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Configuration Spaces and Imbedding Invariants

Raoul Bott

1. Introduction

For the past two years I have been trying to understand the new physics-inspired
invariants of three-manifolds and knots in terms of concepts more congenial to the classical
topologist.

In [K] Kontsevich indicates a method for defining a set of invariants for 3-manifolds M,
which presumably recreates the asymptotic invariants of the Chern-Simons theory at the
trivial representation of 7, (M), entirely in terms of the De Rham Theory of Configuration
spaces of M. It therefore seemed plausible, R® being simply connected, that a similar
approach would work for knots in R3, and in our recent paper [B-T] Cliff Taubes and I
showed that this is indeed the case. Since then we have noted that this method yields
potential invariants also for higher-dimensional knots of $2*~1 in R?*+1 and the first of
these will be presented in section 3. However, in this account I will mainly concentrate
on the classical case and try and fit our constructions into the picture as it emerges from
the work of Drinfeld, Bar Natan, Birman-Lin, Kontsevich and others.

The first conceptual step to note in the discussion of imbeddings — versus maps — is
that for an imbedding:

f XY, (1)

the Cartesian powers of f:
ff:X"—>yn (2)
are also imbeddings and so map the subset of distinct n-tuples (z;, - ,Tk) T3 # z; in

X" to the corresponding subset of distinct n-tuples in Y™. One calls the subset of distinct
n-tuples the n-fold configuration space of X, denotes it by C9(X):

Co(X) ={(z1,-- ,zn) € X"|z; # z;}, 3

and the overall aim of one program is to build imbedding invariants simply out of the
auxiliary sequence of arrows

Cr(f) : CR(X) — C(Y), n21, (4)
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induced by a given imbedding f. Note that the CO(f) are obviously equivariant under
the symmetric group action on both sides.

This principle works remarkably well for the very classical problem of imbedding a
graph G into the plane R2.

Observe first that for every space X, the double cover

CR(X) = Co(X)/Zy (5)

determined by the Z, action on C3(X), defines a characteristic class nx € H(CS(X)/Zx;Z2)
— the first Whitney class of the line bundle associated to the double cover.

An immediate necessary condition for G to imbed in R? is now that nZ = 0.

Indeed an imbedding

f:G >R (6)
gives rise to an equivariant map
(@) — St (7
with Z, acting as the antipode on S, by sending z1,z2 € C3(G) to
f(z2) — f(z1) . (8)
|f(z2) — f()]

It follows that ng is a pull-back of ng1. On the other hand, 77?91 = 0 by dimensional
reasons. QED

Remarkably enough this condition turns out to be sufficient also! This is a result of
Wu [W] who derives it from the famous Kuratovski criterion, by showing that for the two
“excluded figures” n% # 0. I learned all this only a week or two ago from a minor thesis
of Mark Wunderlich — a bright senior at Harvard this year.

The problems of knot theory are of course much more difficult because they deal with
the classification of imbeddings of G in R? up to isotopy, rather than an existence problem.
Nevertheless, the “configuration space method” here again yields a first invariant. Namely,
if

f:G—R3 (9)
is an imbedding, again consider

Ca(f) : C3(G) = Ca(R?). (10)

On the right, C2(R3) is now seen to be equivariantly homotopy equivalent to S2. Hence
if we can find two disjoint 1-cycles, say S; and Sz in G, then S; x Sz C C9(G) and so we
have the arrows:

1 x Sy € C2(C) ZW coR3) £3 g2 (11)

whose composition defines a degree.
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Put differently, if X = S; 1L S, then every imbedding of X in R® has an integer
assigned to it by the above procedure, and that integer is of course one of the definitions
of the linking number of the two circles. In fact, if we set

e 1 zdydz — ydzdz + zdzdy (12)

CAr (224 g2 + 22)3/2
so that w serves to deﬁn:e the unit volume on S? C R3, then the pull back of w under the
arrows of (11) precisely reproduces the Gauss Integral for the linking of two circles in R3.

