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Abstract: We consider an initial value problem related to the equation

utt − div
(
|∇u|m(x)−2 ∇u

)
− div

(
|∇ut|r(x)−2 ∇ut

)
− γ∆ut = |u|p(x)−2 u,

with homogeneous Dirichlet boundary condition in a bounded domain Ω . Under suitable conditions on variable-exponent
m (.) , r (.) , and p (.) , we prove a blow-up of solutions with negative initial energy.
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1. Introduction
In this paper, we consider the following problem:

utt − div
(
|∇u|m(x)−2 ∇u

)
− div

(
|∇ut|r(x)−2 ∇ut

)
− γ∆ut = |u|p(x)−2

u, in Ω× (0, T ) , (1.1)

u (x, t) = 0, x ∈ ∂Ω, t > 0, (1.2)

with the initial conditions
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω, (1.3)

where γ > 0, 0 < T < ∞ and Ω is a bounded domain of Rn (n ≥ 1) with a smooth boundary ∂Ω. m (.) ,

r (.) , and p (.) are given measurable functions on Ω satisfying

2 ≤ r1 ≤ r (x) ≤ r2 ≤ m1 ≤ m (x) ≤ m2 ≤ p1 ≤ p (x) ≤ p2 < r∗, (1.4)

with

r1 : = ess inf
x∈Ω

r (x) , r2 := ess sup
x∈Ω

r (x) ,

m1 : = ess inf
x∈Ω

m (x) , m2 := ess sup
x∈Ω

m (x) ,

p1 : = ess inf
x∈Ω

p (x) , p2 := ess sup
x∈Ω

p (x) ,
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and

r∗ =

{
nm(x)

ess supx∈Ω(n−m(x)) , if m2 < n

+∞, if m2 ≥ n

We also assume that m (.) satisfies the log-Hölder continuity conditions:

|m (x)−m (y)| ≤ − A

log |x− y|
, for a.e x, y ∈ Ω, with |x− y| < δ, A > 0, 0 < δ < 1. (1.5)

Problems of this type arise in many different fields, such as physics, acoustics, electromagnetics, fluid
mechanics, and so forth.

Many authors have studied problem (1.1) in case of constant and variable exponent nonlinearities see
e.g., [9, 12, 13, 18].

In the case where m (.) , r (.) , and p (.) are constants, many problems similar or related to problem (1.1)
have been exhaustively investigated as a result of blow-up, global existence and stability have been established.
Chen et al. [5] considered the nonlinear p-Laplacian wave equation:

utt − div
(
|∇u|p−2 ∇u

)
−∆ut + g (x, t) = f (x) , in Ω× (0, T ) (1.6)

in a bounded domain Ω ⊂ Rn, where 2 ≤ p < n and f, g are given functions. They proved the global existence,
uniqueness under suitable conditions on the initial data and the functions f, g, and they also discussed the
long-time behavior of the solution. In [20], Erhan studied the following quasilinear hyperbolic equation:

utt − div
(
|∇u|m−2 ∇u

)
−∆ut + |ut|q−1

ut = |u|p−1
u, in Ω× (0, T ) . (1.7)

where Ω is a bounded domain with smooth boundary ∂Ω in Rn (n ≥ 1) , m > 0, p, q ≥ 1. He proved the decay
estimates of the energy function by using Nakao’s inequality and he also obtained the blow-up of solutions and
lifespan estimates in three different ranges of the initial energy. In [19], Ouaoua and Maouni considered the
following equation:

utt − div

 |∇u|2m−2 ∇u√
1 + |∇u|2m

− ω∆ut + µut = |u|p−2
u, in Ω× (0, T ) (1.8)

where Ω is a bounded regular domain in Rn, n ≥ 1 with a smooth boundary ∂Ω. ω, µ m, and p are real
numbers, they proved local existence and uniqueness of the solution by using the Faedo–Galerkin method and
that the local solution is globally in time. They also proved that the solutions with some conditions exponentially
decay. In [4], Benaissa and Mokeddem looked into the following equation:

