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Abstract: We develop and study an explicit time-space discrete discontinuous Galerkin finite element method to
approximate the solution of one-dimensional nonlinear wave equations. We show that the numerical scheme is stable
if a nonuniform time mesh is considered. We also investigate the blow-up phenomena and we prove that under weak
convergence assumptions, the numerical blow-up time tends toward the theoretical one. The validity of our results is
confirmed throughout several examples and benchmarks.
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1. Introduction
This paper is concerned with the development of a numerical method, based on discontinuous Galerkin (DG)
formulation, in order to approximate the blow-up behaviors of smooth solutions of the semilinear wave equation
in one space dimension Ω = (a, b) ⊂ R with periodic boundary conditions ∂ttu− ∂xxu = |u|p, in Ω× (0,∞)

u(0) = u0, ∂tu(0) = u1, in Ω̄
u(a, t) = u(b, t), t ⩾ 0.

(1.1)

with p > 1 . The theoretical study of the semilinear wave equation is well developed. In [7] and [8], Cafarelli and
Friedman showed the existence of solutions of Cauchy problems for smooth initial data and gave a description
of the blow-up set. In [24], Glassey proved that under suitable assumptions on the initial data, the solution u

of (1.1) blows up in the following sense: there exists T∞ <∞ , called the blow-up time, such that the solution
u exists on [0, T∞) and

‖u(., t)‖L∞(Ω) −→ ∞ as t −→ T∞.

Recently, Merle and Zaag gave in a series of papers a classification of the blow-up behavior and an exhaustive de-
scription of the geometry of the blowup set [36–39]. More theoretical results can also be found in [4, 8, 25, 32, 34].

From a numerical point of view, the approximation of solutions which blow up in finite time is more
delicate. Indeed, one of the major difficulties when deriving numerical schemes is related to the standard
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stability criterion which imposes the boundedness of the numerical solution at any finite time. This is clearly
in opposition with the sought blow-up behavior. In addition, the numerical solutions may remain bounded
though the exact solutions do explode in finite time. These aspects have been observed when using a spectral
method or even a finite differences (FD) method for the Constantin-Lax-Majda equation [12, 20]. To overcome
such a difficulty, Nakagawa [40] first introduced an adaptive time-stepping strategy to compute the blow-up FD
solutions and the blow-up time for the 1D semilinear heat equation ∂tu−∂xxu = u2 in (0, 1) with homogeneous
Dirichlet boundary conditions. To ensure the stability of his numerical scheme, he defined a local time stepping
given by

∆tn = τ min

(
1,

1

‖unh‖2

)
,

where τ is a prescribed parameter. He showed that the numerical solution converges point-wise toward the
exact solution. Moreover, by setting the numerical blow-up time

T (τ,∆x) =

∞∑
n=0

∆tn,

he proved that T (τ,∆x) is finite and converges toward the theoretical blow-up time when ∆x goes to zero.
Since then, many authors have improved Nakagawa’s results and showed that the FD schemes with adaptively-
defined time mesh give good approximation for the blow-up solution of the nonlinear heat equation [1, 10, 11].
Other methods using different approaches, such as finite elements methods, semidiscretization and line methods,
rescaling techniques, for the numerical approximation of blow-up solutions of parabolic equations can also be
found in [5, 6, 14, 41] and references therein.

For hyperbolic equations, Cho applied Nakagawa’s ideas to the nonlinear wave equation with nonuniform
time mesh [12]. Recently, Sasaki and Saito [42] reduced the nonlinear wave equation to a first order system
and considered an FD scheme with a local time stepping. They succeeded in proving the convergence of their
FD scheme and the numerical blow-up time. It is worth noticing that almost all the methods we found in
the literature are essentially based on FD discretizations, and only few use variational (integral) formulations
[26, 28, 30]. We propose in this paper to investigate a DG method to numerically solve the semilinear wave
equation (1.1) when blow-up phenomena occur.

The organization of this paper is as follows. In Section 2, we present the DG methods and we derive
a numerical scheme for the nonlinear wave equation. Section 3 is devoted to the proof of the stability of the
proposed numerical scheme. In Section 4, we prove that the numerical blow-up time converges toward the
exact blow-up time under weak convergence assumptions. Finally, we provide several numerical examples that
illustrate the validity of our proposed method in Section 5.

2. Discontinuous Galerkin method

In this section, we derive a discontinuous Galerkin scheme (DG) for the nonlinear wave equation (1.1). Formally,
one may rewrite the D’Alembert operator as □ = (∂t − ∂x) (∂t + ∂x) . Based on such a decomposition, we split
(1.1) into a first order system as follows:
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

∂tu+ ∂xu = v, in (a, b)× (0,∞)
∂tv − ∂xv = |u|p, in (a, b)× (0,∞)
u(x, 0) = u0(x), x ∈ (a, b)
v(x, 0) = v0(x), x ∈ (a, b),
u(a, t) = u(b, t), t ⩾ 0
v(a, t) = v(b, t), t ⩾ 0.

(2.1)

with v0 = u1 + u′0 .

2.1. Space discretization

In order to introduce a variational approximation of the system (2.1), we consider a partition for the spatial

domain [a, b] =
⋃I

i=1Ki consisting of cells Ki = [xi− 1
2
, xi+ 1

2
] , 1 ⩽ i ⩽ I . The length of the cell Ki is denoted

hi = xi+ 1
2
− xi− 1

2
. For simplicity, we shall assume that hi = h > 0 for all i . Next, we define the finite

dimensional space Xk
h consisting of all functions f such that their restriction on a cell Ki is a polynomial of

degree at most k , i.e.
Xk

h = {f / f |Ki ∈ Pk[Ki], i = 1, . . . , I} ,

where Pk[Ki] denotes the space of polynomials in Ki of degree less than or equal to k . In the sequel, we will
consider the Lagrange polynomials, denoted 〈φi

j〉1⩽j⩽k+1 , as a basis of Pk[Ki] . Notice that the functions of

Xk
h are allowed to be discontinuous across the elements interfaces. The solutions of the numerical method are

denoted by uh and vh and both belong to Xk
h . We denote by (uh)

−
i+ 1

2

and (uh)
+
i+ 1

2

the left and right limits

of uh at xi+ 1
2

, respectively. Moreover, we denote by [uh]i+ 1
2
= (uh)

+
i+ 1

2

− (uh)
−
i+ 1

2

the jump of uh at the

cell interface xi+ 1
2

. The same notations apply also to vh . Multiplying the system (2.1) by test functions and

integrating over the cells yields the following variational formulation: find (uh, vh) ∈ Xk
h ×Xk

h such that for all
test functions (φh, ψh) ∈ Xk

h ×Xk
h and for any 1 ⩽ i ⩽ I∫

Ki

∂tuh φhdx−
∫
Ki

uh ∂xφhdx

+ (ûh φh)i+ 1
2
− (ûh φh)i− 1

2
=

∫
Ki

vh φhdx

(2.2a)

∫
Ki

∂tvh ψhdx+

∫
Ki

vh ∂xψhdx

− (v̂h ψh)i+ 1
2
+ (v̂h ψh)i− 1

2
=

∫
Ki

Ik
h (|uh|p)ψhdx,

(2.2b)

where ûh and v̂h are the numerical fluxes and have to be defined at the cell interfaces, and Ik
h : C([a, b]) → Xk

h

is the interpolation operator defined by Ik
h(f) =

∑k+1
j=1 f(xj)φj . In general, these numerical fluxes depend

on the values of the numerical solution from both sides of the interface. Here, we propose a backward (resp.
forward) flux to define the trace of uh (resp. vh ) at an interface xi± 1

2
, i.e.

