* ${ }^{\text {(D) }}$
Oxford University, Oxford, UK, and St. Petersburg Department of Steklov Mathematical Institute (Russian Academy of Sciences), St. Petersburg, Russia

Received: 30.11.2022 • Accepted/Published Online: 09.02.2023 • Final Version: 17.03 .2023

Abstract

In this note, we describe a way to study local regularity of a weak solution to the Navier-Stokes equations, satisfying the simplest scale-invariant restriction, with the help of zooming and duality approach to the corresponding mild bounded ancient solution.

Key words: Navier-Stokes equations, regularity of solutions

1. Introduction

One of the simplest but not yet solved problem of local regularity of weak solutions to the Navier-Stokes equations is as follows. Consider the so-called suitable weak solution $w \in L_{\infty}\left(-1,0 ; L_{2}(B)\right) \cap L_{2}\left(-1,0 ; W_{2}^{1}(B)\right)$ and $r \in L_{\frac{3}{2}}(Q)$ to the classical Navier-Stokes equations:

$$
\partial_{t} w+w \cdot \nabla w-\Delta w=-\nabla r, \quad \operatorname{div} w=0
$$

in the unit parabolic space-time ball $Q=B \times]-1,0\left[\subset \mathbb{R}^{3} \times \mathbb{R}\right.$. For a definition of suitable weak solutions, we refer to the paper [1]. Let us assume that function w satisfies the additional restriction

$$
\begin{equation*}
|w(x, t)| \leq \frac{c_{d}}{|x|+\sqrt{-t}}, \quad \forall(x, t) \in Q \tag{1.1}
\end{equation*}
$$

where $c_{d}>0$ is a given constant. The question is whether or not the origin $z=(0,0)$ is a regular point of w, i.e. there exists $\delta>0$ such that w is essentially bounded in the parabolic ball $Q(\delta)=B(\delta) \times]-\delta^{2}, 0[$. Here, as usual, $B(\delta)$ stands for the ball of radius δ centred at the origin. With a minor modification of what has been done in the paper [4], one can show that if the origin $z=0$ is a singular point of w then there exists the so-called mild bounded ancient solution \tilde{u} with the following properties:

$$
|\tilde{u}| \leq 1
$$

in $\left.Q_{-}=\mathbb{R}^{3} \times\right]-\infty, 0[;$

$$
|\tilde{u}(0)|=1
$$

there is a pressure field $\tilde{p} \in L_{\infty}\left(-\infty, 0 ; B M O\left(\mathbb{R}^{3}\right)\right)$ so that \tilde{u} and \tilde{p} obey the Navier-Stokes equations

$$
\partial_{t} \tilde{u}+\tilde{u} \cdot \nabla \tilde{u}-\Delta \tilde{u}=-\nabla \tilde{p}, \quad \operatorname{div} \tilde{u}=0
$$

[^0]in Q_{-}; and in addition
$$
|\tilde{u}(x, t)| \leq \frac{c_{d}}{|x|+\sqrt{-t}}
$$
for all $z=(x, t) \in Q_{-}$. In our further considerations, we shall work with positive time t, setting $u(x, t)=\tilde{u}(x,-t)$ for $t \geq 0$. Therefore, the velocity field u satisfies:
\[

$$
\begin{equation*}
|u| \leq 1 \tag{1.2}
\end{equation*}
$$

\]

in $\left.Q_{+}=\mathbb{R}^{3} \times\right] 0, \infty[;$

$$
\begin{equation*}
|u(0)|=1 \tag{1.3}
\end{equation*}
$$

there is a pressure field $p \in L_{\infty}\left(0, \infty ; B M O\left(\mathbb{R}^{3}\right)\right)$ so that u and p obey the backward Navier-Stokes equations

$$
-\partial_{t} u+u \cdot \nabla u-\Delta u=-\nabla p, \quad \operatorname{div} u=0
$$

in Q_{+}; and in addition

$$
\begin{equation*}
|u(x, t)| \leq \frac{c_{d}}{|x|+\sqrt{t}} \tag{1.4}
\end{equation*}
$$

for all $z=(x, t) \in Q_{+}$.
To study the Liouville type statement about the above mild bounded ancient solutions, the duality method has been exploited in the paper [3]. In particular, the following Cauchy problem has been considered:

$$
\begin{equation*}
\partial_{t} v-u \cdot \nabla v-\triangle v-\nabla q=-\operatorname{div} F, \quad \operatorname{div} v=0 \tag{1.5}
\end{equation*}
$$

in $\left.Q_{+}=\mathbb{R}^{3} \times\right] 0, \infty[$ and

$$
\begin{equation*}
v(x, 0)=0, \quad x \in \mathbb{R}^{3} \tag{1.6}
\end{equation*}
$$