utt − div
(
|∇u|p−2 ∇u

)
− σ (t) div

(
|∇ut|m−2 ∇ut

)
= 0, in Ω× (0, T ) (1.9)

where σ is a positive function, p, m ≥ 2 and Ω is a bounded domain in Rn (n ≥ 1) with a smooth boundary
∂Ω, they gave an energy decay estimate for the solution. In [17], the work of Messaoudi and Houari considered
the nonlinear wave equation:

utt −∆ut − div
(
|∇u|α−2 ∇u

)
− div

(
|∇ut|β−2 ∇ut

)
+ a |ut|m−2

ut = b |u|p−2
u, in Ω× (0, T ) (1.10)
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where a, b > 0 , α, β, m, p > 2 and Ω is a bounded domain in Rn (n ≥ 1) , with a smooth boundary ∂Ω .
They proved under suitable conditions on α, β, m, p > 2 and for negative initial energy, a global nonexistence
theorem. Ye in [22], investigated the blow-up property of solutions of a quasilinear hyperbolic system. He
proved that certain solutions with positive initial energy blow up in finite time under suitable conditions and
gave an estimation for the solution.

In the case of variable exponents nonlinearities, Antonsev, Ferreira and Erhan in [3] considered a nonlinear
plate Petrovesky equation:

utt +∆2u−∆ut + |ut|p(x)−2
ut = |u|q(x)−2

u, in Ω× (0, T ) (1.11)

where Ω is a bounded domain in Rn (n ≥ 1) with a smooth boundary ∂Ω. They proved the local weak solutions
by using the Banach contraction mapping principle. Then, they showed that the solution is global if p (.) ≥ q (.)

and they proved that a solution with negative initial energy and p (.) < q (.) blows up in finite time. In [21],
Erhan considered the strongly damped nonlinear Klein-Gordon equation:

utt −∆u−∆ut +m2u+ |ut|p(x)−2
ut = |u|q(x)−2

u, in Ω× (0, T ) (1.12)

where Ω is a bounded domain in Rn. He obtained nonexistence of solutions if variable exponents p (.) , q (.)

and initial data satisfy some conditions. In [1, 2], Antontsev considered the equation:

utt − div
(
a (x, t) |∇u|p(x,t)−2 ∇u

)
− α∆ut = b (x, t) |u|σ(x,t)−2

u, in Ω× (0, T ) , (1.13)

where α > 0 is a constant, a, b, p, σ are given functions and Ω is a bounded domain in Rn . Under appropriate
conditions on the initial data and the functions a, b, p, σ , he proved some blow-up results for certain solutions
with nonpositive initial energy and discussed the same equation and proved the local and global existence of
a weak solution under suitable conditions on a, b, p, σ . In [15], Messaoudi and Talahmeh considered the
following equation:

utt − div
(
|∇u|r(x)−2 ∇u

)
+ a |ut|m(x)−2

ut = b |u|p(x)−2
u, in Ω× (0, T ) , (1.14)

where a, b is a nonnegative constant. They proved a finite-time blow-up result of the solution with negative
initial energy as well as for certain solutions with positive initial energy. In [13], the case where m (x) = 2

and under suitable conditions on the exponents, they established a blow-up result for solutions with arbitrary
positive initial energy. In [16], Messaoudi and Al.Smail discuss the case where b = 0 and a = 1 of the same
equation (1.14). They proved the decay estimates for the solution under suitable assumptions on the variable
exponents m, r , and the initial data. They also gave two numerical applications to illustrate your theoretical
results.

Our objective of this paper is to study: In Section 2 , some notations, assumptions, and preliminaries are
introduced. We also state without proof an existence result. In Section 3 , we show the blow-up of solutions.

2. Assumptions and preliminaries

In this section, we present some Lemmas about the Lebesgue and Sobolev space with variable exponents (See
[6]-[8],[10]). Let p : Ω → [1,+∞] be a measurable function, where Ω is a domain of Rn.
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We define the Lebesgue space with variable exponent p (.) by:

Lp(.) (Ω) =
{
v : Ω → R : measurable in Ω. %p(.) (λv) < +∞, for some λ > 0

}
,

where %p(.) (v) =
∫
Ω
|v (x)|p(x) dx.