(ûh)i± 1
2
= (uh)

−
i± 1

2

, (v̂h)i± 1
2
= (vh)

+
i± 1

2

. (2.3)
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It follows that (2.2) can be written as: ∀ 1 ⩽ i ⩽ I and ∀ 1 ⩽ j ⩽ k + 1∫
Ki

∂tu
i
h φ

i
jdx−

∫
Ki

uih ∂xφ
i
jdx+ (uh)

−
i+ 1

2

φi
j(xi+ 1

2
)− (uh)

−
i− 1

2

φi
j(xi− 1

2
) =

∫
Ki

vih φ
i
jdx (2.4a)∫

Ki

∂tv
i
h ψ

i
jdx+

∫
Ki

vih ∂xψ
i
jdx− (vh)

+
i+ 1

2

ψi
j(xi+ 1

2
) + (vh)

+
i− 1

2

ψi
j(xi− 1

2
) =

∫
Ki

Ik
h

(
|uih|p

)
ψi
jdx, (2.4b)

with uih = uh|Ki
(resp. vih = vh|Ki

) is the restriction of uh (resp. vh ) over the cell Ki . Integrating by parts
once more, one may write (2.4) as: ∀ 1 ⩽ i ⩽ I and ∀ 1 ⩽ j ⩽ k + 1∫

Ki

(
∂tu

i
h + ∂xu

i
h

)
φi
j dx+ [uh]i− 1

2
φi
j(xi− 1

2
) =

∫
Ki

vih φ
i
j dx (2.5a)∫

Ki

(
∂tv

i
h − ∂xv

i
h

)
ψi
j dx− [vh]i+ 1

2
ψi
j(xi+ 1

2
) =

∫
Ki

Ik
h

(
|uih|p

)
ψi
j dx, (2.5b)

where [·] denotes the jump at the cell interface. Recall that uh and vh belong to Xk
h ; hence, one can write

uih(x, t) =

k+1∑
ℓ=1

uiℓ(t)φ
i
ℓ(x) and vih(x, t) =

k+1∑
ℓ=1

viℓ(t)ψ
i
ℓ(x). (2.6)

Moreover, since Ik
h

(
|uih|p

)
also belongs to Xk

h , then we have for all 1 ⩽ i ⩽ I

Ik
h

(
|uih(x, t)|p

)
=

k+1∑
ℓ=1

|uiℓ(t)|p φi
ℓ(x). (2.7)

Plugging (2.6) and (2.7) into (2.5) yields the semidiscrete matricial system: ∀ t > 0 and ∀ 1 ⩽ i ⩽ I

M i∂tU
i
h(t) +Ri U i

h(t) +Ai U i
h(t)−Bi U i−1

h (t) =M iV i
h(t), (2.8a)

M i∂tV
i
h(t)−Ri V i

h(t)− Ci V i+1
h (t) +Di V i

h(t) =M i|U i
h(t)|p, (2.8b)

where U i
h =

(
ui1, . . . , u

i
k+1

)
, V i

h =
(
vi1, . . . , v

i
k+1

)
, |U i

h|p =
(
|ui1|p, . . . , |uik+1|p

)
and ∀ 1 ⩽ j, ℓ ⩽ k + 1

M i
jℓ =

∫
Ki

φi
j φ

i
ℓ dx, Ri

jℓ =

∫
Ki

φi
j ∂xφ

i
ℓ dx,

Ai
jℓ = φi

j(xi− 1
2
) φi

ℓ(xi− 1
2
), Bi

jℓ = φi
j(xi− 1

2
) φi−1

ℓ (xi− 1
2
),

and
Ci

jℓ = φi
j(xi+ 1

2
) φi+1

ℓ (xi+ 1
2
), Di

jℓ = φi
j(xi+ 1

2
) φi

ℓ(xi+ 1
2
).

For the boundary conditions, we set U0
h(t) := U I

h(t) and V I+1
h (t) := V 1

h (t) for all t ⩾ 0 .

2.2. Time discretization
A fully discrete scheme of (2.8) can be derived using an approximation of the time derivative ∂tUh and ∂tVh .
Here, we used the explicit forward Euler method with nonconstant time step. Let ∆t0 , ∆t1 , . . . be positive
constants and set
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t0 = 0, tn =
n−1∑
ℓ=0

∆tℓ = tn−1 +∆tn−1 (n ⩾ 1). (2.9)

Then, we approximate the time derivative of Uh and Vh at time tn as follows

∂tUh(t
n) ≈

Un+1
h − Un

h

∆tn
and ∂tVh(t

n) ≈
V n+1
h − V n

h

∆tn
,

where Un
h (resp. V n

h ) is the value of Uh (resp. Vh ) at time tn . The fully discrete DG scheme for the nonlinear
wave equation (1.1) is then given by: ∀n ⩾ 0 , ∀ 1 ⩽ i ⩽ I and ∀ 1 ⩽ j ⩽ k + 1∫

Ki

(
ui,n+1
h − ui,nh

∆tn
+ ∂xu

i,n
h

)
φi
j dx+ [unh]i− 1

2
φi
j(xi− 1

2
) =

∫
Ki

vi,nh φi
j dx (2.10a)

∫
Ki

(
vi,n+1
h − vi,nh

∆tn
− ∂xv

i,n
h

)
ψi
j dx− [vnh ]i+ 1

2
ψi
j(xi+ 1

2
) =

∫
Ki

Ik
h

(
|ui,n+1

h |p
)
ψi
j dx, (2.10b)

with the initial conditions (ui,0h , vi,0h ) = (Ik
hu

i
0, Ik

hv
i
0) and the periodic boundary conditions (u1,nh , v1,nh ) =

(uI,nh , vI,nh ) . Equivalently, the system (2.10) writes in matricial form: ∀ n ⩾ 0 and ∀ 1 ⩽ i ⩽ I

M iU
i,n+1
h − U i,n

h

∆tn
+
(
Ri +Ai

)
U i,n
h −Bi U i−1,n

h =M iV i,n
h , (2.11a)

M iV
i,n+1
h − V i,n

h

∆tn
−
(
Ri −Di

)
V i,n
h − Ci V i+1,n

h =M i|U i,n+1
h |p, (2.11b)

U i,0
h = Ik

hu
i
0, V i,0

h = Ik
hv

i
0, (2.11c)

U0,n
h := U I,n

h , V I+1,n
h := V 1,n

h . (2.11d)

Notice that scheme (2.11) is fully explicit in time. This is of major advantage when performing the calculation
of the numerical solution from one time step to another since neither matrix inversions nor implicit nonlinear
computations have to be performed. The drawback of such formulations is their lack of convergence results.
On the other hand, the implicit DG schemes are proved to be stable and convergent in general. However, the
numerical solution is given implicitly and requires tremendous computational costs to be evaluated. Moreover,
the existence of the solution is not even guaranteed in some cases. For implicit DG formulations, on may refer,
e.g., to [30, 33].