It has been supposed that a tensor-valued field F is smooth and compactly supported in Q_{+}. In addition, it has been assumed that F is skew symmetric, and therefore

$$
\begin{equation*}
\operatorname{div} \operatorname{div} F=F_{i j, j i}=0 \tag{1.7}
\end{equation*}
$$

Under the above assumptions, the long time behavior of solutions to (1.5), (1.6) has been studied in [3].
As to the drift u, one may assume that u is a bounded divergence free field in Q_{+}, say $|u| \leq 1$, whose derivatives of any order exist and are bounded in Q_{+}. It is not so difficult to check that the following identity takes place:

$$
\begin{equation*}
\int_{Q_{+}} u \cdot \operatorname{div} F d x d t=-\lim _{T \rightarrow \infty} \int_{\mathbb{R}^{3}} u(x, T) \cdot v(x, T) d x \tag{1.8}
\end{equation*}
$$

Therefore, if, for any skew symmetric tensor field F, the solution v to the dual problem (1.5), (1.6) has a certain decay, then u must be identically equal to zero. It, in turns, says that the origin is a regular point of w.

With regards to the long time behavior of v, it has been proved the following.

Theorem 1.1 Let v be a solution v to (1.5) and (1.6) and let u be divergence free and satisfy (1.4). Then for any $m=0,1 \ldots$, two decay estimates are valid:

$$
\begin{equation*}
\|v(\cdot, t)\|_{1} \leq c\left(m, c_{d}, F\right) \sqrt{t^{\frac{3}{2}}} \frac{1}{\ln ^{m}(t+e)} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\|v(\cdot, t)\|_{2} \leq \frac{c\left(m, c_{d}, F\right)}{\ln ^{m}(t+e)} \tag{1.10}
\end{equation*}
$$

for all $t \geq 0$.
Unfortunately, the above statement does not allow us to conclude that the mild bounded ancient solution u is equal to zero.

In this paper, we would like to examine a certain modification of duality method letting $F=0$ but taking nonzero initial data. To be precise, let us consider the following Cauchy problem

$$
\begin{equation*}
\partial_{t} v-u \cdot \nabla v-\Delta v-\nabla q=0, \quad \operatorname{div} v=0 \tag{1.11}
\end{equation*}
$$

in $\left.Q_{+}=\mathbb{R}^{3} \times\right] 0, \infty[$ and

$$
\begin{equation*}
v(x, 0)=v_{0}(x) \tag{1.12}
\end{equation*}
$$

for $x \in \mathbb{R}^{3}$. Here, v_{0} belongs to the space J which is L_{2}-closure of the set

$$
C_{0,0}^{\infty}\left(\mathbb{R}^{3}\right)=\left\{v \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right): \operatorname{div} v=0\right\}
$$

Formal calculations show that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} u(\cdot, t) \cdot v(\cdot, t) d x=\int_{\mathbb{R}^{3}} u(\cdot, 0) \cdot v(\cdot, 0) d x=\int_{\mathbb{R}^{3}} u(\cdot, 0) \cdot v_{0}(\cdot) d x \tag{1.13}
\end{equation*}
$$

for all $t \geq 0$. Indeed,

$$
\begin{gathered}
\int_{\mathbb{R}^{3}} u(\cdot, T) \cdot v(\cdot, T) d x-\int_{\mathbb{R}^{3}} u(\cdot, 0) \cdot v_{0}(\cdot) d x= \\
\int_{0}^{T} \int_{\mathbb{R}^{3}}\left(v \cdot \partial_{t}+u \cdot \partial_{t} v\right) d z+ \\
\int_{0}^{T} \int_{\mathbb{R}^{3}}(v \cdot(u \cdot \nabla u-\Delta u+\nabla p)+u \cdot(u \cdot \nabla v+\Delta v+\nabla q)) d z=0
\end{gathered}
$$

It is also easy to see that equations (1.11) can be replaced with more symmetric ones:

$$
\begin{equation*}
\partial_{t} v-u \cdot \nabla v \mp u \cdot \nabla v-\Delta v-\nabla q=0, \quad \operatorname{div} v=0 \tag{1.14}
\end{equation*}
$$

in $\left.Q_{+}=\mathbb{R}^{3} \times\right] 0, \infty[$ as the following identity is valid:

$$
\int_{0}^{T} \int_{\mathbb{R}^{3}} u \cdot(v \cdot \nabla u) d z=0
$$

If we assume that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} u(\cdot, T) \cdot v(\cdot, T) d x \rightarrow 0 \tag{1.15}
\end{equation*}
$$

as $T \rightarrow \infty$ for all $v_{0} \in C_{0,0}^{\infty}\left(\mathbb{R}^{3}\right)$, then

