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Abstract: In this note, we describe a way to study local regularity of a weak solution to the Navier-Stokes equations,
satisfying the simplest scale-invariant restriction, with the help of zooming and duality approach to the corresponding
mild bounded ancient solution.

Key words: Navier-Stokes equations, regularity of solutions

1. Introduction
One of the simplest but not yet solved problem of local regularity of weak solutions to the Navier-Stokes
equations is as follows. Consider the so-called suitable weak solution w ∈ L∞(−1, 0;L2(B))∩L2(−1, 0;W 1

2 (B))

and r ∈ L 3
2
(Q) to the classical Navier-Stokes equations:

∂tw + w · ∇w −∆w = −∇r, divw = 0

in the unit parabolic space-time ball Q = B×]− 1, 0[⊂ R3 × R . For a definition of suitable weak solutions, we
refer to the paper [1]. Let us assume that function w satisfies the additional restriction

|w(x, t)| ≤ cd

|x|+
√
−t

, ∀(x, t) ∈ Q, (1.1)

where cd > 0 is a given constant. The question is whether or not the origin z = (0, 0) is a regular point of w ,
i.e. there exists δ > 0 such that w is essentially bounded in the parabolic ball Q(δ) = B(δ)×] − δ2, 0[ . Here,
as usual, B(δ) stands for the ball of radius δ centred at the origin. With a minor modification of what has
been done in the paper [4], one can show that if the origin z = 0 is a singular point of w then there exists the
so-called mild bounded ancient solution ũ with the following properties:

|ũ| ≤ 1

in Q− = R3×]−∞, 0[ ;
|ũ(0)| = 1;

there is a pressure field p̃ ∈ L∞(−∞, 0;BMO(R3)) so that ũ and p̃ obey the Navier-Stokes equations

∂tũ+ ũ · ∇ũ−∆ũ = −∇p̃, div ũ = 0
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in Q− ; and in addition

|ũ(x, t)| ≤ cd

|x|+
√
−t

for all z = (x, t) ∈ Q− . In our further considerations, we shall work with positive time t , setting
u(x, t) = ũ(x,−t) for t ≥ 0 . Therefore, the velocity field u satisfies:

|u| ≤ 1 (1.2)

in Q+ = R3×]0,∞[ ;
|u(0)| = 1; (1.3)

there is a pressure field p ∈ L∞(0,∞;BMO(R3)) so that u and p obey the backward Navier-Stokes equations

−∂tu+ u · ∇u−∆u = −∇p, div u = 0

in Q+ ; and in addition

|u(x, t)| ≤ cd

|x|+
√
t

(1.4)

for all z = (x, t) ∈ Q+ .
To study the Liouville type statement about the above mild bounded ancient solutions, the duality

method has been exploited in the paper [3]. In particular, the following Cauchy problem has been considered:

∂tv − u · ∇v −△v −∇q = −divF, div v = 0 (1.5)

in Q+ = R3×]0,∞[ and

v(x, 0) = 0, x ∈ R3. (1.6)

It has been supposed that a tensor-valued field F is smooth and compactly supported in Q+ . In addition,
it has been assumed that F is skew symmetric, and therefore

div divF = Fij,ji = 0. (1.7)

Under the above assumptions, the long time behavior of solutions to (1.5), (1.6) has been studied in [3].
As to the drift u , one may assume that u is a bounded divergence free field in Q+ , say |u| ≤ 1 , whose

derivatives of any order exist and are bounded in Q+ . It is not so difficult to check that the following identity
takes place: ∫

Q+

u · divFdxdt = − lim
T→∞

∫
R3

u(x, T ) · v(x, T )dx. (1.8)

Therefore, if, for any skew symmetric tensor field F , the solution v to the dual problem (1.5), (1.6) has a
certain decay, then u must be identically equal to zero. It, in turns, says that the origin is a regular point of
w .