2. Knot invariants

When one tries to apply this principle to a knot, i.e., take X = S;, one soon discovers
that for any imbedding f : S < R3 the “Gauss Integral”

/ (Ca(f) 0 pr2}*w (13)
CR(S1)

converges — but is neither an integer nor an isotopy invariant. Rather, this “self-linking”
number is a nontrivial smooth function on the space K of smooth parametrized imbeddings

of S c R3.
To discuss this function in detail, note that the map
Y12 ¢ Cg(R3) g Sz (14)
defined by
o — 1
=22 1 1
(P12(~'L'1, 1’.2) I.’L'2 — xll ( 5)

composed with Ca(f), takes two distinct points (z1,z2) on the knot, k = f(S1), to the
unit direction of the chord joining the distinct points f(z1), f(z2).

Now C9(S') = S* x 81— A, and is therefore diffeomorphic to S* x (0, 1), as is apparent
from Fig. 1 below:

Fig.1
Due to the singularity of @12 near z; = x3, the map Ca(f) o 12 does not extend to
S' x S, but it does extend to the compactification S* x [0, 1] of S* x (0,1), and in fact
C5(f) o 12 then clearly restricts to the tangential map
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e
|f (@)l
on one boundary circle of S* x [0, 1] and to —(z) on the other.

To investigate the self-linking function given by the integral (13) further, it is expedient
to think of it as a pull-back push-forward — or transfer — in the following diagram:

P(z) (16)

KxCy(sh) 29 omy) &3 s

v (17)
K

where now C3(S') denotes the compactification of C9(S!) to S x [0,1], and C2(R3)
stands for the “compactification along the diagonal” of R? x R® — A, given by blowing
up the diagonal in R3 x R? in the C* sense, i.e., replacing A, by the unit normal bundle
of A in R? x R3.

It is not difficult to check that the map ;2 extends to C2(R3) and in fact then restricts
essentials as the identity on the fibers over A. In this picture the self-linking integral now
takes the form

T o {Ca(f) 0 p12}" - w, (18)

where 7, denotes integration over the fiber in the product fibration on the left. More
informally, we also write

/ b1 (19)
Ca(S1)

for this integral, and graphically refer to it by the di.gram:

(20)

A 4

2

To study the constancy of this function on K we differentiate it by applying the functorial
form of Stokes’ theorem for fiberings with “manifolds with boundary” as fibers. In this
context, Stokes’ Theorem takes the form:

dr = r.d+ n2M. (21)
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Here the last symbol denotes restriction to the boundary followed by integration over
that boundary. In the case at hand it therefore follows from our earlier remark concerning
the value of Ca(f) that

d/ b2=2 [ ¢* w, (22)
C2(S1) St
where, as before,

Y:Kx 8 — 52 (23)
denotes the tangential map

()= 7y 9

This formula (22) already exhibits an interesting topological fact about the space K
vis-a-vis the corresponding space of immersions of S* in R3. If we denote the space of
these immersions with 7", we clearly have X C T and equally clearly, the old formula (24)
extends ¢ to a map:

P:T x 8 — S2. (25)

Now by theorems of Whitney and Smale, the structure of 7 is well known. Namely,
the transpose of w

Pt T — LS?, (26)

mapping 7 to the loop space of S? in a homotopy equivalence. Furthermore, by a con-
struction of Chen the 1-form
Prw
S1
is also well known to generate the one-dimensional vector space H!(LS?;R).
In short, the relation (22) asserts that this generator of H(T) restricts to 0 in H 1(IC)
and in fact is there the boundary of one-half the self-linking function

L’,"C-/Sllz*-w=2d @ (27)

All these remarks are essentially old hat, even if expressed in a new form. Here they
mainly serve to prepare us for the next conceptual step in the study of imbeddings.
Namely, we need to understand compactifications of the spaces CO(X ) foralln > 2,
which are functorial for imbeddings, and to which our maps Pij:

ij : Ch(R®) — 5%, (28)
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a:j—wi

given by ¢;j(z1---xx) = 1,7 < n, extend smoothly. In short, we need

Tr; — Ty
compactifications where twcl) éistinclt points never quite lose their identity. Such a com-
pactification was carefully described by Fulton and MacPherson in the algebraic context
a year ago [F-M], and it is not difficut to adapt their work to the C*° case — as was done
very explicitly by Axelrod-Singer in [A-S]. Presumably this is also the compactification
Kontsevich had in mind in [K].