$$
\int_{\mathbb{R}^{3}} u(\cdot, 0) \cdot v_{0}(\cdot) d x=0
$$

for all $v_{0} \in C_{0,0}^{\infty}\left(\mathbb{R}^{3}\right)$. The latter, together with (1.2) and (1.4), implies that $u(x, 0)=0$ in \mathbb{R}^{3}, which contradicts to (1.3). It would be a proof of the fact that $z=0$ is a regular point w. Therefore, we need to prove a certain time decay of v that would provide (1.15). To this end, let us represent v as a sum of solutions to two Cauchy problems so that

$$
\begin{gather*}
v=v^{1}+v^{2} ; \tag{1.16}\\
\partial_{t} v^{1}-\Delta v^{1}=0 \text { in } Q_{+}, \quad v^{1}(\cdot, 0)=v_{0}(\cdot) \text { in } \mathbb{R}^{3} ; \tag{1.17}\\
\partial_{t} v^{2}-\Delta v^{2}+\nabla q=-\operatorname{div} v \otimes u, \operatorname{div} v^{2}=0 \tag{1.18}
\end{gather*}
$$

in Q_{+}with $v^{2}(\cdot, 0)=0$ in \mathbb{R}^{3}.
With regard to v^{1}, we have the estimates

$$
\begin{equation*}
\left\|v^{1}(\cdot, t)\right\|_{s} \leq\left\|v_{0}\right\|_{s} \tag{1.19}
\end{equation*}
$$

for all $t \geq 0$ and all $1 \leq s \leq \infty$, and thus

$$
\int_{\mathbb{R}^{3}} u(\cdot, T) \cdot v^{1}(\cdot, T) d x \rightarrow 0
$$

as $T \rightarrow \infty$ for all $v_{0} \in C_{0,0}^{\infty}\left(\mathbb{R}^{3}\right)$.
Our aim is to prove results similar to what has been stated in the paper [3]. In particular, we are going to show that Theorem 1.1 remains to be true in the following reduction.

Theorem 1.2 Let v be a solution to (1.11) and (1.12) and let u be divergence free and satisfy (1.4). Then, for any $m=0,1 \ldots$, two decay estimates are valid:

$$
\begin{equation*}
\left\|v^{2}(\cdot, t)\right\|_{1} \leq c\left(m, c_{d}, v_{0}\right) \sqrt{t}^{\frac{3}{2}} \frac{1}{\ln ^{m}(t+e)} \tag{1.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|v^{2}(\cdot, t)\right\|_{2} \leq \frac{c\left(m, c_{d}, v_{0}\right)}{\ln ^{m}(t+e)} \tag{1.21}
\end{equation*}
$$

for all $t \geq 1$.
Unfortunately, decay bounds in Theorem 1.2 do not provide the above scenario. One needs to improve decay estimates in it.

2. Comments on Proof of Theorem 1.2

Let

$$
\mathcal{F}=-v \otimes u
$$

The solution to the problem (1.18), (1.6) has the form, see for instance [2],

$$
\begin{equation*}
v^{2}(x, t)=\int_{0}^{t} \int_{\mathbb{R}^{3}} K(x-y, t-s) \mathcal{F}(y, s) d y d s \tag{2.1}
\end{equation*}
$$

where the potential $K=\left(K_{i j l}\right)$ defined with the help of the standard heat kernel Γ in the following way

$$
\Delta \Phi(x, t)=\Gamma(x, t)
$$

and

$$
K_{i j l}=\Phi_{, i j l}-\delta_{i l} \Phi_{, k k j}
$$

It is easy to check that the following bound is valid:

$$
\begin{equation*}
|K(x, t)| \leq \frac{c}{\left(t+|x|^{2}\right)^{2}} \tag{2.2}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}|K(x, t)| d x \leq \frac{c}{\sqrt{t}} . \tag{2.3}
\end{equation*}
$$

Assuming that

$$
\begin{equation*}
p \in] 6 / 5,2[, \tag{2.4}
\end{equation*}
$$

and repeating the same arguments as in the paper [3], we arrive at a similar estimate

$$
\left\|v^{2}(\cdot, t)\right\|_{p} \leq C(p) \int_{0}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}{ }^{-\frac{5 p-6}{2 p}}\left(\int_{\mathbb{R}^{3}}|\mathcal{F}(y, s)|^{2}(\sqrt{s}+|y|)^{2} d y\right)^{\frac{1}{2}}
$$

where, by (1.4),

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}|\mathcal{F}(y, s)|^{2}(\sqrt{s}+|y|)^{2} d y \leq c\left(c_{d}\|v(\cdot, s)\|_{2}\right)^{2} \tag{2.5}
\end{equation*}
$$

and thus

$$
\left\|v^{2}(\cdot, t)\right\|_{p} \leq C(p) \int_{0}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{-\frac{5 p-6}{2 p}} c_{d}\|v(\cdot, s)\|_{2} d s
$$

$$
\leq C(p) \int_{0}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{-\frac{5 p-6}{2 p}} c_{d}\left(\left\|v^{1}(\cdot, s)\right\|_{2}+\left\|v^{2}(\cdot, s)\right\|_{2}\right) d s
$$