3. Study of the DG scheme
We prove in this section the consistency and the local stability of the DG scheme.

3.1. Consistency

Lemma 3.1 The DG scheme (2.10) is consistent with the system (2.1).

Proof It is obvious from (2.3) that the numerical fluxes are monotone and thus consistent [19]. Our purpose now
is to prove that the approximation of the nonlinear term is also consistent with the original system (2.1). We shall
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assume that the solution u ∈ C2([0, T∞),Hm+2(a, b)) for a given m ⩾ 1 . Thus, v ∈ C1([0, T∞),Hm+1(a, b))

and the jumps [u]i+ 1
2

and [v]i+ 1
2

vanish over the interfaces xi+ 1
2

for all 0 ⩽ i ⩽ I and for all time t . Denote

rn :=

I∑
i=1

∫
Ki

(
u(x, tn+1)− u(x, tn)

∆tn
+ ∂xu(x, t

n)

)
φi(x) dx

+

I∑
i=1

[u(·, tn)]i− 1
2︸ ︷︷ ︸

=0

φi(xi− 1
2
)−

I∑
i=1

∫
Ki

v(x, tn)φi(x) dx (3.1)

and

sn :=

I∑
i=1

∫
Ki

(
v(x, tn+1)− v(x, tn)

∆tn
− ∂xv(x, t

n)

)
ψi(x) dx

−
I∑

i=1

[v(·, tn)]i+ 1
2︸ ︷︷ ︸

=0

ψi(xi+ 1
2
)−

I∑
i=1

∫
Ki

Ik
h

(
|u(x, tn+1)|p

)
ψi(x) dx. (3.2)

It follows by (2.1) and using a first order Taylor expansion in (3.1) that

|rn| ⩽ C1∆t
n ∀ n ⩾ 0

with C1 > 0 is independent of ∆tn . Similarly, we have using a second order Taylor series in (3.2)

sn =

I∑
i=1

∫
Ki

∆tn∂ttv(x, ξ
n)ψi(x) dx+

I∑
i=1

∫
Ki

(
|u(x, tn+1)|p − Ik

h

(
|u(x, tn+1)|p

))
ψi(x) dx.

Using the classical estimate (see, e.g., [22, Theorem 1.103])

‖v − Ik
hv‖L∞(K) ⩽ C̃hm for any v ∈ Hm+1(K) (3.3)

we deduce
|sn| ⩽ C2∆t

n + C3h
m ∀ n ⩾ 0.

with C2 and C3 are positive constants independent of ∆tn and h . This concludes the consistency of the
proposed DG scheme. 2

3.2. Positivity and local stability

For uh ∈ Xk
h , we define the norm

‖uh‖∞ := ‖Uh‖∞ = max
1⩽i⩽I

‖U i
h‖∞ = max

1⩽i⩽I
max

1⩽j⩽k+1
|uij |,

where the uij are the coordinates of uh in the Lagrange polynomial basis.

Proposition 3.2 Let σ > 0 and ν > 0 be arbitrary real numbers and set

∆tn = h1+σ min

(
1,

1

‖unh‖
1+ν
∞

)
. (3.4)
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Suppose the initial conditions satisfy min(u0, v0) > µ ⩾ 0 . Then, for any N ∈ N , there exists a constant
hN > 0 depending on N , u0 and v0 such that for all h ∈ (0, hN ] ,

Un
h > µ and V n

h > µ ∀ 1 ⩽ n ⩽ N. (3.5)

(the inequalities are element-wise). In addition, if
∑

n⩾0
1

∥un
h∥ν

∞
+ 1

∥vn
h∥ν

∞
< ∞ , then (3.5) holds for hN = h∗

independent of N .

Proof We proceed by induction on n . Since u0 > µ ⩾ 0 (resp. v0 > µ ⩾ 0) then ui,0j = u0|Ki
(xij) > µ

(resp. vi,0j = v0|Ki
(xij) > µ); hence, (3.5) holds true for n = 0 . Let N ∈ N and suppose (3.5) is valid for all

0 ⩽ n ⩽ N − 1 , then ui,nj > µ and vi,nj > µ for all 1 ⩽ i ⩽ I and all 1 ⩽ j ⩽ k + 1 . Moreover, equation (2.11)
reads

U i,n+1
h = U i,n

h +
∆tn

h

(
E U i,n

h + F U i−1,n
h

)
+∆tnV i,n

h

with E = h(M i)−1(Ri+Ai) and F = −h(M i)−1Bi are constant matrices that do not depend on h and satisfy

k+1∑
ℓ=1

Ejℓ + Fjℓ = 0 ∀ 1 ⩽ j ⩽ k + 1. (3.6)

(see Appendix A for details). Denote x+ = max(x, 0) and x− = min(x, 0) for any x ∈ R , then we obtain for
1 ⩽ i ⩽ I and 1 ⩽ j ⩽ k + 1

ui,n+1
j = ui,nj +

∆tn

h

k+1∑
ℓ=1

(
Ejℓ u

i,n
ℓ + Fjℓ u

i−1,n
ℓ

)
+∆tnvi,nj

= ui,nj +
∆tn

h

(
k+1∑
ℓ=1

(
E+

jℓ u
i,n
ℓ + F+

jℓ u
i−1,n
ℓ

)
+

k+1∑
ℓ=1

(
E−

jℓ u
i,n
ℓ + F−

jℓ u
i−1,n
ℓ

))
+∆tnvi,nj .

Denote un = mini,j u
i,n
j and un = maxi,j u

i,n
j and use (3.6), one obtains

ui,n+1
j ⩾ un +

∆tn

h

(
k+1∑
ℓ=1

(
E+

jℓ + F+
jℓ

)
un +

k+1∑
ℓ=1

(
E−

jℓ + F−
jℓ

)
un

)

= un +
∆tn

h

(
k+1∑
ℓ=1

(
E+

jℓ + F+
jℓ

))
(un − un) .

Let αn = ρ∆tn

h with

ρ = min
1⩽j⩽k+1

k+1∑
ℓ=1

(
E+

jℓ + F+
jℓ

)
, (3.7)

then we have
un+1 ⩾ un + αn(u

n − un). (3.8)
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A straightforward induction on n shows that

un+1 ⩾
(

n∏
m=0

(1 + αm)

)
u0 −

n∑
ℓ=0

(
n∏

m=ℓ+1

(1 + αm)

)
αℓu

ℓ

⩾
(

n∏
m=0

(1 + αm)

)(
u0 − ρ

h

n∑
ℓ=0

∆tℓ ‖uℓ‖∞

)
. (3.9)

Now, if ∆tℓ ⩽ h1+σ

∥uℓ
h∥

1+ν
∞

⩽ h1+σ

∥uℓ
h∥∞

then the inequality (3.9) implies that for all 0 ⩽ n ⩽ N

un+1 > u0 −Nρhσ.

