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Abstract: In this note, we describe a way to study local regularity of a weak solution to the Navier-Stokes equations,
satisfying the simplest scale-invariant restriction, with the help of zooming and duality approach to the corresponding

mild bounded ancient solution.
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1. Introduction
One of the simplest but not yet solved problem of local regularity of weak solutions to the Navier-Stokes
equations is as follows. Consider the so-called suitable weak solution w € Lo (—1,0; Lo(B)) N La(—1,0; W4 (B))

and r € L 2 (Q) to the classical Navier-Stokes equations:
oyw +w-Vw — Aw = —Vr, divw =0

in the unit parabolic space-time ball Q = Bx] —1,0[C R? x R. For a definition of suitable weak solutions, we

refer to the paper [1]. Let us assume that function w satisfies the additional restriction

|w@¢nglﬂi%zj,vu¢)eQ, (1.1)

where ¢4 > 0 is a given constant. The question is whether or not the origin z = (0,0) is a regular point of w,
i.e. there exists § > 0 such that w is essentially bounded in the parabolic ball Q(&) = B(8)x] — §2,0[. Here,
as usual, B(d) stands for the ball of radius § centred at the origin. With a minor modification of what has
been done in the paper [4], one can show that if the origin z = 0 is a singular point of w then there exists the

so-called mild bounded ancient solution @ with the following properties:
] <1

in Q_ =R3x] — 00,0];

there is a pressure field p € Loo(—00,0; BMO(R3)) so that @ and p obey the Navier-Stokes equations

O+ - Vi— A= —Vp, divi=0
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in @_; and in addition

Cd

|z, )| < B

for all z = (z,t) € Q- . In our further considerations, we shall work with positive time ¢, setting
u(z,t) = u(x,—t) for t > 0. Therefore, the velocity field u satisfies:

u <1 (1.2)
in Q; = R3x]0,00[;
[u(0)] = 1; (1.3)
there is a pressure field p € Lo (0,00; BMO(R?)) so that v and p obey the backward Navier-Stokes equations
—Ou+u-Vu—Au=—-Vp, divu=0

in @4 ; and in addition

cd
lu(z,t)] < o+ v (1.4)

for all z = (z,t) € Q4.
To study the Liouville type statement about the above mild bounded ancient solutions, the duality

method has been exploited in the paper [3]. In particular, the following Cauchy problem has been considered:
Ov—u-Vv—Av—Vg=—divF, dive =0 (1.5)

in Q; = R3x]0, 00[ and
v(r,0) =0, xR (1.6)

It has been supposed that a tensor-valued field F' is smooth and compactly supported in @ . In addition,

it has been assumed that F' is skew symmetric, and therefore
divdiv F = Fij,ji =0. (17)

Under the above assumptions, the long time behavior of solutions to (1.5), (1.6) has been studied in [3].
As to the drift u, one may assume that u is a bounded divergence free field in @4, say |u| < 1, whose
derivatives of any order exist and are bounded in Q. It is not so difficult to check that the following identity

takes place:

T—o0
Q+ R3

/ w-div Fdzdt = — lim [ w(z,T) - v(z,T)dz. (1.8)

Therefore, if, for any skew symmetric tensor field F', the solution v to the dual problem (1.5), (1.6) has a

certain decay, then u must be identically equal to zero. It, in turns, says that the origin is a regular point of
w.
With regards to the long time behavior of v, it has been proved the following.
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Theorem 1.1 Let v be a solution v to (1.5) and (1.6) and let u be divergence free and satisfy (1.4). Then

for any m =0,1..., two decay estimates are valid:

3 1
SHh < PVt ———— 1.
oDl < elm.ca PWE s (19)
and
C(macdvF)
. < e ) .
[o(, 1) < W+ o) (1.10)
forall t>0.

Unfortunately, the above statement does not allow us to conclude that the mild bounded ancient solution u is
equal to zero.
In this paper, we would like to examine a certain modification of duality method letting F' = 0 but taking

nonzero initial data. To be precise, let us consider the following Cauchy problem
v —u-Vv—Av—Vqg=0, diveo =0 (1.11)

in Q; =R3x]0,00[ and
v(x,0) = vo(z) (1.12)

for z € R3. Here, vy belongs to the space J which is Ly-closure of the set
Coo(R?) = {v € C°(R?) : divw = 0}.