Here, we would like to use the following facts about time decay of solutions to the heat equations, see for example [5]:

Lemma 2.1 Let $v_{0} \in L_{1}\left(\mathbb{R}^{3}\right)$ and $M=\int_{\mathbb{R}^{3}} v_{0} d x$. Then

$$
t^{\frac{3}{2} \frac{p-1}{p}}\left\|v_{i}^{1}(\cdot, t)-M_{i} \Gamma(\cdot, t)\right\|_{p} \rightarrow 0
$$

as $t \rightarrow \infty$ for each $i=1,2,3$ and for all $1 \leq p \leq \infty$.
From the above lemma, it follows that for any $v_{0} \in C_{0,0}^{\infty}\left(\mathbb{R}^{3}\right)$, we have

$$
\left\|v^{1}(\cdot, t)\right\|_{p} \leq c\left(v_{0}, p\right) f^{\frac{3(1-p)}{p}}(t)
$$

for any $t \geq 0$ and for any $1 \leq p \leq \infty$, where $f(t):=\max \{1, \sqrt{t}\}$.
Therefore,

$$
\left\|v^{2}(\cdot, t)\right\|_{p} \leq C(p) \int_{0}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{-\frac{5 p-6}{2 p}} c_{d}\left(c\left(v_{0}\right) f^{-\frac{3}{2}}(s)+\left\|v^{2}(\cdot, s)\right\|_{2}\right) d s
$$

where we need to evaluate the term

$$
I=\int_{0}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}{ }^{-\frac{5 p-6}{2 p}} f^{-\frac{3}{2}}(s) d s
$$

To this end, consider two cases. In the first one, $0 \leq t \leq 1$. Then

$$
I=\int_{0}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{-\frac{5 p-6}{2 p}} d s \leq c t^{\frac{1}{2}-\frac{5 p-6}{4 p}}=c t^{\frac{3(2-p)}{4 p}} \leq c(p)
$$

If $t>1$, then

$$
I=\int_{0}^{1} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{-\frac{5 p-6}{2 p}} d s+\int_{1}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{-\frac{5 p-6}{2 p}} \sqrt{s}^{-\frac{3}{2}} d s=B_{1}+B_{2}
$$

Obviously, $B_{1} \leq c(p)$. As B_{2}, we have

$$
B_{2}=\int_{\frac{t+1}{2}}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{-\frac{5 p-6}{2 p}} \sqrt{s}{ }^{-\frac{3}{2}} d s+\int_{1}^{\frac{t+1}{2}} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{-\frac{5 p-6}{2 p}} \sqrt{s}{ }^{-\frac{3}{2}} d s \leq
$$

$$
\leq \frac{\sqrt{2}}{\sqrt{t-1}} \int_{1}^{\frac{t+1}{2}} \sqrt{s}^{-\frac{5 p-6}{2 p}-\frac{3}{2}} d s+\sqrt{\frac{t-1}{2}} \int_{\frac{t+1}{2}}^{-\frac{5 p-6}{2 p}-\frac{3}{2}} \frac{d s}{\sqrt{t-s}}
$$

Assuming further that

$$
\begin{equation*}
p \leq 3 / 2 \tag{2.6}
\end{equation*}
$$

we arrive at:

$$
B_{2} \leq\left.\frac{\sqrt{2}}{\sqrt{t-1}} \frac{6-4 p}{4 p} s^{\frac{6-4 p}{4 p}}\right|_{1} ^{\frac{t+1}{2}}+\sqrt{\frac{t-1}{2}}^{-\frac{5 p-6}{2 p}-\frac{3}{2}} 2 \sqrt{\frac{t-1}{2}} \leq c(p) f^{\frac{3(1-p)}{p}}(t)
$$

Therefore, letting

$$
\begin{equation*}
A_{p}(t):=\int_{0}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{-\frac{5 p-6}{2 p}} c_{d}\left\|v^{2}(\cdot, s)\right\|_{2} d s \tag{2.7}
\end{equation*}
$$

we can rewrite the previous estimate

$$
\begin{equation*}
\left\|v^{2}(\cdot, t)\right\|_{p} \leq C(p)\left(c\left(c_{d}, v_{0}, p\right) f^{\frac{3(1-p)}{p}}(t)+A_{p}(t)\right) \tag{2.8}
\end{equation*}
$$