Hence, if h ⩽ hN :=

(
u0 − µ

Nρ

)1/σ

, then un+1 > µ ; thus, Un+1
h > µ . Moreover, if

∑
n⩾0

1
∥un

h∥ν
∞
< ∞ then

S =
∑

n⩾0 ∆t
n‖unh‖∞ <∞ and (3.9) implies un+1 > u0 − Sρhσ . Taking h∗ =

(
u0 − µ

Sρ

)1/σ

yields the result.

The proof for V n
h is similar. 2

Theorem 3.3 Let ∆tn be given by (3.4), and let Λ∞ = ‖u0h‖∞ + ‖v0h‖∞ . Then, for any N ∈ N , there exists
a constant hN,Λ∞ > 0 depending only on N and Λ∞ such that if h ∈ (0, hN,Λ∞ ] , then

sup
1⩽n⩽N

(‖unh‖∞ + ‖vnh‖∞) ⩽ 2Λ∞. (3.10)

Proof Firstly, we rewrite the scheme (2.11) as{
Un+1
h = MnU

n
h +∆tnV n

h

V n+1
h = NnV

n
h +∆tnf(Un+1

h )
(3.11)

where

Mn =



MA 0 . . . 0 MB

MB MA 0 . . . 0

0 MB MA
. . . ...

... . . . . . . . . . 0
0 . . . 0 MB MA

 and Nn =



ND NC 0 . . . 0

0 ND NC
. . . ...

... . . . . . . . . . 0
0 . . . 0 ND NC

NC 0 . . . 0 ND


with

MA = Ik+1 −∆tnM−1(R+A), MB = ∆tnM−1B,

ND = Ik+1 −∆tnM−1(D −R), NC = ∆tnM−1C,

and

f(v) = (|v1|p, . . . , |vI |p)T for v = (v1, . . . , vI)
T .

Now, we prove (3.10) by induction on n . Let N ∈ N and assume that

‖Un
h ‖∞ + ‖V n

h ‖∞ ⩽ 2Λ∞ ∀ 0 ⩽ n ⩽ N − 1.
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Using (3.11), we may rewrite Un+1 and V n+1 as

Un+1
h =Mn . . .M0 U

0
h +

n∑
j=0

∆tn−jMn . . .Mn−j+1V
n−j
h , (3.12)

V n+1
h = Nn . . . N0 V

0
h +

n∑
j=0

∆tn−jNn . . . Nn−j+1 f(U
n−j+1
h ). (3.13)

At this stage, we need the following result.

Lemma 3.4 ‖Mn‖∞ = ‖Nn‖∞ ⩽ 1 + 2ρ
∆tn

h
.

Proof See Appendix B. 2

It follows by the induction hypothesis

‖Un+1
h ‖∞ ⩽

n∏
ℓ=0

(
1 + 2ρ

∆tℓ

h

)
‖U0

h‖∞ + h1+σ
n∑

j=0

j−1∏
ℓ=0

(
1 + 2ρ

∆tn−ℓ

h

)
‖V n−j

h ‖∞

⩽
n∏

ℓ=0

(1 + 2ρhσ)
(
‖U0

h‖∞ + 2Λ∞(n+ 1)h1+σ
)

= (1 + 2ρhσ)
n+1 (‖U0

h‖∞ + 2Λ∞(n+ 1)h1+σ
)

where ρ is given by (3.7). It follows that ∀ 0 ⩽ n ⩽ N − 1

‖Un+1
h ‖∞ ⩽ (1 + 2ρhσ)

N (‖U0
h‖∞ + 2Λ∞Nh

1+σ
)
. (3.14)

Similarly, we obtain from (3.13)

‖V n+1
h ‖∞ ⩽

n∏
ℓ=0

(
1 + 2ρ

∆tℓ

h

)
‖V 0

h ‖∞ + h1+σ
n∑

j=1

j−1∏
ℓ=0

(
1 + 2ρ

∆tn−ℓ

h

)
‖Un−j+1

h ‖p∞ + h1+σ‖Un+1
h ‖p∞

⩽ (1 + 2ρhσ)
n+1 (‖V 0

h ‖∞ + (2Λ∞)pnh1+σ
)
+ h1+σ (1 + 2ρhσ)

p(n+1) (‖U0
h‖∞ + 2Λ∞(n+ 1)h1+σ

)p
.

Using the identity (x + y)r ⩽ 2r−1(xr + yr) for any nonnegative reals x and y and any r ⩾ 1 , we obtain
∀ 0 ⩽ n ⩽ N − 1

‖V n+1
h ‖∞ ⩽ (1 + 2ρhσ)

N (‖V 0
h ‖∞ + (2Λ∞)pNh1+σ

)
+ 2p−1h1+σ (1 + 2ρhσ)

pN (‖U0
h‖p∞ + (2Λ∞Nh

1+σ)p
)
. (3.15)

It follows by (3.14) and (3.15)

‖Un+1
h ‖∞ + ‖V n+1

h ‖∞ ⩽ (1 + 2ρhσ)
N
Λ∞ +Nh1+σ (1 + 2ρhσ)

N
(2Λ∞ + (2Λ∞)p)

+ 2p−1h1+σ (1 + 2ρhσ)
pN

Λp
∞
(
1 + (2Nh1+σ)p

)
.
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Set

hN,Λ∞ = min


(
( 32 )

1
N − 1

2ρ

) 1
σ

,
Λ∞

[12NΛ∞(1 + (2Λ∞)p−1)]
1

1+σ

,
Λ∞[

4 (3Λ∞)
p
(
1 + Λpσ

∞
6p(1+(2Λ∞)p−1)p

)] 1
1+σ

 ,

then one can check that ∀ h ∈ (0, hN,Λ∞ ] , we have

‖Un+1
h ‖∞ + ‖V n+1

h ‖∞ ⩽ 3Λ∞

2
+

Λ∞

4
+

Λ∞

4
= 2Λ∞.

2

4. Numerical blow-up
In this section, we prove that the numerical blow-up time converges toward the exact blow-up time if the discrete
solution uh weakly converges toward the exact solution u . The following functional will be useful.

K(u(t)) :=
1

b− a

∫ b

a

u(x, t)dx. (4.1)

Proposition 4.1 [42] Assume that

α = K(u0) ⩾ 0, β = K(u1) > 0.

Then, the solution u of (1.1) blows up in finite time T∞ ∈ (0,∞) .

Definition 4.2 We define the numerical blow-up time by

T (h) = lim
n−→∞

tn =

∞∑
n=0

∆tn.

We say that the numerical solution blows up if

lim
n→∞

‖unh‖L∞(a,b) = lim
tn→T (h)

‖unh‖L∞(a,b) = ∞.

Moreover, we say that the numerical solution blows up in finite time if T (h) <∞ .

Proposition 4.3 Let (unh, v
n
h) be the solution of (2.10). Define

Kh(u
n
h) =

1

b− a

I∑
i=1

∫
Ki

ui,nh (x)dx, (4.2)

and suppose βh := Kh(u
1
h) > 0 and αh := Kh(u

0
h) ⩾ 0 . Then (Kh(u

n
h))n is a strictly increasing unbounded

sequence and for all n ⩾ 0

(
Kh(u

n+1
h )−Kh(u

n
h)

∆tn

)2

⩾ λ

p+ 1
(Kh(u

n
h))

p+1
+ γh ⩾ 0
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where

γh =

(
βh − αh

∆t0

)2

− λ

p+ 1
αp+1
h

and λ > 0 is a constant independent of h .