The set Lp(.) (Ω) equipped with the norm ( Luxemburg’s norm)

∥v∥p(.) := inf

{
λ > 0 :Ω

∣∣∣∣v (x)λ

∣∣∣∣p(x) dx ≤ 1

}
,

Lp(.) (Ω) is a Banach space [11] .

We next define the variable-exponent Sobolev space W 1,p(.) (Ω) as follows:

W 1,p(.) (Ω) :=
{
v ∈ Lp(.) (Ω) such that ▽v exists |▽v| ∈ Lp(.) (Ω)

}
.

This is a Banach space with respect to the norm ∥v∥W 1,p(.)(Ω) = ∥v∥p(.) + ∥▽v∥p(.) .

Furthermore, we set W
1,p(.)
0 (Ω) to be the closure of C∞

0 (Ω) in the space W 1,p(.) (Ω) . Let us note that
the space W 1,p(.) (Ω) has a different definition in the case of variable exponents. However, under condition

(1.5), both definitions are equivalent [11]. The space W−1,p
′
(.) (Ω) dual of W

1,p(.)
0 (Ω) is defined in the same

way as the classical Sobolev spaces, where 1
p(.) +

1
p′ (.)

= 1.

Lemma 2.1 ([11]) Let Ω be a bounded domain of Rn and p (.) satisfies (1.5) , then

∥u∥p(.) ≤ c ∥∇u∥p(.) , for all u ∈ W
1,p(.)
0 (Ω) ,

where the positive constant depends on Ω, p1, p2. In particular, the space W
1,p(.)
0 (Ω) has an equivalent norm

given by ∥u∥
W

1,p(.)
0 (Ω)

= ∥∇u∥p(.) .

Lemma 2.2 ([11]) If p : Ω → [1,∞) is a measurable function and

2 ≤ p1 ≤ p (x) ≤ p2 <
2n

n− 2
, n ≥ 3.

Then the embedding H1
0 (Ω) ↪→ Lp(.) (Ω) is continuous and compact.

Lemma 2.3 ([11]) If p : Ω → [1,∞) is a measurable function with p2 < ∞ , then C∞
0 (Ω) is dense in Lp(.) (Ω) .

Lemma 2.4 ([11]) Let p, q, s ≥ 1 be measurable function defined on Ω such that

1

s (y)
=

1

p (y)
+

1

q (y)
, for a.e y ∈ Ω.

If f ∈ Lp(.) (Ω) and g ∈ Lq(.) (Ω) , then fg ∈ Ls(.) (Ω) and ∥fg∥s(.) ≤ 2 ∥f∥p(.) ∥g∥q(.) .
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Lemma 2.5 ([11]) Let p be a measurable function on Ω. Then

∥f∥p(.) ≤ 1 if and only if %p(.) (f) ≤ 1.

Lemma 2.6 ([11]) If p is a measurable function on Ω satisfying (1.4) , then for a.e x ∈ Ω, we have

min
{
∥u∥p1

p(.) , ∥u∥
p2

p(.)

}
≤ %p(.) (u) ≤ max

{
∥u∥p1

p(.) , ∥u∥
p2

p(.)

}
,

for any u ∈ Lp(.) (Ω) .

Theorem 2.7 ([2]) Let u0 ∈ W
1,m(.)
0 (Ω) , u1 ∈ L2 (Ω) and assume that the exponents m, r, p satisfy

conditions (1.4) and (1.5). Then problem (1.1) has a unique weak solution such that

u ∈ L∞
(
(0, T ) ,W

1,m(.)
0 (Ω)

)
,

ut ∈ L∞ (
(0, T ) , L2 (Ω)

)
,

utt ∈ L∞
(
(0, T ) ,W

−1,m
′
(.)

0 (Ω)

)
,

where 1
m(.) +

1
m′ (.)

= 1.