Now, one can repeat the above arguments for $p=1$ and find

$$
\left\|v^{2}(\cdot, t)\right\|_{1} \leq \int_{0}^{t} \frac{c}{\sqrt{t-s}} \int_{\mathbb{R}^{3}}|\mathcal{F}(y, s)| d y d s
$$

Since

$$
|\mathcal{F}(y, s)| \leq \frac{c_{d}|v(y, s)|}{\sqrt{s}+|y|}
$$

the latter estimate can be transformed as follows:

$$
\begin{aligned}
&\left\|v^{2}(\cdot, t)\right\|_{1} \leq c \int_{0}^{t} \frac{d s}{\sqrt{t-s}} \int_{\mathbb{R}^{3}} \frac{c_{d}|v(y, s)|}{\sqrt{s}+|y|} d y \\
& \leq c \int_{0}^{t} \frac{d s}{\sqrt{t-s}}\left(\int_{\mathbb{R}^{3}}\left(\frac{1}{\sqrt{s}+|y|}\right)^{\frac{6+5 \varepsilon}{1+5 \varepsilon}} d y\right)^{\frac{1+5 \varepsilon}{6+5 \varepsilon}}\left(\int_{\mathbb{R}^{3}}\left(c_{d}|v(y, s)|\right)^{\frac{6+5 \varepsilon}{5}} d y\right)^{\frac{5}{6+5 \varepsilon}}
\end{aligned}
$$

for some positive $0<\varepsilon<3 / 10$. Hence,

$$
\left\|v^{2}(\cdot, t)\right\|_{1} \leq C_{1}(\varepsilon) \int_{0}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{3 \frac{1+5 \varepsilon}{6+5 \varepsilon}-1}\left(\int_{\mathbb{R}^{3}}\left(c_{d}|v(y, s)|\right)^{\frac{6+5 \varepsilon}{5}} d y\right)^{\frac{5}{6+5 \varepsilon}}
$$

with

$$
C_{1}(\varepsilon):=\left(\int_{\mathbb{R}^{3}}\left(\frac{1}{1+|z|}\right)^{\frac{6+5 \varepsilon}{1+5 \varepsilon}} d z\right)^{\frac{1+5 \varepsilon}{6+5 \varepsilon}}
$$

Simplifying slightly the previous bound, we have

$$
\left\|v^{2}(\cdot, t)\right\|_{1} \leq C_{2}\left(\varepsilon, c_{d}\right) \int_{0}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{\frac{-3+10 \varepsilon}{6+5 \varepsilon}}\left(\left\|v^{1}(\cdot, s)\right\|_{\frac{6+5 \varepsilon}{5}}+\left\|v^{2}(\cdot, s)\right\|_{\frac{6+5 \varepsilon}{5}}\right) d s
$$

To estimate terms with v^{1} and v^{2}, we are going to use Lemma 2.1 and (2.8) with $p=6 / 5+\varepsilon$, respectively:

$$
\begin{aligned}
& \left\|v^{2}(\cdot, t)\right\|_{1} \leq C_{2}\left(\varepsilon, c_{d}\right) \int_{0}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{\frac{-3+10 \varepsilon}{6+5 \varepsilon}}\left(c\left(c_{d}, v_{0}, \varepsilon\right)\left(\sqrt{s}^{-\frac{3(1+5 \varepsilon)}{6+5 \varepsilon}}+f^{-\frac{3(1+5 \varepsilon)}{6+5 \varepsilon}}(s)\right)\right. \\
& \left.\left.\left.+A_{\frac{6}{5}+\varepsilon}(s)\right)\right) d s \leq \leq C_{2}\left(\varepsilon, c_{d}\right) \int_{0}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{\frac{-3+10 \varepsilon}{6+5 \varepsilon}}\left(c\left(c_{d}, v_{0}, \varepsilon\right) \sqrt{s}^{-\frac{3(1+5 \varepsilon)}{6+5 \varepsilon}}+A_{\frac{6}{5}+\varepsilon}(s)\right)\right) d s \\
& \leq C_{3}\left(\varepsilon, c_{d}, v_{0}\right)+C_{4}\left(\varepsilon, c_{d}\right) \int_{0}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{\frac{-3+10 \varepsilon}{6+5 \varepsilon}} A_{\frac{6}{5}+\varepsilon}(s) d s .
\end{aligned}
$$

On the other hand,

$$
A(p)(t) \leq c_{d}\|v\|_{2, \infty} \int_{0}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{-\frac{5 p-6}{2 p}} d s \leq c_{d}\left\|v_{0}\right\|_{2} C_{2}(p) \sqrt{t}^{\frac{3}{2} \frac{2-p}{p}}
$$