Proof Recall that the scheme (2.10a)-(2.10b) is equivalent to equations (2.4a)-(2.4b). Then, take φi
j ≡ 1 in

(2.4a) yields ∫
Ki

ui,n+1
h − ui,nh

∆tn
dx+ ui,nh (xi+ 1

2
)− ui−1,n

h (xi− 1
2
) =

∫
Ki

vi,nh dx.

Sum up over i = 1, . . . I and use the periodic boundary condition,

Kh(u
n+1
h )−Kh(u

n
h)

∆tn
= Kh(v

n
h) ∀ n ⩾ 0. (4.3)

In particular
Kh(u

1
h)−Kh(u

0
h)

∆t0
= Kh(v

0
h) > 0. (4.4)

Similarly, we have by (2.4b)∫
Ki

vi,n+1
h − vi,nh

∆tn
dx− vi+1,n

h (xi+ 1
2
) + vi,nh (xi− 1

2
) =

∫
Ki

Ik
h

(
|ui,n+1

h |p
)
dx;

hence,
Kh(v

n+1
h )−Kh(v

n
h)

∆tn
= Kh(Ik

h(|un+1
h |p)) ∀ n ⩾ 0.

At this stage, we need the following technical lemma.

Lemma 4.4 There exists λ > 0 independent of h such that

Kh

(
Ik
h(|un+1

h |p)
)
⩾ λ

(
Kh(u

n+1
h )

)p
.

Proof See Appendix C. 2

Thus, we have
Kh(v

n+1
h )−Kh(v

n
h)

∆tn
⩾ λ

(
Kh(u

n+1
h )

)p
. (4.5)

Using (4.3) and (4.5), one can easily show by induction on n that Kh(u
n
h) and Kh(v

n
h) are nonnegative for all

n . Now, combining (4.3), (4.4), and (4.5) yields for all n ⩾ 0

Kh(u
n+2
h )−Kh(u

n+1
h )

∆tn+1
⩾ Kh(u

n+1
h )−Kh(u

n
h)

∆tn
+ λ∆tn(Kh(u

n+1
h ))p (4.6)

⩾ Kh(u
1
h)−Kh(u

0
h)

∆t0
+ λ

n∑
k=0

∆tk(Kh(u
k+1
h ))p (4.7)

> 0.
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Consequently, (Kh(u
n
h))n is a strictly increasing sequence. Now, we again make use of (4.6) to obtain(

Kh(u
n+2
h )−Kh(u

n+1
h )

∆tn+1

)2

⩾ Kh(u
n+1
h )−Kh(u

n
h)

∆tn

(
Kh(u

n+1
h )−Kh(u

n
h)

∆tn
+ λ∆tn(Kh(u

n+1
h ))p

)

=

(
Kh(u

n+1
h )−Kh(u

n
h)

∆tn

)2

+ λ
(
Kh(u

n+1
h )−Kh(u

n
h)
)
(Kh(u

n+1
h ))p.

A straightforward induction implies(
Kh(u

n+2
h )−Kh(u

n+1
h )

∆tn+1

)2

⩾ λ

n∑
k=0

(
Kh(u

k+1
h )−Kh(u

k
h)
) (
Kh(u

k+1
h )

)p
+

(
Kh(u

1
h)−Kh(u

0
h)

∆t0

)2

⩾ λ

∫ Kh(u
n+1
h )

αh

zpdz +

(
βh − αh

∆t0

)2

=
λ

p+ 1

(
(Kh(u

n+1
h ))p+1 − αp+1

h

)
+

(
βh − αh

∆t0

)2

.

Moreover, since Kh(u
n
h) is increasing in n , then λ

p+ 1

(
(Kh(u

n+1
h ))p+1 −αp+1

h

)
+

(
βh − αh

∆t0

)2

is nonnegative.

Finally, assume (Kh(u
n
h))n is bounded, then it is convergent. Hence, we can extract a subsequence (unℓ

h )nℓ
of

(unh)n which converges a.e.; thus, it is bounded. We deduce from (3.4) that ∆tnℓ 6→ 0 as nℓ goes to infinity,
and using (4.4) and (4.7), we obtain

0 < ∆tnℓ+1Kh(v
0
h) ⩽ Kh(u

nℓ+2
h )−Kh(u

nℓ+1
h ).

Take the limit when nℓ tends to infinity gives a contradiction with (4.4). Thus, (Kh(u
n
h))n is unbounded and

the proof is completed. 2

Lemma 4.5 Let 0 ⩽ k ⩽ 7 and let (unh, v
n
h) be the solution of (2.10). Then (unh)n blows up.

Proof If 0 ⩽ k ⩽ 7 , then αj :=
∫ 1

−1
φj dx > 0 for all 1 ⩽ j ⩽ k + 1 (see table 3). Consequently, one may

deduce from Proposition 3.2 that if the initial data (u0, v0) are positives, then Kh(u
n
h) = ‖unh‖1 for h small

enough, where

‖uh‖1 =
1

b− a

I∑
i=1

h

2

k+1∑
j=1

αj |uij |.

It follows that ‖unh‖1 −−−−→
n→∞

∞ ; thus, ‖unh‖L∞(a,b) −−−−→
n→∞

∞ . 2

Define

G(z) =

√
λ

p+ 1
zp+1 + γh,

then G is a strictly increasing function in [αh,∞) . In view of Proposition 4.3, we can proceed the same as in
[12] to prove the following.
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Lemma 4.6 There exists a constant C > 0 independent of h such that

T (h) ⩽ 2
(∫ ∞

αh

dz

G(z)
+ Ch

)
.

In particular, (unh)n blows up in a finite time T (h) .

Proof See [12, Lemma 5.3] 2

Theorem 4.7 Let (u, v) and (uh, vh) be the solutions of (2.1) and (2.10), respectively. Assume that u0 > 0

and u1 > 0 are large enough and v0 > 0 . If uh weakly converges towards u , then unh blows up in finite time
T (h) and

lim
h→0

T (h) = T∞. (4.8)

Proof We follow the strategy of [42]. According to Lemma 4.6, unh blows up in finite time T (h) . To establish
(4.8), we will prove the following inequalities:

T∞ ⩽ lim inf
h→0

T (h) = T∗, (4.9)

and
T∞ ⩾ lim sup

h→0
T (h) = T ∗. (4.10)

Suppose that T∗ < T∞ and let ε = T∞−T∗
2 > 0 . Then there exists hε > 0 sufficiently small such that

T (hε) ⩽ T∗ + ε < T∞.

On the one hand, we have sup0⩽t⩽T∗+ε ‖u(·, t)‖L∞(a,b) <∞ ; hence,

K1 := sup
0⩽t⩽T∗+ε

K(u(t)) <∞.