Formal calculations show that

/u(-,t) oy ) = /u(-,O)-v(-,O)dw _ /u(-,O) () (1.13)

for all ¢ > 0. Indeed,

//(v <Oy + u - Opv)dz+

0 R3

T
//(v~(u~Vu—Au—|—Vp)+u~(u~Vv—|—Av—|—Vq))dz:0

0 R3

It is also easy to see that equations (1.11) can be replaced with more symmetric ones:

ov—u-VoFu-Vo—Av—Vqg=0, dive =0 (1.14)
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in Q; = R3x]0, 00| as the following identity is valid:

0/R[u~(v-Vu)dz=O.

If we assume that

u(-, T)-v(-,T)dx — 0 (1.15)

R3
as T — oo for all vy € C§%H(R?), then
/u(', 0) - vo(-)dz =0
R3

for all vy € C§%(R?). The latter, together with (1.2) and (1.4), implies that u(x,0) = 0 in R?, which contradicts
to (1.3). It would be a proof of the fact that z = 0 is a regular point w. Therefore, we need to prove a certain
time decay of v that would provide (1.15). To this end, let us represent v as a sum of solutions to two Cauchy

problems so that

v =o' 4 0% (1.16)
ot — Avt =0in Qy, v'(-,0) =vg(-) in R?; (1.17)
Ov? — Av? +Vq = —dive ® u, dive? =0 (1.18)
in Q4 with v?(-,0) =0 in R3.
With regard to v!', we have the estimates
[0 )l < lvolls (1.19)

forall £ >0 and all 1 < s < oo, and thus

/u(~,T) ol (-, T)dr — 0
R3
as T — oo for all vy € CFH(R?).

Our aim is to prove results similar to what has been stated in the paper [3]. In particular, we are going

to show that Theorem 1.1 remains to be true in the following reduction.

Theorem 1.2 Let v be a solution to (1.11) and (1.12) and let u be divergence free and satisfy (1.4). Then,

for any m = 0,1..., two decay estimates are valid:

2 1

[02(-, t) |1 < e(m, cq, v0)VE W+ e)

(1.20)
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and

[V, t)]l2 < m (1.21)

forallt>1.

Unfortunately, decay bounds in Theorem 1.2 do not provide the above scenario. One needs to improve decay

estimates in it.

2. Comments on Proof of Theorem 1.2

Let
F=—-vQ®u.

The solution to the problem (1.18), (1.6) has the form, see for instance [2],

vi(x,t) = //K(:I: —y,t — s)F(y, s)dyds, (2.1)

0 R3
where the potential K = (K;j;) defined with the help of the standard heat kernel I' in the following way
AD(x,t) =T (x,t)

and
Kiji = ® 51 — 6a® kij-

It is easy to check that the following bound is valid:

c
Kz, t)| < ——5= 2.2
K@) < G e (22)
and therefore
c
|K (z,)|de < — (2.3)
/ 7
Assuming that
p€J6/5,2], (2.4)
and repeating the same arguments as in the paper [3], we arrive at a similar estimate
t 1
9 ds — 3
0?0l < C@) [ —— J s (Vs + lyl)dy)”
0
where, by (1.4),
/ Pl )PV + ) dy < eleallo-,5)12)% (25)
and thus
_5p—6
[0 ()l < * callo(, 5)|l2ds
0
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p>0/ \/js—sﬁ_%‘“ﬁca(llvl<-7s)||2+ [02(:, 5)[2)ds

Here, we would like to use the following facts about time decay of solutions to the heat equations, see for

example [5]:
Lemma 2.1 Let vy € L1(R?) and M = [ vodx. Then
R3

3p—1

257 op (1) = ML ()], — 0
as t — oo for each i =1,2,3 and for all 1 < p < oo.
From the above lemma, it follows that for any vo € Cf (R?), we have

3(1—p)

[ (5 D)llp < e(vo,p)f 7 (1)

for any ¢ > 0 and for any 1 < p < oo, where f(t) := max{1,/t}.

Therefore,

S calc(vo) FE(5) + 103, 9)||2)ds

12, 8)ly < C(p) /
0

where we need to evaluate the term

t
dS 751;;6 7%

To this end, consider two cases. In the first one, 0 <t < 1. Then

6 3(2—p)

t
d _5p—6 —
I:/ S5 T ds<ctr =t
0

<c(p).