Actually, the definition is very simple and it is only the careful description of the strata
that is difficult, confusing, and at times counter-intuitive.

The definition of [F-M] is the following one. Given a finite set S, M S denotes the
space of maps of S to M, and B¢(M?®,Ag) denotes the C° blow up of the “diagonal”
Ag C M5, consisting of the constant maps of S to M. If we write C3(M) for the space
of imbeddings of S to M, then these spaces are clearly the functorial versions of our
earlier configuration spaces. It is also clear that for every inclusion K C S there are
natural projections M5 — MX and corresponding arrows C3(M) — C% (M) induced by
restricting maps from S to K. Furthermore the natural inclusions C%(M) C MS lift to
inclusions C3M C B¢(M S Ag), as these sets avoid all diagonals. In short, given a finite
set N, there is a canonical inclusion

CX (M) = Q) Be(MZ,Ag) x M. (29)
SCN
|S1>2

The Fulton-MacPherson compactification, Cx (M) is now defined to be the closure of
C%/(M) in this imbedding.

This compactification has all the desired properties: it turns out to have a natural
structure of a manifold with corners; it clearly has the desired equivariant functorial
properties under imbeddings, and the maps ¢;; on CO(R3) do extend to Cp,(R3). In short,
it meets all the criteria we had laid out for it.

I do not have time to elaborate on this construction, but let me give you a feel for it by
drawing the first few Ci(S'). The space C;(S?) is of course S* while C3(S*) = S x [0, 1]
as we already saw. For k > 3, C2(S') breaks into (k — 1)! components, and once we
choose an orientation for S! the components are characterized by the cyclic order of the
points as they appear on S'. The “identity component” is taken to be the one in which
they appear in their natural order, i.e.,

1
Axe a1
2
ait+axta--aps1=1
k a,
3
Fig. 2
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Using the parameters a; of Figure 2, this component is now seen to be
[e]
id. comp. CP(S') = S x Ay, (30)

o
where Ay denotes the open k simplex.
Thus the naive compactification of the identity components of CP(S') would simply
be S! x Ag_1: the circle times the closed (k — 1) simplex.
Pictorially the naive compactifications would therefore give rise to S! crossed with the
sequence:

_)
-

Fig. 3
of closed simplexes, so well known from semisimplicial theory.
On the other hand, the identity components of the functorial compactification Cy(S™)

give rise to S* times a sequence of polyhedra obtained from the above sequence by a series
of “blow ups”. The polyhedra W; in question takes the following from:

&

Fig. 4

S
®

"
22
W

Thus the identity component of C3(S 1) = 81 x W3 with W3 a hexagon, while that of
C4(S') is given by S x W, with W, manifestly already a more formidable figure. The
interesting, and possibly at first counter-intuitive, state of affairs is that the open strata
of codimension 1 in C,,(M) are indexed by all the subsets, S, with cardinality |S| > 2, of
the set N = (1,2,---n), an open stratum associated to S describing the coming together
of the points z;, ¢ € S, at distinct but commensurate speeds.

In the one-dimensional case these strata need not be connected, but in the identity
component of C,,(S!) one can keep track of the connected components of a stratum by
indicating in what cyclic order the points come together.

Thus one labels the W’s by:
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(123)

12) (23)

12) —— @1 (32)

(321) (231)
(31

Fig. 5

The higher “faces” of W}, are indexed by nested subsets of the set N = (1,2,---n),
that is, by collections A = (Si,---S,) of subsets of N, each of cardinality > 2, such that
for any two S; and S;:

S; C Sj or Sj C S or SinN Sj = 0. (33)

A glance at the polyhedra W; shows that certain faces of W;,; are isomorphic to W;.
These are the faces indexed by subsets of cardinality 2 and correspond to the collision of
precisely two points. Correspondingly, we call these the “principal” faces of W;y1, and
the others the “hidden” faces. Thus the pentagons and quadrilaterals in Wy are hidden
while the 4 principal faces are the hexagons.