On the other hand, if unh −−−⇀
h→0

u(tn) then Kh(u
n
h) −−−→

h→0
K(u(tn)) . Hence, if hε is sufficiently small, then

Khε(u
n
hε
) ⩽ K(u(tn)) + ε for all n such that tn < T∞ . It follows

lim
n→∞

Khε
(unhε

) = lim
tn→T (hε)

Khε
(unhε

) ⩽ lim
tn→T (hε)

K(u(tn)) + ε ⩽ K1 + ε,

which contradicts Proposition 4.3; hence, (4.9) holds. Next, suppose that T ∗ > T∞ and let N > 0 be the

number of iterations to reach the time T∞ , i.e. T∞ = tN =
∑N−1

n=0 ∆tn . Let h1 = min(hN , hN,Λ) with hN

given in Proposition 3.2 and hN,Λ given in Theorem 3.3, with Λ∞ = ‖u0h‖∞ + ‖v0h‖∞ . Then ∀ h ∈ (0, h1] and
0 ⩽ n ⩽ N , we have ∣∣∣∣∣

I∑
i=1

∫
Ki

ui,nh (x) dx

∣∣∣∣∣ ⩽
I∑

i=1

k+1∑
j=1

|ui,nj |
∣∣∣∣∫

Ki

φi
j(x) dx

∣∣∣∣
⩽

I∑
i=1

h

2
‖unh‖∞

k+1∑
j=1

∣∣∣∣∫ 1

−1

φj(x) dx

∣∣∣∣
⩽ K2Λ∞,
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with K2 = b−a
2

∑k+1
j=1

∣∣∣∫ 1

−1
φj(x) dx

∣∣∣ . Let ε = T∗−T∞
4 . Using Lemma 4.6, there exist hε > 0 and R ⩾

1
b−a

(
‖u‖L∞([a,b]×[0,tN−1]) +K2Λ∞

)
such that∫ ∞

R

dz

G(z)
+ Chε <

ε

2
. (4.11)

It is shown in [24] that if the initial conditions are sufficiently large, then the solution u of (2.1) blows up in Lp

norms, for any 1 ⩽ p ⩽ ∞ (see [24, Theorem 2.1]). We deduce that if the initial conditions are large enough,
then there exists t′ = t′R < T∞ such that

K(u(t)) ⩾ 2R ∀ t ∈ [t′, T∞). (4.12)

Set

T = t′ +
T∞ − t′

2
=
t′ + T∞

2
< T∞, h∗ = min

{
h1,

(
T∞ − t′

2

) 1
1+σ

}
and let h ∈ (0, h∗] . Then, we have for all n ⩾ 0 such that tn < T∞

|K(u(tn))−Kh(u
n
h)| =

1

b− a

∣∣∣∣∣
I∑

i=1

∫
Ki

(
u(x, tn)− ui,nh (x)

)
dx

∣∣∣∣∣
⩽ 1

b− a

(
‖u(tn)‖L∞([a,b]) +

∣∣∣∣∣
I∑

i=1

∫
Ki

ui,nh (x)dx

∣∣∣∣∣
)
.

In particular, we obtain for all 0 ⩽ n ⩽ N − 1

|K(u(tn))−Kh(u
n
h)| ⩽

1

b− a

(
‖u‖L∞([a,b]×[0,tN−1]) +K2Λ∞

)
⩽ R.

It follows
Kh(u

n
h) ⩾ K(u(tn))−R ∀ 0 ⩽ n ⩽ N − 1.

Recall that ∆tn ⩽ h1+σ ⩽ T − t′ < T∞ − t′ . Since T ∗ > T∞ , then there exists n1 ⩽ N − 1 such that
t′ ⩽ tn1 < T∞ . We deduce from (4.12)

Kh(u
n1

h ) ⩾ K(u(tn1))−R ⩾ R. (4.13)

Now, using lim sup
h→0

T (h) = T ∗ > T∞ , one may choose hε ⩽ h∗ sufficiently small such that

T (hε) ⩾ T∞ + ε.

However, in view of Lemma 4.6 and equations (4.13) and (4.11), we have

T (hε) = tn1 +

∞∑
n=n1

∆tn < T∞ + 2

(∫ ∞

Khε (u
n1
hε

)

dz

G(z)
+ Chε

)

⩽ T∞ + 2

(∫ ∞

R

dz

G(z)
+ Chε

)
< T∞ + ε,

which is a contradiction. This achieves the proof. 2
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5. Numerical examples
In this section, we present some numerical tests in order to illustrate our method. For all the examples, we
consider the DG scheme (2.11) with P1 approximation.

Example 5.1 In this example, we consider constant initial conditions so that the solution of (1.1) is space-
independent. The exact solution we consider is

u(t) = µ(T − t)
2

1−p

with µ =
(
2 p+1
(p−1)2

) 1
p−1 . We perform two test cases with p = 2 and p = 3 . The blow-up time for both cases is

set to T = 0.1 s . Figure 1 shows a comparison between the exact solution and the numerical solution functions
of time. One can notice a very good superposition of the solutions (with relative errors less than 1% in both
L2 and L∞ norms), which can justify the validity of the explicit Euler scheme as an appropriate choice for the
time discretization of the DG method.

Time (s)
0 0.02 0.04 0.06 0.08 0.1

||u
||

×105

0

1

2

3

4

5
exact
numeric

Time (s)
0 0.02 0.04 0.06 0.08 0.1

||u
||

0

15

30

45

60

75

90
exact
numeric

x 10²

Figure 1. Comparison between the numerical solution (blue circles) and the exact solution (red line) for p = 2 (left)
and p=3 (right).

15

Figure 1. Comparison between the numerical solution (blue circles) and the exact solution (red line) for p = 2 (left)
and p = 3 (right).

Example 5.2 We consider an exact solution of (1.1) given by

u(x, t) = µ(T − t+ d x)
2

1−p (5.1)

with µ =
(
2(1− d2) p+1

(p−1)2

) 1
p−1 and d ∈ (0, 1) is an arbitrary parameter. Figures 2 and 3 show a comparison

between the exact solution and the numerical solution at various times, for p = 2 and p = 3 , respectively. The
parameters used are T = 0.5 s and d = 0.01 .

One can notice that the numerical solutions fit very well with the exact solutions at all the recorded times.
The relative errors in L∞ norms is less than 1% if a refined mesh is used. We also investigate the blow-up

curve in the following sense. Let R ⩾ minx∈[0,1] u(x, 0) = µ(T + d)
2

1−p , and let ξR the function defined by

u(x, ξR(x)) = R . It is obvious from (5.1) that ξR is a straight line given by ξR(x) = T −
(
µ
R

) p−1
2 + d x . When

R goes to infinity, ξR(x) tends to the blow-up time T∞(x) = T + d x , for any x ∈ [0, 1] . Thus, one can
approximate numerically the blow-up curve T∞ by computing ξR for large values of R . In practice, we define
ξR as

ξR(x) = inf{t ⩾ 0, |u(x, t)| ⩾ R}.
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Figure 2. Comparison between the numerical solution (blue circles) and the exact solution (red line) at various times.
Case p = 2.Figure 2. Comparison between the numerical solution (blue circles) and the exact solution (red line) at various times.