With regards to the long time behavior of v , it has been proved the following.
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Theorem 1.1 Let v be a solution v to (1.5) and (1.6) and let u be divergence free and satisfy (1.4). Then
for any m = 0, 1... , two decay estimates are valid:

∥v(·, t)∥1 ≤ c(m, cd, F )
√
t
3
2 1

lnm(t+ e)
(1.9)

and

∥v(·, t)∥2 ≤ c(m, cd, F )

lnm(t+ e)
(1.10)

for all t ≥ 0 .

Unfortunately, the above statement does not allow us to conclude that the mild bounded ancient solution u is
equal to zero.

In this paper, we would like to examine a certain modification of duality method letting F = 0 but taking
nonzero initial data. To be precise, let us consider the following Cauchy problem

∂tv − u · ∇v −△v −∇q = 0, div v = 0 (1.11)

in Q+ = R3×]0,∞[ and
v(x, 0) = v0(x) (1.12)

for x ∈ R3 . Here, v0 belongs to the space J which is L2 -closure of the set

C∞
0,0(R3) = {v ∈ C∞

0 (R3) : div v = 0}.

Formal calculations show that∫
R3

u(·, t) · v(·, t)dx =

∫
R3

u(·, 0) · v(·, 0)dx =

∫
R3

u(·, 0) · v0(·)dx (1.13)

for all t ≥ 0 . Indeed, ∫
R3

u(·, T ) · v(·, T )dx−
∫
R3

u(·, 0) · v0(·)dx =

T∫
0

∫
R3

(v · ∂t + u · ∂tv)dz+

T∫
0

∫
R3

(v · (u · ∇u−∆u+∇p) + u · (u · ∇v +∆v +∇q))dz = 0

It is also easy to see that equations (1.11) can be replaced with more symmetric ones:

∂tv − u · ∇v ∓ u · ∇v −△v −∇q = 0, div v = 0 (1.14)
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in Q+ = R3×]0,∞[ as the following identity is valid:

T∫
0

∫
R3

u · (v · ∇u)dz = 0.

If we assume that ∫
R3

u(·, T ) · v(·, T )dx → 0 (1.15)

as T → ∞ for all v0 ∈ C∞
0,0(R3) , then ∫

R3

u(·, 0) · v0(·)dx = 0

for all v0 ∈ C∞
0,0(R3) . The latter, together with (1.2) and (1.4), implies that u(x, 0) = 0 in R3 , which contradicts

to (1.3). It would be a proof of the fact that z = 0 is a regular point w . Therefore, we need to prove a certain
time decay of v that would provide (1.15). To this end, let us represent v as a sum of solutions to two Cauchy
problems so that

v = v1 + v2; (1.16)

∂tv
1 −∆v1 = 0 in Q+, v1(·, 0) = v0(·) in R3; (1.17)

∂tv
2 −∆v2 +∇q = −div v ⊗ u, div v2 = 0 (1.18)

in Q+ with v2(·, 0) = 0 in R3 .
With regard to v1 , we have the estimates

∥v1(·, t)∥s ≤ ∥v0∥s (1.19)

for all t ≥ 0 and all 1 ≤ s ≤ ∞ , and thus ∫
R3

u(·, T ) · v1(·, T )dx → 0

as T → ∞ for all v0 ∈ C∞
0,0(R3) .

Our aim is to prove results similar to what has been stated in the paper [3]. In particular, we are going
to show that Theorem 1.1 remains to be true in the following reduction.

Theorem 1.2 Let v be a solution to (1.11) and (1.12) and let u be divergence free and satisfy (1.4). Then,
for any m = 0, 1... , two decay estimates are valid:

∥v2(·, t)∥1 ≤ c(m, cd, v0)
√
t
3
2 1

lnm(t+ e)
(1.20)
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and

∥v2(·, t)∥2 ≤ c(m, cd, v0)

lnm(t+ e)
(1.21)

for all t ≥ 1 .