From this point of view the great virtue of the sequence of simplexes {A} is of course
that all the faces of Ay are isomorphic to As with s < k so that, for instance, integrals
over the boundary of A, can always be collated to a sum of integrals over Ay_;.

Unfortunately this is not quite true for the sequence W; and I therefore like to think
of the W-sequence as a “leaking” semisimplicial space.

With these basics understood it is time to continue our search for new knot invariants,
and armed with the compactifications C(S*) and Ci(R3?) we see that one again has
natural arrows:

Ce(SHYxK b Cu(®®)

”l (34)
K

so that we can again construct forms on K from forms on Ci(R?) by the pull-back push-
forward procedure.

Furthermore, there is a natural candidate for the forms on C,(R3) to which we can
apply this transfer procedure, namely the ring generated by the pull backs of the volume
form w € Q2(S?) under the projections

0ij : Cn(R3) — G2 (35)
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sending (z1 -+ - zn) to (z; — z;)/|z; — =il
We correspondingly write

9,']' = (p:;j c W, ’L,] <n (36)

and refer to the ring generated by the 6;; as the ring of “tautologous forms” on Cp(R3).
It is well known and easy to prove by induction that the 6;; generate H*C,,(R3). They
clearly also satisfy the relations

0i2j =0 0;j = —0; (37)

so that this ring is spanned by monomial expressions in the 6;;, ¢ < j. In short, we seek
candidates for new invariants among the transfers, 7, o C} - w, of monomials w in the §’s.
For instance, if we take the monomial ;3624 in Q4Cy (R3) and consider its transfer:

a = 71'*01913024 = / 913924 (38)
C4(SY)

we get a new function on K. However, as before, this function will not be locally constant,

i.e., a knot invariant, unless:

da = / 013024 (39)
8C4(S1)

vanishes.

Now the boundary of dC4(S?) consists of the “hidden faces” and the “principal faces”
— which are all isomorphic to C3(S?).

A local computation now shows that although C;6;3624 does not vanish on a hidden
face, its push-forward does! Hence this part of 9C4(S*) can be forgotten in the computa-
tion of da.

On the other hand, the contribution of the principal faces can be collated to yield an
integral over C3(S'). In this way — and using the invariance of the push forward under
the orientation preserving diffeomorphism given by the Z;z action on C3(S*) — one finds
the new representation:

da = 4/ 012923. (40)
C3(S1)

In the attempt to cancel this term we come now to the third essential principle needed
for making imbedding invariants in the context of configuration spaces. I will call it
the ezchange principle, and for those in the know, it clearly has its antecedents in the
Feynmann integral.

The idea is simply to extend our notion of “configuration spaces” in a functorial man-
ner.

Namely, given an imbedding

fiXcy (41)

we define C, s(X,Y) to be the compactification of configurations of r-distinct points in
X and s-distinct points in' Y, which are also distinct from the f(z;), 1 <j <r.
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Technically C, s(X,Y) fits into the Cartesian Square

Cr.s(X,Y) Crs

/

i (42)
ImbX,Y)xCi(X) —  Cu(Y)

Cr+s (Y)

with 7’ a bundle projection. In particular, C~"T,S(X, Y) is a space over Imb(X,Y) with
fiber Cy. s(X,Y) so that one again has the transfer diagram:

Crs(X,Y) 8 Crpu(Y)
T (43)

Imb(X, Y).

In the case at hand one will see that the transfer of 634624034 in 9604(R4) is the
integral!

B= / 014024034 (44)
Csz1

can be used to cancel the integral for do.
Precisely one has:

Theorem 1. (Bar-Natan, Guadagnini, Martellini, Mintchev) The integral expression
1 1
=~ / 013024 — 5 / 014024034 (45)
4 Ca(S1) 3 Cs,1
represents a locally constant function on K and is thus a knot invariant.