Case p = 2 .

x axis
0 0.2 0.4 0.6 0.8 1

||
u

||

2.77

2.78

2.79

2.8

2.81

2.82

2.83
Time = 0.0 s

exact
numeric

x axis
0 0.2 0.4 0.6 0.8 1

||
u

||

60

80

100

120

140

160
Time = 0.49 s

exact
numeric

x axis
0 0.2 0.4 0.6 0.8 1

||
u

||

0

500

1000

1500
Time = 0.499 s

exact
numeric

x axis
0 0.2 0.4 0.6 0.8 1

||
u

||

0

5000

10000

15000
Time = 0.4999 s

exact
numeric

Figure 3. Comparison between the numerical solution (blue circles) and the exact solution (red line) at various times.
Case p = 3.

Figure 3. Comparison between the numerical solution (blue circles) and the exact solution (red line) at various times.
Case p = 3 .

Figure 4 shows ξR function of x for various values of R . We notice that ξR is a straight line with slope
equal to d for all values of R , which is in accordance with the theory. Furthermore, as the parameter R gets
bigger, one can notice that ξR converges (pointwise and uniformly) to the theoretical blow-up curve T∞ .AZAIEZ et al./Turk J Math
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Figure 4. ξR for various values of R . Case p = 2 (left) and p = 3 (right). As R increases, ξR converges (pointwise
and uniformly) toward the blow-up curve (red line).

Figure 4. ξR for various values of R . Case p = 2 (left) and p = 3 (right). As R increases, ξR converges (pointwise
and uniformly) toward the blow-up curve (red line).
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Example 5.3 In this example, we consider the system (1.1) with initial conditions

u0(x) = 5(sin(4πx) + 2),

u1(x) = 5(sin(4πx)− 4π cos(4πx) + 2).

With such conditions, we have u0 = v0 > 0 , α = K(u0) = 10 > 0 , and β = K(u1) = 10 > 0 , so that all the
hypotheses of Propositions 3.2 and 4.3 are satisfied. Accordingly, we expect the solution to blow up in a finite
time. Figures 5 and 6 show the evolution of the numerical solutions in time-space axes for p = 2 and p = 3 ,
respectively. One can effectively notice that the numerical solutions do blow up as time evolves.

1
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0.6

space

0.4
0.2

00

0.2

0.4

time
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3000

4000

1000
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2000
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Figure 5. Numerical solution of example 5.3 with p = 2.
Figure 5. Numerical solution of example 5.3 with p = 2 .
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Figure 6. Numerical solution of example 5.3 with p = 3.
Figure 6. Numerical solution of example 5.3 with p = 3 .

Example 5.4 In this example, we compare our DG method to a finite difference (FD) method developed in
[42]. Let us mention that the authors also proved that their FD scheme is convergent, as well as the numerical
blow-up time, toward the exact solution. We use a very refined grid mesh for the FD algorithm in order to obtain
results as accurate as possible∗. The initial conditions used are u0(x) = 5(sin(4πx) + 2) and u1(x) = 20π + 5 .
Figure 7 shows a comparison between the numerical solutions in various time for p = 2 and p = 3 . One can
notice a very good superposition between the solutions in all recorded times.

In Table 1, we report the relative L2 and L∞ errors between the FD and the DG solutions at the different
times. Moreover, we checked the convergence of the numerical blow-up time when the space path h goes to zero.

Table 2 and Figure 8 show the blow-up times of the DG method versus the FD method function of h for
p = 3 . Since the blow-up time cannot be reached in finite steps (see Definition 4.2), we fix ‖unh‖∞ ⩾ 109 as
a threshold criterion in order to stop the iterations. One can notice that both the DG and the FD algorithms
seem to converge toward the same limit, which is T∞ ' 1.14 s in this case. This confirms the efficiency of our
proposed method.

∗The FD grid is 16 times finer than the DG grid.
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Figure 7. Comparison between the DG solution (red line) and the FD solution [42] (blue dash) of example 5.4 at
various times. Case p = 2 (left) and p = 3 (right).

Figure 7. Comparison between the DG solution (red line) and the FD solution [42] (blue dash) of example 5.4 at
various times. Case p = 2 (left) and p = 3 (right).

Table 1. Relative errors of the DG solutions uDG
h versus the FD solutions uFD

h for various times.

p = 2

Time (s) ∥uFD
h −uDG

h ∥2

∥uFD
h ∥2

∥uFD
h −uDG

h ∥∞
∥uFD

h ∥∞

0.03 2.16× 10−3 1.95× 10−3

0.10 9.15× 10−4 9.32× 10−4

0.15 5.97× 10−4 9.34× 10−4

0.25 1.11× 10−3 1.66× 10−3

p = 3

Time (s) ∥uFD
h −uDG

h ∥2

∥uFD
h ∥2

∥uFD
h −uDG

h ∥∞
∥uFD

h ∥∞

0.03 2.58× 10−4 3.46× 10−4

0.09 1.25× 10−3 1.95× 10−3

0.105 4.05× 10−3 5.96× 10−3

0.110 9.98× 10−3 1.39× 10−2

Table 2. Blow-up time function of h . Case p=3.

T (h)

h DG FD
1/25 1.1671 1.1675

1/26 1.1527 1.1538

1/27 1.1455 1.1463

1/28 1.1419 1.1423

1/29 1.1401 1.1403

6. Conclusion
In this paper, we developed a numerical scheme based on discontinuous Galerkin (DG) formulation for the
approximation of the nonlinear wave equation in one dimensional space. We showed that the DG scheme is
consistent and stable (in the sense that the numerical solution do not blows up in a finite number of iterations,
i.e. before the exact blow-up time). For the time update, we used an explicit Euler scheme. Since blow-up
phenomena can occur, one may not expect a constant time increment†. Instead, we used a refined time meshing,
with time step inversely proportional to the solution’s amplitude. Since we are dealing with transport equations,

†Otherwise, the numerical solution could be computed beyond the blow-up time. Actually, the author in [13] showed that a
constant time step remains also applicable if an appropriate stopping criterion is specified.
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Figure 8. Comparison between the numerical blow-up time of the DG method (red line) and the FD method (dashed
blue line) of example 5.4. Case p = 3.

19

Figure 8. Comparison between the numerical blow-up time of the DG method (red line) and the FD method (dashed
blue line) of example 5.4. Case p = 3 .

the CFL condition is more constrained in case of DG methods. Indeed, the classical theory of the DG methods
shows that ∆t should be of order (∆x)3/2 (rather than the standard ∆x) to ensure the stability of the method
[9, 18]‡. This condition is obviously fulfilled in case the solution blows up. We also proved that the numerical
solution blows up in a finite time T (h) , and that T (h) converges toward the theoretical blow-up time as h gets
smaller. We illustrate the performance of our method throughout several numerical tests and benchmarks.

Appendix

A. Matrices properties

Since (φi
j)1⩽j⩽k+1 is a Lagrange polynomial basis of Pk[Ki] , then for any x ∈ Ki , we have

k+1∑
j=1

φi
j(x) = 1 and

k+1∑
j=1

(φi
j)

′(x) = 0.