3. Blow-up
In order to state and prove our result, we define the potential energy function by the following:

E (t) =
1

2

∫
Ω

u2
tdx+

∫
Ω

1

m (x)
|∇u|m(x)

dx−
∫
Ω

1

p (x)
|u|p(x) dx. (3.1)

Lemma 3.1 Assume that u be a solution of (1.1). Then, we have

E
′
(t) = −

∫
Ω

|∇ut|r(x) dx− γ

∫
Ω

|∇ut|2 dx ≤ 0, t ∈ [0, T ] (3.2)

and
E (t) ≤ E (0) . (3.3)

Proof We multiply the first equation (1.1) by ut and integrate over the domain Ω to get

d

dt

(
1

2

∫
Ω

u2
tdx+

∫
Ω

1

m (x)
|∇u|m(x)

dx−
∫
Ω

1

p (x)
|u|p(x) dx

)
= −

∫
Ω

|∇ut|r(x) dx− γ

∫
Ω

|∇ut|2 dx.

Then

E
′
(t) = −

∫
Ω

|∇ut|r(x) dx− γ

∫
Ω

|∇ut|2 dx ≤ 0.
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Integrating (3.2) over (0, t) , we obtain
E (t) ≤ E (0) .

2

Let H (t) = −E (t) , using equation (3.1) and (3.3), we have

H (0) ≤ H (t) ≤ 1

p1

∫
Ω

|u|p(x) dx, (3.4)

for any t ≥ 0 . Let

L (t) = H(1−σ) (t) + ε

∫
Ω

uutdx, (3.5)

where ε and σ are constants.

Lemma 3.2 Suppose that u (x, t) is a regular solution of (1.1) under conditions (1.2)-(1.3), and the initial

energy satisfies E (0) < 0. If σ < min
{

m1−2
p1

, m1−2
p2

, m1−r1
p1(r2−1) ,

m1−r2
p1(r2−1) ,

m1−r1
p2(r2−1) ,

m1−r2
p2(r2−1) , 1

}
, then there exists a

positive constant c such that

L
′
(t) ≥ cε

(
H (t) +

∫
Ω

|∇u|m(x)
dx+

∫
Ω

u2
tdx

)
. (3.6)

Proof Differentiating (3.5), the following equality can be obtained:

L
′
(t) = (1− σ)H−σ (t)H

′
(t) + ε

∫
Ω

u2
tdx+ ε

∫
Ω

uuttdx. (3.7)

Using Equations (1.1)-(1.3) and Green’s first formula, we obtain

L
′
(t) = (1− σ)H−σ (t)H

′
(t) + ε

∫
Ω

u2
tdx (3.8)

+ε

∫
Ω

u
[
div

(
|∇u|m(x)−2 ∇u

)
+ div

(
|∇ut|r(x)−2 ∇ut

)
+ γ∆ut + |u|p(x)−2

u
]
dx.

= (1− σ)H−σ (t)H
′
(t) + ε

∫
Ω
u2
tdx− ε

∫
Ω
|∇u|m(x)

dx (3.9)

−ε
∫
Ω
|∇ut|r(x)−2 ∇ut∇udx− εγ

∫
Ω
∇u∇utdx+ ε

∫
Ω
|u|p(x) dx.

We can obtain the following inequalities from Young’s inequality and Hölder inequality:∫
Ω

∇u∇utdx ≤ 1

4k

∫
Ω

|∇u|2 dx+ k

∫
Ω

|∇ut|2 dx. (3.10)

∫
Ω

|∇ut|r(x)−2 ∇ut∇udx ≤ 1

r1

∫
Ω

δr(x) |∇u|r(x) dx (3.11)

+
r2 − 1

r2

∫
Ω

δ−
r(x)

r(x)−1 |∇ut|r(x) dx.
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Hence,

L
′
(t) ≥ (1− σ)H−σ (t)H

′
(t) + ε

∫
Ω

u2
tdx− ε

∫
Ω

|∇u|m(x)
dx (3.12)

− ε

r1

∫
Ω

δr(x) |∇u|r(x) dx− ε
r2 − 1

r2

∫
Ω

δ−
r(x)

r(x)−1 |∇ut|r(x) dx

−εγ

4k

∫
Ω

|∇u|2 dx− εγk

∫
Ω

|∇ut|2 dx+ ε

∫
Ω

|u|p(x) dx.