The reason for this cancellation is maybe best understood by the following considera-
tions.
We have four natural boundary maps

Cs(S") Ca(S%) (46)

=
‘ =
of which the first is given by
O1(z1,x2,23) = E>li0n_1)0(z1, T1 + €,T2; T3) (47)
and the rest can be taken to be the transforms of 8; by the Z4 action on C4(S'). These
maps induce corresponding maps

£l

Cs 3 Cio (48)

1We have here abbreviated the identity component of C3,1 (S',R3) to C3,1 and will adhere to this
notation hereafter.

10
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" where we have now abbreviated the notation of 5’T, s(X,Y) to éT, s
But we also have three natural arrows:

Cs1
Tt (49)
C3’0 X 82
of which the first is defined by
al{flaxlax27$37 g} — £i;%(f’xl7x27$3a T4+ €- 6)’ (50)

so that the S2-factor records the direction in which the two points z; and z4 collide.
To bring these two pictures into synchronization we multiply the first one by S? to
obtain

Cs,1
t11

63’0 X S2 = 64,0 X S2.
=

Except for numerical factors and using the invariance under cyclic permutations of the
push forward, one then sees that boundary contributions of the two forms 63624 - w on
the right, and 614624034 above, cancel each other on the Cs ¢ x S2 part of their common
boundary! But we are not quite done, for there remain new “principal boundary” parts,
of 6’3,1, to be considered, those corresponding to the collision of two points on the circle.
But on the part where x; and zo tend to each other the form #:460246034 restricts to
014614034 and so vanishes thanks to the relation O?j = (. Similarly on the faces where 5
approaches z3, and z3 approaches x;. Unfortunately, new hidden faces of Cs; have to
be considered also — but again one finds that the push forward from these hidden faces
vanishes. Q.E.D.

In summary, one can fit this invariant into the compactified configuration space picture
and deduce its invariance from Stokes, the vanishing of push forwards on hidden faces,
the equivariant behaviour of the push forward in general, and the exchange principle.

Once this is done it is more or less clear how to generalize this construction and create
new integrals which give invariants of knots, and with Cliff Taubes we laid the foundation
for this extension in our paper [B-T].

What emerges can be summarized as follows: For each integer £, the transform of the
tautologous forms from the diagrams

(51)

6«T’s x (52)28—3 s Cr+s(R3) x (52)2t
, TH+s=2t (52)
K

11
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give rise to a sub-complex Fy of Q*(K) and the relations between these forms on the
“principal faces” induce a combinatorial differential operator 6 on F;. Furthermore, in
dimension 0, HJ(Fr) describes potential knot invariants.

In many ways, as physicists noted years ago, this complex F, — at level ¢, is best
described graphically. Thus we denote the transfer of a form from the diagram above
by an oriented circle on which r points are indicated, labelled in the direction of the
orientation, together with s interior points, labelled by the integers r+1,--- ,7 +£. Now
the form 6;; is graphically indicated by an oriented line joining the vertex i to the vertex j.

1 2
Thus the form 6136024 - w  is indicated by @ , and 0146024634
C4,0 CS,I
4 3
1 2
w (1)
3

Actually these diagrams stand for equivalence classes; changing the orientation of an
arrow flips the sign and the change of labellings acts according to its effect on the ori-
entation of C,,. In this notation the graphical transcription which correspond to the
boundary and interchange relations:

Cr,s ce CY'r'+1,s
and -
(53)
-3
C,,-’s X SZ Ce Cr,s-i—l )
_.}

respectively, are as follows. Each boundary arrow corresponds to contracting of the
corresponding arc on the circle. Each interchange arrow corresponds to a contraction of
an edge joining an interior vertex with a vertex on the circle, or two interior vertexes.

In short, the combinatorial § of F; assigns to every diagram D the linear combination
“with appropriate signs” of the graphs obtained from D by these operations. For example,

DB G Q-0

and similarly

12
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) = 3 (55)

The rules of this complex are therefore very similar to the ones in Kontsevich’s “Graph
Cohomology” [K]. But notice that they differ from his general graph cohomology in the
presence of the circle and the fact that not all edges are contracted when forming 6. In Fy
the edges joining two points of a circle — other than the “circle arcs” are not contracted.
This is then some sort of relative version of Kontsevich’s construction. His rules were of
course devised for the construction of 3-manifold, rather than knot invariants.