Therefore, we have

$$
\left\|v^{2}(\cdot, t)\right\|_{1} \leq C_{4}\left(\varepsilon, c_{d}, v_{0}\right)\left(1+\left\|v_{0}\right\|_{2} \sqrt{t}^{\frac{3}{2}}\right) \leq c\left(\varepsilon, c_{d}, v_{0}\right) f^{\frac{3}{2}}(t)
$$

3. Improvement for L_{2}-norm

Following [3], we have the energy inequality

$$
\begin{equation*}
\partial_{t} y(t)+\|\nabla v(\cdot, t)\|_{2}^{2} \leq 0 \tag{3.1}
\end{equation*}
$$

with $y(t)=\|v(\cdot, t)\|_{2}^{2}$.
The Fourier transform and Plancherel identity give us

$$
\partial_{t} y(t) \leq-\int_{\mathbb{R}^{3}}|\xi|^{2}|\widehat{v}(\xi, t)|^{2} d \xi=-\int_{|\xi|>g(t)}|\xi|^{2}|\widehat{v}(\xi, t)|^{2} d \xi-\int_{|\xi| \leq g(t)}|\xi|^{2}|\widehat{v}(\xi, t)|^{2} d \xi
$$

where $g(t)$ is a given function which will be specified later on. The latter implies

$$
y^{\prime}(t)+g^{2}(t) y(t) \leq \int_{|\xi| \leq g(t)}\left(g^{2}(t)-|\xi|^{2}\right)|\widehat{v}(\xi, t)|^{2} d \xi
$$

Taking the Fourier transform of the Navier-Stokes equation, we find

$$
\partial_{t} \widehat{v}+|\xi|^{2} \widehat{v}=-\widehat{H}
$$

where $H=-\operatorname{div}(v \otimes u+\mathbb{I} q)$. Clearly,

$$
\widehat{v}(\xi, t)=-\int_{0}^{t} \exp \left\{-|\xi|^{2}(t-s)\right\} \widehat{H}(\xi, s) d s+\widehat{v}_{0}(\xi) \exp \left\{-|\xi|^{2} t\right\}
$$

and

$$
|\widehat{H}(\xi, s)| \leq|\xi|\||v(\cdot, s)||u(\cdot, s)|\|_{1} .
$$

Denoting

$$
a(s)=\left\|\left|v(\cdot, s)\|u(\cdot, s) \mid\|_{1},\right.\right.
$$

we find

$$
|\widehat{v}(\xi, t)| \leq c \int_{0}^{t} \exp \left\{-|\xi|^{2}(t-s)\right\}|\xi| a(s) d s+\left|\widehat{v}_{0}(\xi)\right| \exp \left\{-|\xi|^{2} t\right\}
$$

Applying the Hölder inequality, we get

$$
\begin{gathered}
y^{\prime}(t)+g^{2}(t) y(t) \leq \\
\leq c \int_{|\xi| \leq g(t)}\left(g^{2}(t)-|\xi|^{2}\right)\left(\int_{0}^{t} \exp \left\{-|\xi|^{2}(t-s)\right\}|\xi| a(s) d s+\left|\widehat{v}_{0}(\xi)\right| \exp \left\{-|\xi|^{2} t\right\}\right)^{2} d \xi \leq \\
\leq c \int_{|\xi| \leq g(t)}\left(g^{2}(t)-|\xi|^{2}\right)\left[\int_{0}^{t} a^{2}(s) d s \int_{0}^{t} \exp \left\{-2|\xi|^{2}\left(t-s_{1}\right)\right\}|\xi|^{2} d s_{1}+\right. \\
\left.+\left|\widehat{v}_{0}(\xi)\right|^{2} \exp \left\{-2|\xi|^{2} t\right\}\right] d \xi \leq I_{1}+I_{2}
\end{gathered}
$$

For the first term, we have

$$
I_{1} \leq c \int_{0}^{t} a^{2}(s) d s \int_{0}^{t} \int_{|\xi| \leq g(t)}\left(g^{2}(t)-|\xi|^{2}\right) \exp \left\{-|\xi|^{2}\left(t-s_{1}\right)\right\}|\xi|^{2} d s_{1} d \xi
$$

It can be estimated in the same way as in [3]:

$$
I_{1} \leq c g^{6}(t) \sqrt{t} \int_{0}^{t} a^{2}(s) d s
$$

As to the second term, we proceed as follows:

$$
\begin{gathered}
I_{2} \leq c\left\|v_{0}\right\|_{1}^{2} \int_{|\xi| \leq g(t)}\left(g^{2}(t)-|\xi|^{2}\right) \exp \left\{-|\xi|^{2} t\right\} d \xi \leq \\
\leq c\left\|v_{0}\right\|_{1}^{2} \int_{0}^{g(t)}\left(g^{2}(t)-r^{2}\right) \exp \left\{-r^{2} t\right\} r^{2} d r \leq c\left\|v_{0}\right\|_{1}^{2} g^{5}(t) .
\end{gathered}
$$