Taking k = M1H
−σ (t) and δ−

r(x)
r(x)−1 = M2H

−σ (t) , and using H (t) > 0, we obtain

L
′
(t) ≥ (1− σ)H−σ (t)H

′
(t) + ε

∫
Ω

u2
tdx− ε

∫
Ω

|∇u|m(x)
dx (3.13)

−εM1−r1
2

r1
Hσ(r2−1) (t)

∫
Ω

|∇u|r(x) dx

−ε
r2 − 1

r2
M2H

−σ (t)

∫
Ω

|∇ut|r(x) dx

− εγ

4M1
Hσ (t)

∫
Ω

|∇u|2 dx− εγM1H
−σ (t)

∫
Ω

|∇ut|2 dx

+ε

∫
Ω

|u|p(x) dx.

Let M = max
{
M1,

r2−1
r2

M2

}
, using the energy functional (3.2), we have

L
′
(t) ≥ (1− σ)H−σ (t)H

′
(t) + ε

∫
Ω

u2
tdx− ε

∫
Ω

|∇u|m(x)
dx

−εM1−r1
2

r1
Hσ(r2−1) (t)

∫
Ω

|∇u|r(x) dx

−εMH−σ (t)

[∫
Ω

|∇ut|r(x) dx+ γ

∫
Ω

|∇ut|2 dx
]

− εγ

4M1
Hσ (t)

∫
Ω

|∇u|2 dx+ ε

∫
Ω

|u|p(x) dx.

Then,

L
′
(t) ≥ (1− σ − εM)H−σ (t)H

′
(t) + ε

∫
Ω

u2
tdx (3.14)

−ε

∫
Ω

|∇u|m(x)
dx− εM1−r1

2

r1
Hσ(r2−1) (t)

∫
Ω

|∇u|r(x) dx

− εγ

4M1
Hσ (t)

∫
Ω

|∇u|2 dx+ ε

∫
Ω

|u|p(x) dx.
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From the definition of H (t) , it follows that there is a constant k such that

L
′
(t) ≥ (1− σ − εM)H−σ (t)H

′
(t) + kH (t) + ε

∫
Ω

u2
tdx (3.15)

−ε

∫
Ω

|∇u|m(x)
dx− εM1−r1

2

r1
Hσ(r2−1) (t)

∫
Ω

|∇u|r(x) dx

− εγ

4M1
Hσ (t)

∫
Ω

|∇u|2 dx+ ε

∫
Ω

|u|p(x) dx

−k

[
−1

2

∫
Ω

u2
tdx−

∫
Ω

1

m (x)
|∇u|m(x)

dx+

∫
Ω

1

p (x)
|u|p(x) dx

]
.

So

L
′
(t) ≥ (1− σ − εM)H−σ (t)H

′
(t) + kH (t) +

(
ε+

k

2

)∫
Ω

u2
tdx (3.16)

+

(
k

m2
− ε

)∫
Ω

|∇u|m(x)
dx+

(
ε− k

p1

)∫
Ω

|u|p(x) dx

−εM1−r1
2

r1
Hσ(r2−1) (t)

∫
Ω

|∇u|r(x) dx

− εγ

4M1
Hσ (t)

∫
Ω

|∇u|2 dx.