At this stage we have arrived at a graphical complex which is also reminiscent of a
complex occurring in the “weight system” approach to Vassilief invariants of Dror Bar-
Natan, Birman-Lyn and others.

In this approach one works with the vector space of “chord diagrams” A’, generated by
graphs consisting of an oriented circle in which an even number of “vertexes”, i.e., points,
are “paired off”, such a pairing being denoted by a chord joining the two vertexes. For
example,

(56)

denote two generators of A’ of weight £ = 3. In this vector space A’, the subspace A”
of “4-term relations” is singled out. Here a 4-term relation is generated in the following
manner:

Starting with any chord diagram D, choose a chord ¢ in D and introduce a new vertex
v in the bounding circle. Now consider the four new chord diagrams obtained by adding
to D a chord starting at v and ending “near the endpoints” of c.

There are clearly 4 of these and their “oriented” sum, as indicated below, is a generator

of A”:
9. 92 @ -

The pertinent object for counting the Vassilief invariant is rally the quotient space
A = A'/A”, or in the terminology of Bar-Natan a subset of its dual space, the “weight
systems” W on A.

These are linear forms on A which vanish on any diagrams having an “exposed chord”,
that is, a chord whose endpoints are joined by an arc of the boundary circle which contains

13



BOTT

no other vertexes of D. W is clearly a graded space

W=€B Wi

with W}, nontrivial only on diagrams with k chords.

Recall now that in the Vassilief scheme of things the space of Vassilief knot invariants
V, is naturally filtered V O V; D Va,--- and the space of weight systems constitutes a
natural “upper bound” for the graded group associated to this filtering, in the sense that
there is a natural inclusion:

Vk/Vk—l — Wk. (58)

That this arrow is actually onto was proved by Kontsevich, using a beautiful but mys-
terious integral formula, see [BN], and constitutes the main existence theorem of the
subject.

The nature of this integral, and its antecedents, make an interesting story, but I cannot
go into here, except to say that it is arrived at from the “braid point of view” towards
knot theory and thus ultimately related to configuration space Cy(R?), rather than to
Cn(R3)!

The combinatorial relation of W}, to our complex of tautologous forms Fj intrigued
me all last year, and I managed to get Dylan Thurston — a senior at Harvard — interested
in this question. His combinatorial gift soon resolved it by showing, among other things,
that every “weight system” induces a cocycle of dimension 0 in our complex F.

To prove this relation, he uses an equivalent description of A in terms of the “Chinese
character diagrams” introduced by Bar-Natan [BN]. These “Chinese character diagrams”
actually looked just like the diagrams in our complex F', except that their orientation
conventions seemed quite different to me. However, Dylan Thurston cleared this matter
up in a most satisfactory way by asserting that if we endow the space A’ with an inner
product given by:

(D, D'y = # of isomorphisms of D with D', (59)

so that every weight system w has a “geometric realization” in A’ given by:
D
W= zw(D) 10| |D| = # of automorphisms of D; (60)

then w will be a cocycle in our complex.

After this extended excursion into combinatorial matters it is again time to return
to the main question, namely whether the combinatorial cohomology groups H*(Fp),
actually determine potential cohomology classes in H*(K).

Put differently, the question is whether the push forward vanishes on all hidden faces,
for the complex F takes care precisely of all the principal ones.

Unfortunately, it does not seem to be true that all push forwards along all hidden faces
vanish, but what Cliff Taubes and I were able to show in [B-T] is that for “connected
diagrams” D in F the contributions of all hidden faces to the push forward is zero, except
for the “maximally degenerate face” i.e., the one in which all the points approach each

14
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other. On the other hand, we can show that the contribution of this “bad” face, is always
a multiple p(D) times the self-linking integral 1<D2 !

From this it follows that at least in dimension 0, every cocycle a in H°(Fy) can be
modified by a suitable multiple u(a) of 1<D2 to yield a knot invariant.

Combined with Dylan Thurston’s assertion that each weight system gives rise to a
cocycle in F, one therefore obtains a new proof of the basic existence theorem that
Vi/Vk—1 — Wy is onto, and so brings — to my mind — a much less mysterious though
more pedestrian explanation for this fact than Kontsevich’s integral does.