Therefore, we find

$$
K(t):=I_{1}+I_{2} \leq c g^{6}(t) \sqrt{t} \int_{0}^{t} a^{2}(s) d s+c\left(v_{0}\right) g^{5}(t)
$$

and thus solution to our inequality has the form:

$$
\begin{equation*}
y(t) \leq c \int_{0}^{t} \exp \left\{-\int_{s}^{t} g^{2}(\tau) d \tau\right\} K(s) d s+y(0) \exp \left\{-\int_{0}^{t} g^{2}(\tau) d \tau\right\} . \tag{3.2}
\end{equation*}
$$

4. Proof of Theorem 1.2

As in the paper [3], we use the induction in m. The basis of induction has been already established in Section 2. Let us assume that our statement is true for m and show that it is true for $m+1$.

We can present the right hand side of (3.2) as a sum so that

$$
y(t) \leq y_{1}(t)+y_{2}(t) .
$$

Then we select our function $g(t)=h^{\prime}(t) / h(t)$ with $h(t)=\ln ^{k}(t+e)$ and $k>2 m+2$, for example, $k=2 m+3$. Next, we observe that

$$
a(t) \leq\| \| v^{1}(\cdot, t)\|u(\cdot, t)\|\left\|_{1}+\right\|\left|v^{2}(\cdot, t)\left\|u(\cdot, t)\left|\left\|_{1} \leq\right\| v_{0}\left\|_{1}+\right\|\right| v^{2}(\cdot, t)\right\| u(\cdot, t)\right| \|_{1}
$$

and, for $t>1$, by induction,

$$
\begin{aligned}
& \int_{0}^{t} a^{2}(s) d s \leq 2 \int_{0}^{t}\left\|v_{0}\right\|_{1}^{2}+2 \int_{0}^{t}\| \| v^{2}(\cdot, s)\|u(\cdot, s)\|_{1}^{2} d s \leq \\
& \leq c\left(v_{0}\right) t+2 \int_{0}^{1}\left\|v^{2}(\cdot, s)\right\|_{1}^{2} d s+2 \int_{1}^{t} \frac{c_{d}^{2}\left\|\mid v^{2}(\cdot, s)\right\|_{1}^{2}}{s} d s \leq \\
& \leq c\left(v_{0}, c_{d}\right) t+c\left(v_{0}, c_{d}, m\right) \int_{1}^{t} \sqrt{s} \ln ^{-2 m}(s+e) d s
\end{aligned}
$$

The function $y_{1}(t)$ is estimated in a similar same way as it has been done in [3]. Indeed, we are going to use the following simple statements.

Lemma 4.1 Let l be a real number and $\gamma>-1$.
(i) There exists a positive constant $c(\gamma, l)$ such that

$$
\int_{1}^{t} s^{\gamma} \ln ^{-l}(s+e) d s \leq c(\gamma, l) t^{\gamma+1} \ln ^{-l}(t+e)
$$

for all $t \geq 1$;
(ii) There exists a positive constant $c(\gamma, l)$ such that

$$
\int_{1}^{t} \frac{1}{\sqrt{t-s}} s^{\gamma} \ln ^{-l}(s+e) d s \leq c(\gamma, l) t^{\gamma+1 / 2} \ln ^{-l}(t+e), \quad \forall t \geq 1 .
$$

Therefore, by Lemma 4.1, we have

$$
\int_{0}^{t} a^{2}(s) d s \leq c\left(v_{0}\right) t+c\left(v_{0}, c_{d}, m\right) t^{\frac{3}{2}} \ln ^{-2 m}(t+e) \leq c\left(v_{0}, c_{d}, m\right) t^{\frac{3}{2}} \ln ^{-2 m}(t+e)
$$

for all $t \geq 1$.
Now, we can estimate $K(t)$ for $t \geq 1$. Indeed,

$$
K(t) \leq c\left(v_{0}, c_{d}, m\right) g^{6}(t) t^{2} \ln ^{2 m}(t+e)+c\left(v_{0}\right) g^{5}(t) \leq c\left(v_{0}, c_{d}, m\right) g^{6}(t) t^{2} \ln ^{2 m}(t+e)
$$

for all $t \geq 1$.
For $0<t \leq 1$, we have

$$
\int_{0}^{t} a^{2}(s) d s \leq c\left(v_{0}\right)
$$

, and thus

$$
K(t) \leq c\left(v_{0}, c_{d}, m\right) g^{5}(t)
$$

Now, we can find estimates y_{1} and y_{2}. Let us start with y_{2} :

$$
y_{2}(t) \leq y_{0} \int_{0}^{t} \frac{h^{\prime}(s)}{h(s)} d s=y(0) \frac{h(0)}{h(t)} \leq c\left(v_{0}, m\right) \min \left\{\frac{1}{\ln ^{2 m+2}(1+e)}, \frac{1}{\ln ^{2 m+2}(t+e)}\right\}
$$