On the other hand, using the transform φi
j = φj ◦ (γi)−1 where φj is the jth Lagrange polynomial over [−1, 1]

and γi : [−1, 1] → Ki , x 7→ 1
2 (hi x+xi+ 1

2
+xi− 1

2
) , one can easily show M i = hiM , Ri = R , Ai = A , Bi = B ,

Ci = C and Di = D for all i with

Mjℓ =
1

2

∫ 1

−1

φj φℓ dx, Rjℓ =

∫ 1

−1

φj φ
′
ℓ dx,

Ajℓ = φj(−1) φℓ(−1), Bjℓ = φj(−1) φℓ(1),

and
Cjℓ = φj(1) φℓ(−1), Djℓ = φj(1) φℓ(1).

‡While the order 3/2 has been theoretically established for the linear problems, it has been observed numerically that the order
one, i.e. ∆t = O(∆x) , is sufficient for the stability of nonlinear problems [9].
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It follows ∀ 1 ⩽ j ⩽ k + 1 ,

k+1∑
ℓ=1

Rjℓ =

k+1∑
ℓ=1

∫ 1

−1

φj(x)φ
′
ℓ(x)dx =

∫ 1

−1

φj(x)

(
k+1∑
ℓ=1

φ′
ℓ(x)

)
dx = 0,

k+1∑
ℓ=1

Ajℓ =

k+1∑
ℓ=1

φj(−1)φℓ(−1) = φj(−1)

k+1∑
ℓ=1

φℓ(−1) = φj(−1),

k+1∑
ℓ=1

Bjℓ =

k+1∑
ℓ=1

φj(−1)φℓ(1) = φj(−1)

k+1∑
ℓ=1

φℓ(1) = φj(−1).

Therefore, ∀ 1 ⩽ j ⩽ k + 1 ,
k+1∑
ℓ=1

(Rjℓ +Ajℓ −Bjℓ) = 0. (A.1)

Now, we have

E = hi(M
i)−1(Ri +Ai) =M−1(R+A) and F = −hi(M i)−1Bi = −M−1B

are constant matrices, and ∀ 1 ⩽ j ⩽ k + 1

k+1∑
ℓ=1

Ejℓ + Fjℓ =

k+1∑
ℓ=1

M−1(R+A−B)jℓ

=

k+1∑
ℓ=1

k+1∑
s=1

(M−1)js(R+A−B)sℓ

=

k+1∑
s=1

(M−1)js

k+1∑
ℓ=1

(Rsℓ +Asℓ −Bsℓ)

= 0 (A.2)

where the last equality follows from (A.1).

B. Proof of Lemma 3.4

We rewrite Mn as Mn = I − M̃n with

M̃n =



M̃1
A 0 . . . 0 M1

B

M2
B M̃2

A 0 . . . 0

0 M3
B M̃3

A

. . . ...
... . . . . . . . . . 0

0 . . . 0 MI
B M̃I

A


with

M̃i
A = ∆tn(M i)−1(Ri +Ai) =

∆tn

hi
E
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and

Mi
B = −∆tn(M i)−1Bi =

∆tn

hi
F.

Let
[
M̃n

]i
be the ith block-row of M̃n and denote x+ = max(x, 0) and x− = min(x, 0) for any x ∈ R . Then,

using (A.2), we obtain for any 1 ⩽ j ⩽ k + 1

k+1∑
ℓ=1

∣∣∣∣[M̃n

]i
jℓ

∣∣∣∣ = ∆tn

hi

k+1∑
ℓ=1

|Ejℓ + Fjℓ|

=
∆tn

hi

(
k+1∑
ℓ=1

(
E+

jℓ + F+
jℓ

)
−

k+1∑
ℓ=1

(
E−

jℓ + F−
jℓ

))

= 2
∆tn

hi

k+1∑
ℓ=1

(
E+

jℓ + F+
jℓ

)
.

It follows

‖M̃n‖∞ = max
1⩽i⩽I

‖
[
M̃n

]i
‖∞

= max
1⩽i⩽I

(
max

1⩽j⩽k+1

k+1∑
ℓ=1

∣∣∣∣[M̃n

]i
jℓ

∣∣∣∣
)

= max
1⩽i⩽I

max
1⩽j⩽k+1

2
∆tn

hi

k+1∑
ℓ=1

(
E+

jℓ + F+
jℓ

)
.

In particular, if hi = h for all i , and if we denote ρ =
∑k+1

ℓ=1

(
E+

jℓ + F+
jℓ

)
, then we obtain

‖Mn‖∞ ⩽ ‖I‖∞ + ‖M̃n‖∞ = 1 + 2ρ
∆tn

h

The same reasoning can be applied to the matrix Nn .

C. Proof of Lemma 4.4

Let 1 ⩽ i ⩽ I , then using the classical inequality
∣∣∣∑m

j=1 aj

∣∣∣p ⩽ mp−1
∑m

j=1 |aj |p , we obtain

∣∣∣∣∫
Ki

ui,n+1
h (x) dx

∣∣∣∣p =

∣∣∣∣∣∣
∫
Ki

k+1∑
j=1

ui,n+1
j φi

j(x) dx

∣∣∣∣∣∣
p

⩽ (k + 1)p−1
k+1∑
j=1

∣∣∣ui,n+1
j

∣∣∣p ∣∣∣∣∫
Ki

φi
j(x) dx

∣∣∣∣p

= (k + 1)p−1
k+1∑
j=1

∣∣∣ui,n+1
j

∣∣∣p ∣∣∣∣h2
∫ 1

−1

φj(x) dx

∣∣∣∣p .
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Denote

λ =

(
k + 1

2
max

1⩽j⩽k+1

∣∣∣∣∫ 1

−1

φj(x) dx

∣∣∣∣)1−p

,

then we have

(
Kh(u

n+1
h )

)p
=

1

(b− a)p

(
I∑

i=1

∫
Ki

ui,n+1
h (x) dx

)p

⩽ Ip−1

(b− a)p

I∑
i=1

∣∣∣∣∫
Ki

ui,n+1
h (x) dx

∣∣∣∣p

⩽ (Ih)p−1

λ(b− a)p

I∑
i=1

k+1∑
j=1

∣∣∣ui,n+1
j

∣∣∣p ∣∣∣∣h2
∫ 1

−1

φj(x) dx

∣∣∣∣

Now, if 0 ⩽ k ⩽ 7 , then the integrals
∫ 1

−1
φj(x) dx are positives for all 1 ⩽ j ⩽ k + 1 (see table 3). It follows

(
Kh(u

n+1
h )

)p ⩽ 1

λ

k+1∑
j=1

∣∣∣ui,n+1
j

∣∣∣p ∫
Ki

φi
j(x) dx

=
1

λ
Kh

(
Ik
h(|un+1

h |p)
)
.

Table 3. Values of αj :=
∫ 1

−1
φj(x)dx where φj is the jth Lagrange polynomial of degree k over [−1, 1] .

kαj α1 α2 α3 α4 α5 α6 α7 α8

0 2
1 1 1
2 1

3
4
3

1
3

3 1
4

3
4

3
4

1
4

4 7
45

32
45

12
45

32
45

7
45

5 19
144

75
144

50
144

50
144

75
144

19
144

6 41
420

216
420

27
420

272
420

27
420

216
420

41
420

7 751
8640

3577
8640

1323
8640

2989
8640

2989
8640

1323
8640

3577
8640

751
8640
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