In higher dimensions, this basic “anomaly” of the maximally degenerate face, propa-
gates more errors into the passage from H*(F') to H*(K), so that the best way to describe
the situation is that H*(F) plays the role of the E,-term of a spectral sequence converging
to potential cohomology classes in K.

Let me close this report, which has become much longer than I had expected, with
some of the questions which I would very much like to have answered.

1. This first problem deals with the question of the anomaly. The number u(D)
as defined in [B-T] is given by a kynematical integral and will in general not be
zero on a given diagram, D, but it is conceivable that for a cocyle w = 3 ap D,
we also have the relation > apu(D) = 0, whence no anomaly would exist in
HO(F).

In short, the first question is then: Do the anomalies cancel for cycles in H?(F,)?

2. Granting that the answer to 1 is yes, the next question is: Do all “rational”
weight systems give rise to rational knot invariants?

3. Construct nontrivial elements in H*(F') for i > 1.

No such classes are known to me, but I would expect at least one such class
in dim 1. By a little known theorem of Hatcher the knot components are
all K(m,1)’s and the possible n’s include Z. Hence some components carry
a nontrivial H! and it would be interesting if this H! came from a universal
element in H!(F).

4. It would be interesting if some of the famous anomalies in the physics literature
could also be traced to “hidden faces” in configuration spaces.

3. The configuration space invariants for imbeddings of S?*! in
R2H > 1

To apply our general procedures to imbeddings of X C Y, we first of all need to find
some “resonance” in the cohomological behaviour of the transfer diagram:

Imb(X,Y) x Ck(X) —  Cu(Y)
m (61)

Imb(X,Y)
15
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For this purpose we need to understand H*Cx(Y) and H*Ci(X). In the case at hand,
H*(R™) is well known to be generated by the classes 0;; = ¢}; - w with

i w = vol on S™71, (62)

P = gl
in short the classes we have already met for m = 3. The behaviour of these forms is then
quite uniform in m. On the other hand, C,(S™) is homologically different for m even
and m odd.

Note that in general, if p € S™ is a base point, then §™ x §™ —p x ST US™ X p
is diffeomorphic to R™ x R™. If we now remove the diagonal A in R™ x R™ to obtain
CY(R™), then our old map ¢12C3(R™) — S™~1, can be used to pull back the volume
form yielding a closed (m — 1)-form n;2. Put differently, define the relative configuration
space C9(S8™;p) as distinct “n-tuples of points in S™, which are also different from p.
Then the 7;; are defined on CJ(S™;p) and extend to the natural compactification of
Co%(S™;p) to Cr(S™;p).

The space Cy,(S™;p) is a blow-up over Cy,(S™) and although the individual 7;; do not
descend to C,,(S™) the sign in the diagonal map, A™ — S™ x S™, sees to it that for
odd spheres m = 2k — 1, any cyclic sum of the 7;;’s does descend to C,,(S™). Thus, for
instance, for n = 3, one has the closed form:

112 + N23 + M31 € HZk_z(Ca(S%_l))- (63)

With these preliminaries understood, we are ready to write down the “first” knot
invariant of a (2k — 1) knot in R?**1 mentioned in the introduction:

1

v = Z/ 0136024 (2 + 7123 + N34 + Na1)?
Ca,0

1
- 3 614024034(m12 + N23 + 134)- (64)
C3,1

Let us check at least that in these integrals “resonance” does occur. The dimension of
the fiber in the first integral is 4 - (2k — 1) = 8k — 4. The form to be integrated has dim
2k + 2k + 2(2k — 2) = 8k — 4.

In the second integral the fiber-dimension is 3(2k — 1) + 2k 41 = 8k — 2 while the form
is of dimension 3 - 2k + 2k — 2 = 8k — 2.

The proof that v is a knot invariant follows the same pattern as before. One checks that
on the principal faces the integrals for dv cancel, and that on the hidden ones they vanish.
On the other hand, at the time of this writing we do not know whether v distinguishes
between different knots.
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