;

If t > 1, then

1 t
d _5p—6 d __5p—6 _3
/ i 2r d8+/ i \/g p \/g 2ds = By + Bs.
0 1

Obviously, By < ¢(p). As Bsy, we have

t _§ ds _5p—6 _3
By = £ 2ds + Vs P /s %ds<
+1 1

t

2
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f % _5276_% t
2 _5p=6_3 t—1 7 ds
< s P Zds+ 4| — /
T vt—1 / Vs 2 t—s
1 1
2
Assuming further that
p<3/2, (2.6)
we arrive at:
\[ 41 _5p=6_3
2 6—4dp oc-ap | T t—1 * t—1 3(1—p)
By < ip _ 2 — < P
=T 0 h TV g =) ®)
Therefore, letting
t
ds 36 9
Apt) = [ 5 a2 ads, (2.7)
0
we can rewrite the previous estimate
3(1—p)
[0% (- O)llp < Cp)(e(casvo,p)f 7 (1) + Ap(t)). (2.8)
Now, one can repeat the above arguments for p = 1 and find
t
9 c
(1)1 < Fl(y,s)|dyds.
20l < [ —E= [17w.s)ldy
0 R3
Since
calv(y; )|
|]:(ya8)| < Y
Vs +yl
the latter estimate can be transformed as follows:
[ d (v )]
s calv(y, s
ol <e dy
Vi=s/) Vs+lyl
0 R3
[ ds R sise |\ s
<o ([ (o) )T ([ caloty ) an)
Vi—s Vs +yl
0 R3 R3

t
ds glibe g 645¢ 5¥5e
20 <€) [ SV ( [ (caloty. )™ ) ™
0

t—s
Rfi
with
1\ HE
Ci(e :(/(7> Edz) .
=g
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Simplifying slightly the previous bound, we have

ds —3+10e 1 9
VT () g 107 8) e ) s

Vis :

[02(- Dlls < Cale, ca) /
0

To estimate terms with v and v?, we are going to use Lemma 2.1 and (2.8) with p = 6/5 + ¢, respectively:

t
ds —3+10¢ _3(145¢) _ 3(1+5¢)
2ot < Calevca) [ 2= vs 5 (elea o (W5 T 4 ()
0
t d —3410e _3(1+5¢)
+ Ay ()ds << Caleea) [ /T (elewn )VET T 4 Ay (5)ds

On the other hand,

t

ds
Vi—s
0

32-p
2 p

AP)(t) < callv]l2.00 Vs T ds < cqllvol2Ca(p)VE

Therefore, we have

102, 1)11 < Cales car v0) (1 + [uoll2VE?) < ele, carvo) FE (1),

3. Improvement for L;-norm
Following [3], we have the energy inequality

Ay(t) + V(- 1)[l5 <0 (3.1)

with y(t) = [v(-, )13

The Fourier transform and Plancherel identity give us

0wt < - [1EPEOPd =~ [ PR ords- [ PP
R? 1€1>9(t) l€1<g(t)

where ¢(t) is a given function which will be specified later on. The latter implies

y'(H) + g ()y(t) < /(92(t)*\€l2)|5(§,t)|2d€-
|€1<g(t)

Taking the Fourier transform of the Navier-Stokes equation, we find
00 + |60 = 1,
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where H = —div (v ® u + Ig). Clearly,

ﬁ@wz—Aem&%Wrw»ﬁ@@w+%QWMﬁwﬂ

and
[H (& 9) < €N, 8l 5)] -
Denoting
a(s) = [[[v(-; s)llul, s)ll1,

we find
(& 1) < C/O exp{—[¢[*(t — s)}é[a(s)ds + [00(€) | exp{—|¢[*t}.