Using W 1,m(.) (Ω) ↪→ H1 (Ω) , W 1,m(.) (Ω) ↪→ Lp(.) (Ω) , m (x) ≥ r (x) , and inequality (3.4), after simple the
calculation, it can be concluded

Hσ (t)

∫
Ω

|∇u|2 dx ≤
(

1

p1

)σ (∫
Ω

|u|p(x) dx
)σ ∫

Ω

|∇u|2 dx

≤ C

(
1

p1

)σ (∫
Ω

|∇u|m(x)
dx

)σp1+2
m1

(3.17)

+C

(
1

p1

)σ (∫
Ω

|∇u|m(x)
dx

)σp2+2
m1

.

and

Hσ(r2−1) (t)

∫
Ω

|∇u|r(x) dx ≤ C

(
1

p1

)σ(r2−1) (∫
Ω

|∇u|m(x)
dx

)σp1(r2−1)+r1
m1

(3.18)

+C

(
1

p1

)σ(r2−1) (∫
Ω

|∇u|m(x)
dx

)σp2(r2−1)+r1
m1

+C

(
1

p1

)σ(r2−1) (∫
Ω

|∇u|m(x)
dx

)σp1(r2−1)+r2
m1

+C

(
1

p1

)σ(r2−1) (∫
Ω

|∇u|m(x)
dx

)σp2(r2−1)+r2
m1

.
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For any constants z ≥ 0 and M > 0, the algebraic inequality

zυ ≤ z + 1 ≤
(
1 +

1

M

)
(z +M) , (0 < υ < 1) (3.19)

holds. Using known condition σ < min
{

m1−2
p1

, m1−2
p2

, m1−r1
p1(r2−1) ,

m1−r2
p1(r2−1) ,

m1−r1
p2(r2−1) ,

m1−r2
p2(r2−1)

}
. Hence from (3.19)

the following inequalities can be acquired:(∫
Ω

|∇u|m(x)
dx

)σp1+2
m1

≤
(
1 +

1

H (0)

)(∫
Ω

|∇u|m(x)
dx+H (0)

)
≤

(
1 +

1

H (0)

)(∫
Ω

|∇u|m(x)
dx+H (t)

)
(3.20)

and the same for the other inequalities(∫
Ω

|∇u|m(x)
dx

)σp2+2
m1

≤
(
1 +

1

H (0)

)(∫
Ω

|∇u|m(x)
dx+H (t)

)
. (3.21)

(∫
Ω

|∇u|m(x)
dx

)σp1(r2−1)+r1
m1

≤
(
1 +

1

H (0)

)(∫
Ω

|∇u|m(x)
dx+H (t)

)
. (3.22)

(∫
Ω

|∇u|m(x)
dx

)σp2(r2−1)+r1
m1

≤
(
1 +

1

H (0)

)(∫
Ω

|∇u|m(x)
dx+H (t)

)
. (3.23)

(∫
Ω

|∇u|m(x)
dx

)σp1(r2−1)+r2
m1

≤
(
1 +

1

H (0)

)(∫
Ω

|∇u|m(x)
dx+H (t)

)
. (3.24)

(∫
Ω

|∇u|m(x)
dx

)σp2(r2−1)+r2
m1

≤
(
1 +

1

H (0)

)(∫
Ω

|∇u|m(x)
dx+H (t)

)
. (3.25)

From inequalities (3.17) and (3.18), we can obtain that there exist two positive constants N1 and N2 such that

εγ

4M1
Hσ (t)

∫
Ω

|∇u|2 dx ≤ εN1

(∫
Ω

|∇u|m(x)
dx+H (t)

)
(3.26)

and
εM1−r1

2

r1
Hσ(r2−1) (t)

∫
Ω

|∇u|r(x) dx ≤ εN2

(∫
Ω

|∇u|m(x)
dx+H (t)

)
. (3.27)

Consequently, taking k = 1
2 (N1 +N2 +m2N1 +m2N2 +m2 + p1) ε, we obtain from (3.16) that there exists a

positive constant c such that

L
′
(t) ≥ (1− σ − εM)H−σ (t)H

′
(t) + (k − εN1 − εN2)H (t)

+

(
ε+

k

2

)∫
Ω

u2
tdx+

(
ε− k

p1

)∫
Ω

|u|p(x) dx

+

(
k

m2
− ε− εN1 − εN2

)∫
Ω

|∇u|m(x)
dx.
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L
′
(t) ≥ (1− σ − εM)H−σ (t)H

′
(t) (3.28)

+cε

[
H (t) +

∫
Ω

u2
tdx+

∫
Ω

|∇u|m(x)
dx

]
.