Unfortunately, decay bounds in Theorem 1.2 do not provide the above scenario. One needs to improve decay
estimates in it.

2. Comments on Proof of Theorem 1.2
Let

F = −v ⊗ u.

The solution to the problem (1.18), (1.6) has the form, see for instance [2],

v2(x, t) =

t∫
0

∫
R3

K(x− y, t− s)F(y, s)dyds, (2.1)

where the potential K = (Kijl) defined with the help of the standard heat kernel Γ in the following way

∆Φ(x, t) = Γ(x, t)

and
Kijl = Φ,ijl − δilΦ,kkj .

It is easy to check that the following bound is valid:

|K(x, t)| ≤ c

(t+ |x|2)2
, (2.2)

and therefore ∫
R3

|K(x, t)|dx ≤ c√
t
. (2.3)

Assuming that
p ∈]6/5, 2[, (2.4)

and repeating the same arguments as in the paper [3], we arrive at a similar estimate

∥v2(·, t)∥p ≤ C(p)

t∫
0

ds√
t− s

√
s
− 5p−6

2p

(∫
R3

|F(y, s)|2(
√
s+ |y|)2dy

) 1
2

,

where, by (1.4), ∫
R3

|F(y, s)|2(
√
s+ |y|)2dy ≤ c(cd∥v(·, s)∥2)2, (2.5)

and thus

∥v2(·, t)∥p ≤ C(p)

t∫
0

ds√
t− s

√
s
− 5p−6

2p cd∥v(·, s)∥2ds
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≤ C(p)

t∫
0

ds√
t− s

√
s
− 5p−6

2p cd(∥v1(·, s)∥2 + ∥v2(·, s)∥2)ds.

Here, we would like to use the following facts about time decay of solutions to the heat equations, see for
example [5]:

Lemma 2.1 Let v0 ∈ L1(R3) and M =
∫
R3

v0dx . Then

t
3
2

p−1
p ∥v1i (·, t)−MiΓ(·, t)∥p → 0

as t → ∞ for each i = 1, 2, 3 and for all 1 ≤ p ≤ ∞ .

From the above lemma, it follows that for any v0 ∈ C∞
0,0(R3) , we have

∥v1(·, t)∥p ≤ c(v0, p)f
3(1−p)

p (t)

for any t ≥ 0 and for any 1 ≤ p ≤ ∞ , where f(t) := max{1,
√
t}.

Therefore,

∥v2(·, t)∥p ≤ C(p)

t∫
0

ds√
t− s

√
s
− 5p−6

2p cd(c(v0)f
− 3

2 (s) + ∥v2(·, s)∥2)ds,

where we need to evaluate the term

I =

t∫
0

ds√
t− s

√
s
− 5p−6

2p f− 3
2 (s)ds.

To this end, consider two cases. In the first one, 0 ≤ t ≤ 1 . Then

I =

t∫
0

ds√
t− s

√
s
− 5p−6

2p ds ≤ ct
1
2−

5p−6
4p = ct

3(2−p)
4p ≤ c(p).

If t > 1 , then

I =

1∫
0

ds√
t− s

√
s
− 5p−6

2p ds+

t∫
1

ds√
t− s

√
s
− 5p−6

2p
√
s
− 3

2 ds = B1 +B2.

Obviously, B1 ≤ c(p) . As B2 , we have

B2 =

t∫
t+1
2

ds√
t− s

√
s
− 5p−6

2p
√
s
− 3

2 ds+

t+1
2∫

1

ds√
t− s

√
s
− 5p−6

2p
√
s
− 3

2 ds ≤

903



SEREGIN/Turk J Math

≤
√
2√

t− 1

t+1
2∫

1

√
s
− 5p−6

2p − 3
2 ds+

√
t− 1

2

− 5p−6
2p − 3

2
t∫

t+1
2

ds√
t− s

.