Applying the Holder inequality, we get
Y () + g (t)y(t) <

<o [ @1t [ expl-lee = s)ilats)ds + Fo(©) exp{—lePey) ds <
1€1<g(t)

t t
<o [ @O [ @os [ eml-2eP skt
[€]1<g(t)
+[30(&) ? exp{—2J¢[*t} ] dé < I + .
For the first term, we have
t t
hggéﬁ@@A [ @0 €y expi-leP (e - su)}ePdsad.
[€1<g(t)

It can be estimated in the same way as in [3]:

t
L < cgﬁ(t)\/i/ a’(s)ds.
0
As to the second term, we proceed as follows:
B<duwlt [ (60 - 6 exp-l¢Pe)de <
1€1<g(t)

g(t)

Sﬂmﬁ/@%ﬂ—ﬁmm&ﬁﬂﬂmﬁdmﬁfw-
0

Therefore, we find

Kit)y=L+1I< ch(t)\/%/Ot az(s)ds + c(vo)g5(t),
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and thus solution to our inequality has the form:
< c/exp{ _/92(7')d7'} s)ds + y(0) exp{— / T)dT}. (3.2)

4. Proof of Theorem 1.2
As in the paper [3], we use the induction in m. The basis of induction has been already established in Section
2. Let us assume that our statement is true for m and show that it is true for m + 1.

We can present the right hand side of (3.2) as a sum so that
y(t) < yi(t) + ya(t).

Then we select our function g(t) = h/(t)/h(t) with h(t) = In"(t+e) and k > 2m+2, for example, k = 2m +3.

Next, we observe that

a(t) < ([l ¢ Ol Ol + 1 OlluC O < Hlvoll + 1110 G, ul Ol
and, for ¢ > 1, by induction,

t

/a2 d8<2/||vo||1+2/|||v 9llu, 8)|2ds <

0

t
U0t+2/Hv ||d+2/Md<

1

¢
< ¢(vg, cq)t + ¢(vg, cq,m) / VsInT2" (s + €)ds.

1

The function y;(t) is estimated in a similar same way as it has been done in [3]. Indeed, we are going to

use the following simple statements.

Lemma 4.1 Let | be a real number and v > —1.

(i) There exists a positive constant c(v,1) such that

t
/57 In"(s+e)ds < c(y, D In~!(t +e)
1

forall t > 1;

(ii) There exists a positive constant c(7y,l) such that

;

t
1

/ Y In"!(s + e)ds < (v, )2 In "t 4 €), V> 1.

1
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Therefore, by Lemma 4.1, we have
t
/a2 )ds < c(vo)t + c(vo, cq,m )t% In"?™(t 4+ e) < ¢(vo, cd,m)t% In"2™(t 4 e)
0

forall t > 1.
Now, we can estimate K(¢) for ¢ > 1. Indeed,

K(t) < c(vo, cq,m) g% (t)t? lnzm(t +e) + c(vg) g (t) < c(vo, ca,m)g® (1)t In?™ (t+e)

forall t > 1.

For 0 <t <1, we have
t

[ a)ds < )

0
, and thus
K(t) < C(UO7 Cd, m)g5(t)

Now, we can find estimates y; and yo. Let us start with ys:

1 1
In*™ (14 ¢) In®" " 2(t 4 ¢) }

(s) h(0) .
h ) )W <c(vo,m)m1n{

Now, we shall treat y;. For 0 < ¢ < 1, it can be done easily. So that, we get y1(t) < ¢(vog, m) for this

time interval.
What happens if ¢t > 17 By the choice of the function g, we have

t

n(t) < % / h(s)K (s) ﬁ 0/ h(s)K (s)ds + / () K (s)ds]

0 1

| /\

¢
< <v0’cd’ 1+/h )s?In~? (s—l—e)ds]
0

The second term has been evaluated in the paper [3]. Therefore, finally, we find

y1(t) < (v, cg,m) In 2" "2 (t 4 2)
for all ¢ > 1. So, induction for Ls-norm is proved.
Now, we need to prove our statement for L;-norm. To this end, we need to consider A% 4e(t). For
0 <t <1, the estimate is simple: A%+E(t) < ¢(vg, cq,m).
In the case t > 1, we can use Lemma 4.1. Indeed,
ds __25e 1 12-15¢

g 2(6+5¢) —— < ¢(vg, cq, m)t36F58) ————————
ﬁt—s\f W (5 1 o) (vo, g, m) ™t + o)

t
As (1) < c(vo, ca,m)(1 +/
1
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Then, for t > 1, by Lemma 4.1,

ds —3+410e
§2(6+5¢) Ag+6 (3))

]

— s
t .
ds 3

1
< c(vg, cq,m (1+/ s )lecv,cnni
(vo, €a,m) Vi—s In™(t+e) aclvo, ca )lnm+1(t+e)

1

NG

for t > 1. Theorem 1.2 is proven.
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