Taking 0 < ε < 1−σ
M , we can get the following formula from (3.5):

L (0) = H1−σ (0) + ε

∫
Ω

u0 (x)u1 (x) dx (3.29)

> 0.

Using inequality (3.28), it holds

L
′
(t) ≥ cε

[
H (t) +

∫
Ω

u2
tdx+

∫
Ω

|∇u|m(x)
dx

]
. (3.30)

After integral, we can get L (t) ≥ L (0) > 0, (∀t ≥ 0) . 2

Theorem 3.3 Suppose γ > 0 and 2 ≤ r1 ≤ r (x) ≤ r2 ≤ m1 ≤ m (x) ≤ m2 ≤ p1 ≤ p (x) ≤ p2 < r∗, where
r∗ is the critical Sobolev index in W 1,m(.) (Ω) . If the initial energy E (0) < 0, then any regular solutions of
equation (1.1)-(1.3) must blow up in finite time.

Proof Firstly, it is proved that when 0 < σ < m1−2
2m1

, there exists a positive constant C such that

L
1

1−σ (t) ≤ C

[
H (t) +

∫
Ω

u2
tdx+

∫
Ω

|∇u|m(x)
dx

]
. (3.31)

In fact, using (3.5), we get

L
1

1−σ (t) ≤ C (ε, σ)

[
H (t) +

(∫
Ω

uutdx

) 1
1−σ

]
. (3.32)

Furthermore, by using Hölder’s inequality and Young’s inequality, we can get

(∫
Ω

uutdx

) 1
1−σ

≤
(∫

Ω

u2dx

) 1
2(1−σ)

(∫
Ω

u2
tdx

) 1
2(1−σ)

≤ C

(∫
Ω

|u|m(x)
dx

) 1
m1(1−σ)

(∫
Ω

u2
tdx

) 1
2(1−σ)

≤ C

[(∫
Ω

|u|m(x)
dx

) µ
m1(1−σ)

+

(∫
Ω

u2
tdx

) θ
2(1−σ)

]
,

where 1
µ + 1

θ = 1. Taking θ = 2 (1− σ) , we have µ = 2(1−σ)
1−2σ , by Poincare’s inequality, it follows

(∫
Ω

uutdx

) 1
1−σ

≤ C

[(∫
Ω

|∇u|m(x)
dx

) 2
m1(1−σ)

+

∫
Ω

u2
tdx

]
. (3.33)
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If 0 < σ < m1−2
2m1

, then we get 0 < 2
m1(1−σ) < 1. From (3.4), (3.19), and (3.33), we obtain

(∫
Ω

uutdx

) 1
1−σ

≤ C

(∫
Ω

|∇u|m(x)
dx+H (0) +

∫
Ω

u2
tdx

)
≤ C

(∫
Ω

|∇u|m(x)
dx+H (t) +

∫
Ω

u2
tdx

)
. (3.34)

From (3.32), (3.34), we get

L
1

1−σ (t) ≤ C

(∫
Ω

|∇u|m(x)
dx+H (t) +

∫
Ω

u2
tdx

)
, (3.35)

where C is only related to σ, ε. Taking σ < min
{

m1−2
p1

, m1−2
p2

, m1−r1
p1(r2−1) ,

m1−r2
p1(r2−1) ,

m1−r1
p2(r2−1) ,

m1−r2
p2(r2−1) ,

m1−2
2m1

, 1
}
,

by inequality (3.31) and (3.6) in Lemma 3.2, it follows that there exists a constant ζ > 0 such that

L
′
(t) ≥ ζL

1
1−σ (t) (3.36)

for any t ≥ 0 . Integrating the above formula with respect to t on [0, t] , we get

L
σ

1−σ (t) ≥ 1

L
σ

1−σ (0)− σζ
1−σ t

(3.37)

for any t ≥ 0 . Hence there exists T ∗ ≤ 1−σ

σζL
σ

1−σ (0)
such that lim

t→T∗
L (t) = ∞, that means the regular solution

u (x, t) must blow up in finite time. 2
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