Assuming further that
p ≤ 3/2, (2.6)

we arrive at:

B2 ≤
√
2√

t− 1

6− 4p

4p
s

6−4p
4p

∣∣∣ t+1
2

1
+

√
t− 1

2

− 5p−6
2p − 3

2

2

√
t− 1

2
≤ c(p)f

3(1−p)
p (t).

Therefore, letting

Ap(t) :=

t∫
0

ds√
t− s

√
s
− 5p−6

2p cd∥v2(·, s)∥2ds, (2.7)

we can rewrite the previous estimate

∥v2(·, t)∥p ≤ C(p)(c(cd, v0, p)f
3(1−p)

p (t) +Ap(t)). (2.8)

Now, one can repeat the above arguments for p = 1 and find

∥v2(·, t)∥1 ≤
t∫

0

c√
t− s

∫
R3

|F(y, s)|dyds.

Since

|F(y, s)| ≤ cd|v(y, s)|√
s+ |y|

,

the latter estimate can be transformed as follows:

∥v2(·, t)∥1 ≤ c

t∫
0

ds√
t− s

∫
R3

cd|v(y, s)|√
s+ |y|

dy

≤ c

t∫
0

ds√
t− s

(∫
R3

( 1√
s+ |y|

) 6+5ε
1+5ε

dy
) 1+5ε

6+5ε
(∫
R3

(cd|v(y, s)|)
6+5ε

5 dy
) 5

6+5ε

for some positive 0 < ε < 3/10 . Hence,

∥v2(·, t)∥1 ≤ C1(ε)

t∫
0

ds√
t− s

√
s
3 1+5ε

6+5ε−1
(∫
R3

(cd|v(y, s)|)
6+5ε

5 dy
) 5

6+5ε

with

C1(ε) :=
(∫
R3

( 1

1 + |z|

) 6+5ε
1+5ε

dz
) 1+5ε

6+5ε

.
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Simplifying slightly the previous bound, we have

∥v2(·, t)∥1 ≤ C2(ε, cd)

t∫
0

ds√
t− s

√
s

−3+10ε
6+5ε (∥v1(·, s)∥ 6+5ε

5
+ ∥v2(·, s)∥ 6+5ε

5
)ds.

To estimate terms with v1 and v2 , we are going to use Lemma 2.1 and (2.8) with p = 6/5 + ε , respectively:

∥v2(·, t)∥1 ≤ C2(ε, cd)

t∫
0

ds√
t− s

√
s

−3+10ε
6+5ε (c(cd, v0, ε)(

√
s
− 3(1+5ε)

6+5ε + f− 3(1+5ε)
6+5ε (s))

+A 6
5+ε(s)))ds ≤≤ C2(ε, cd)

t∫
0

ds√
t−s

√
s

−3+10ε
6+5ε (c(cd, v0, ε)

√
s
− 3(1+5ε)

6+5ε +A 6
5+ε(s)))ds

≤ C3(ε, cd, v0) + C4(ε, cd)

t∫
0

ds√
t− s

√
s

−3+10ε
6+5ε A 6

5+ε(s)ds.

On the other hand,

A(p)(t) ≤ cd∥v∥2,∞

t∫
0

ds√
t− s

√
s
− 5p−6

2p ds ≤ cd∥v0∥2C2(p)
√
t
3
2

2−p
p .

Therefore, we have

∥v2(·, t)∥1 ≤ C4(ε, cd, v0)(1 + ∥v0∥2
√
t
3
2 ) ≤ c(ε, cd, v0)f

3
2 (t).

3. Improvement for L2 -norm

Following [3], we have the energy inequality

∂ty(t) + ∥∇v(·, t)∥22 ≤ 0 (3.1)

with y(t) = ∥v(·, t)∥22 .
The Fourier transform and Plancherel identity give us

∂ty(t) ≤ −
∫
R3

|ξ|2|v̂(ξ, t)|2dξ = −
∫

|ξ|>g(t)

|ξ|2|v̂(ξ, t)|2dξ −
∫

|ξ|≤g(t)

|ξ|2|v̂(ξ, t)|2dξ,

where g(t) is a given function which will be specified later on. The latter implies

y′(t) + g2(t)y(t) ≤
∫

|ξ|≤g(t)

(g2(t)− |ξ|2)|v̂(ξ, t)|2dξ.