Now, we shall treat y_{1}. For $0<t \leq 1$, it can be done easily. So that, we get $y_{1}(t) \leq c\left(v_{0}, m\right)$ for this time interval.

What happens if $t \geq 1$? By the choice of the function g, we have

$$
\begin{aligned}
& y_{1}(t) \leq \frac{1}{h(t)} \int_{0}^{t} h(s) K(s) d s \leq \frac{1}{h(t)}\left[\int_{0}^{1} h(s) K(s) d s+\int_{1}^{t} h(s) K(s) d s\right] \\
& \quad \leq \frac{c\left(v_{0}, c_{d}, m\right)}{h(t)}\left[1+\int_{0}^{t} h(s) g^{6}(s) s^{2} \ln ^{-2 m}(s+e) d s\right]
\end{aligned}
$$

The second term has been evaluated in the paper [3]. Therefore, finally, we find

$$
y_{1}(t) \leq c\left(v_{0}, c_{d}, m\right) \ln ^{-2 m-2}(t+2)
$$

for all $t \geq 1$. So, induction for L_{2}-norm is proved.
Now, we need to prove our statement for L_{1}-norm. To this end, we need to consider $A_{\frac{6}{5}+\varepsilon}(t)$. For $0<t \leq 1$, the estimate is simple: $A_{\frac{6}{5}+\varepsilon}(t) \leq c\left(v_{0}, c_{d}, m\right)$.

In the case $t \geq 1$, we can use Lemma 4.1. Indeed,

$$
A_{\frac{6}{5}+\varepsilon}(t) \leq c\left(v_{0}, c_{d}, m\right)\left(1+\int_{1}^{t} \frac{d s}{\sqrt{t-s}} \sqrt{s}^{-\frac{25 \varepsilon}{2(6+5 \varepsilon)}} \frac{1}{\ln ^{m+1}(s+e)} \leq c\left(v_{0}, c_{d}, m\right) t^{\frac{12-15 \varepsilon}{4(6+5 \varepsilon)}} \frac{1}{\ln ^{m+1}(t+e)}\right.
$$

Then, for $t \geq 1$, by Lemma 4.1,

$$
\begin{aligned}
& \left\|v^{2}(\cdot, t)\right\|_{1} \leq c\left(v_{0}, c_{d}, m\right)\left(1+\int_{0}^{t} \frac{d s}{\sqrt{t-s}} s^{\frac{-3+10 \varepsilon}{2(6+5 \varepsilon)}} A_{\frac{6}{5}+\varepsilon}(s)\right) \\
& \quad \leq c\left(v_{0}, c_{d}, m\right)\left(1+\int_{1}^{t} \frac{d s}{\sqrt{t-s}} s^{\frac{1}{4}} \frac{1}{\ln ^{m+1}(t+e)}\right) \operatorname{leq} c\left(v_{0}, c_{d}, m\right) \frac{t^{\frac{3}{2}}}{\ln ^{m+1}(t+e)}
\end{aligned}
$$

for $t \geq 1$. Theorem 1.2 is proven.

Acknowledgment

The work is supported by the grant RFBR 20-01-00397.

References

[1] Caffarelli L, Kohn RV, Nirenberg L. Partial regularity of suitable weak solutions of the Navier-Stokes equations, Communications on Pure and Applied Mathematics Vol. XXXV (1982), pp. 771-831.
[2] Koch G, Nadirashvili N, Seregin G, Šverák V. Liouville theorems for the Navier-Stokes equations and applications. Acta Mathematica 203 (2009), no. 1, 83-105.
[3] Schonbek ME, Seregin G. Time decay for solutions to the Stokes equations with drift. Communications in Contemporary Mathematics 20 (2018), no. 3, 1750046, 19 pp .
[4] Seregin G, Šverák V. On Type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations, Communications in PDE's, 34(2009), pp. 171-201.
[5] Vazquez JL. Asymptotic behaviour methods for the Heat Equation. Convergence to the Gaussian. arXiv:1706.10034v3 [math.AP] 22 November 2018.

[^0]: *Correspondence: seregin@maths.ox.ac.uk
 2010 AMS Mathematics Subject Classification: 35B06, 35B65, 35Q30