Taking the Fourier transform of the Navier-Stokes equation, we find

∂tv̂ + |ξ|2v̂ = −Ĥ,
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where H = −div (v ⊗ u+ Iq). Clearly,

v̂(ξ, t) = −
∫ t

0

exp{−|ξ|2(t− s)}Ĥ(ξ, s)ds+ v̂0(ξ) exp{−|ξ|2t}

and
|Ĥ(ξ, s)| ≤ |ξ|∥|v(·, s)||u(·, s)|∥1.

Denoting
a(s) = ∥|v(·, s)||u(·, s)|∥1,

we find

|v̂(ξ, t)| ≤ c

∫ t

0

exp{−|ξ|2(t− s)}|ξ|a(s)ds+ |v̂0(ξ)| exp{−|ξ|2t}.

Applying the Hölder inequality, we get
y′(t) + g2(t)y(t) ≤

≤ c

∫
|ξ|≤g(t)

(g2(t)− |ξ|2)
(∫ t

0

exp{−|ξ|2(t− s)}|ξ|a(s)ds+ |v̂0(ξ)| exp{−|ξ|2t}
)2

dξ ≤

≤ c

∫
|ξ|≤g(t)

(g2(t)− |ξ|2)
[ ∫ t

0

a2(s)ds

∫ t

0

exp{−2|ξ|2(t− s1)}|ξ|2ds1+

+|v̂0(ξ)|2 exp{−2|ξ|2t}
]
dξ ≤ I1 + I2.

For the first term, we have

I1 ≤ c

∫ t

0

a2(s)ds

∫ t

0

∫
|ξ|≤g(t)

(g2(t)− |ξ|2) exp{−|ξ|2(t− s1)}|ξ|2ds1dξ.

It can be estimated in the same way as in [3]:

I1 ≤ cg6(t)
√
t

∫ t

0

a2(s)ds.

As to the second term, we proceed as follows:

I2 ≤ c∥v0∥21
∫

|ξ|≤g(t)

(g2(t)− |ξ|2) exp{−|ξ|2t}dξ ≤

≤ c∥v0∥21

g(t)∫
0

(g2(t)− r2) exp{−r2t}r2dr ≤ c∥v0∥21g5(t).

Therefore, we find

K(t) := I1 + I2 ≤ cg6(t)
√
t

∫ t

0

a2(s)ds+ c(v0)g
5(t),
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and thus solution to our inequality has the form:

y(t) ≤ c

t∫
0

exp
{
−

t∫
s

g2(τ)dτ
}
K(s)ds+ y(0) exp{−

∫ t

0

g2(τ)dτ}. (3.2)

4. Proof of Theorem 1.2
As in the paper [3], we use the induction in m . The basis of induction has been already established in Section
2. Let us assume that our statement is true for m and show that it is true for m+ 1 .

We can present the right hand side of (3.2) as a sum so that

y(t) ≤ y1(t) + y2(t).

Then we select our function g(t) = h′(t)/h(t) with h(t) = lnk(t+ e) and k > 2m+2 , for example, k = 2m+3 .
Next, we observe that

a(t) ≤ ∥|v1(·, t)||u(·, t)|∥1 + ∥|v2(·, t)||u(·, t)|∥1 ≤ ∥v0∥1 + ∥|v2(·, t)||u(·, t)|∥1

and, for t > 1 , by induction,

t∫
0

a2(s)ds ≤ 2

t∫
0

∥v0∥21 + 2

t∫
0

∥|v2(·, s)||u(·, s)|∥21ds ≤

≤ c(v0)t+ 2

1∫
0

∥v2(·, s)∥21ds+ 2

t∫
1

c2d∥|v2(·, s)|∥21
s

ds ≤

≤ c(v0, cd)t+ c(v0, cd,m)

t∫
1

√
s ln−2m(s+ e)ds.

The function y1(t) is estimated in a similar same way as it has been done in [3]. Indeed, we are going to
use the following simple statements.

Lemma 4.1 Let l be a real number and γ > −1 .
(i) There exists a positive constant c(γ, l) such that

t∫
1

sγ ln−l(s+ e)ds ≤ c(γ, l)tγ+1 ln−l(t+ e)

for all t ≥ 1 ;
(ii) There exists a positive constant c(γ, l) such that

t∫
1

1√
t− s

sγ ln−l(s+ e)ds ≤ c(γ, l)tγ+1/2 ln−l(t+ e), ∀t ≥ 1.
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Therefore, by Lemma 4.1, we have

t∫
0

a2(s)ds ≤ c(v0)t+ c(v0, cd,m)t
3
2 ln−2m(t+ e) ≤ c(v0, cd,m)t

3
2 ln−2m(t+ e)

for all t ≥ 1 .
Now, we can estimate K(t) for t ≥ 1 . Indeed,

K(t) ≤ c(v0, cd,m)g6(t)t2 ln2m(t+ e) + c(v0)g
5(t) ≤ c(v0, cd,m)g6(t)t2 ln2m(t+ e)

for all t ≥ 1 .
For 0 < t ≤ 1 , we have

t∫
0

a2(s)ds ≤ c(v0)

, and thus
K(t) ≤ c(v0, cd,m)g5(t).

Now, we can find estimates y1 and y2 . Let us start with y2 :

y2(t) ≤ y0

t∫
0

h′(s)

h(s)
ds = y(0)

h(0)

h(t)
≤ c(v0,m)min

{ 1

ln2m+2(1 + e)
,

1

ln2m+2(t+ e)

}
.

Now, we shall treat y1 . For 0 < t ≤ 1 , it can be done easily. So that, we get y1(t) ≤ c(v0,m) for this
time interval.

What happens if t ≥ 1? By the choice of the function g , we have

y1(t) ≤
1

h(t)

t∫
0

h(s)K(s)ds ≤ 1

h(t)

[ 1∫
0

h(s)K(s)ds+

t∫
1

h(s)K(s)ds
]

≤ c(v0, cd,m)

h(t)

[
1 +

t∫
0

h(s)g6(s)s2 ln−2m(s+ e)ds
]
.

The second term has been evaluated in the paper [3]. Therefore, finally, we find

y1(t) ≤ c(v0, cd,m) ln−2m−2(t+ 2)

for all t ≥ 1 . So, induction for L2 -norm is proved.
Now, we need to prove our statement for L1 -norm. To this end, we need to consider A 6

5+ε(t) . For

0 < t ≤ 1 , the estimate is simple: A 6
5+ε(t) ≤ c(v0, cd,m) .

In the case t ≥ 1 , we can use Lemma 4.1. Indeed,

A 6
5+ε(t) ≤ c(v0, cd,m)(1 +

t∫
1

ds√
t− s

√
s
− 25ε

2(6+5ε)
1

lnm+1(s+ e)
≤ c(v0, cd,m)t

12−15ε
4(6+5ε)

1

lnm+1(t+ e)
.
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Then, for t ≥ 1 , by Lemma 4.1,

∥v2(·, t)∥1 ≤ c(v0, cd,m)
(
1 +

t∫
0

ds√
t− s

s
−3+10ε
2(6+5ε)A 6

5+ε(s)
)

≤ c(v0, cd,m)
(
1 +

t∫
1

ds√
t− s

s
1
4

1

lnm+1(t+ e)

)
leqc(v0, cd,m)

t
3
2

lnm+1(t+ e)

for t ≥ 1 . Theorem 1.2 is proven.
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