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1. Introduction

In this short article, we give an outline of main results. The full version will appear
elsewhere. This paper is a continuation of our previous paper [RT]. In [RT], among
other things, we build up a mathematical foundation of quantum cohomology ring on
semi-positive symplectic manifolds. We also defined higher genus symplectic invariants
without gravity (topological sigma model) in terms of inhomogeneous holomorphic maps
from a fixed Riemann surface, and proved the composition law they satisfy. Topologi-
cal gravity, proposed by Witten, concerns the intersection theory of the moduli space of
marked Riemann surfaces. Based on the physical intuition, Witten suggested a relation
between those intersection numbers and the KdV hierarchy. This relation was clarified
by Kontsevich (cf. [Ko]). However, both mathematical and physical phenomenon will
become much more interesting if the topological sigma model is coupled with the topo-
logical gravity. In fact, in [W2] Witten proposed an approach to the topological sigma
model coupled with gravity, and made a very important conjecture on the basic feature
of this new model. The purpose of this paper is to establish a mathematical foundation
for the theory of topological sigma model coupled with topological gravity over any semi-
positive symplectic manifolds. This new theory also provides many more new geometric
examples of the topological field theory coupled with gravity. For each semi-positive sym-
plectic manifold V', we can associate a topological sigma model with gravity, or simply a
topological field theory coupled with gravity.

2. Gromov-Witten invariants
This theory begins with the GW-invariants
\I,E/A’g,k) : H*(Hg,k‘a Q) X H*(‘/’ z)k = Qv

for any A € Hy(V,Z) and 2g + k > 3. Here M, is the Deligne-Mumford compact-
ification of the moduli space of genus g Riemann surfaces with k¥ marked points. The
GW-invariants are multilinear and supersymmetric on H,(V, Z)*.
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At first, we will rigorously define the GW-invariant ¥V on semi-positive symplectic
manifolds. From the analytic point of view, it is the most convenient to use the inho-
mogeneous holomorphic maps from Riemann surfaces in Hg,k, though other equivalent
formulations may be possible, such as using stable maps and establishing a more sophis-
ticated intersection theory.

First of all, let’s introduce the inhomogeneous Cauchy-Riemann equation, which plays
a central role in [RT]. A minor difference, compared to that of [RT], is that we will vary the
complex structures on the Riemann surfaces. We would like to define the inhomogeneous
term varying continuously as we vary the complex structures of the Riemann surfaces.
This can be done as follows: Let (V,w) be a symplectic manifold and J be a tamed
almost complex structure. Let Mg be the moduli space of genus g Riemann surfaces
with k-marked points and ﬂg,k be the Deligne-Mumford compactification. Suppose that

ug,k — Mg,k

is the universal curve. We use Uy to denote the preimage of Mg ;. Uy x is a projective
algebraic variety. Therefore, we have an embedding ¢ : U, — PY. There are two
relative tangent bundles over PY x V with respect to m; (i = 1,2) , where 7; is the
projection from PV x V to its i-th factor. A section v of Hom(n;TPN ,n3TV) is said to
be anti-J-linear if for any tangent vector v in TPY,

(2.1) v(gpn (v)) = —J(¥(v))

where jpn~ is the complex structure on PV. Usually, we call such a v an inhomogeneous
term.

Definition 2.1. Let v be an inhomogeneous term. A (J,v)-perturbed holomorphic map,
or simply a (J,v)-map, is a smooth map f : X2 — V satisfying the inhomogeneous Cauchy-
Riemann equation

(2.2) 01f)(z) = v(¢(), f(2)),
where Oy denotes the differential operator d + J - d - jx.

We denote by M4(g, k, J,v) the moduli space of (J,v)-perturbed holomorphic maps
from (X,z1, - ,xk) into V, such that f,[¥] = A and (%, {z;}) € Mg has the trivial
automorphism group. There are some important topological properties as follows.

Let m: Ua(g, k, J,v) = Ma(g, k, J,v) be the universal family of curves, i.e., 7= 1(f, I, {z;})
= 3. We can define the evaluation map

ealg, k) :Ualg, k, J,v) >V
by

Each marked point z; defines a section

oi: Mal(g,k,J,v) = Ua(g, k, J,v)
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by
(2'4) Ui((fvz, {zt})) = ;.

The composition
€ = eA(gak) 00;: MA(g)k7 Jv V) -V
Let

k
E;,k = HeA(g, k) 00;: MA(gJC’Ia Ja V) - Vk'
i=1
Evidently, we have a map T4 : Ma(g,k,J,v) & Mg by assigning each (J,v)-map to
its domain. Together, we get a smooth map
Ta x E;k : Malg, k, J,v) = Mg ¥ vk,

In general, M (g, k, J,v) is not compact. However, there is a natural compactification
M a(g,k, J,v), which we call GU-compactification.

Proposition 2.2. Suppose that (V,w) is a semi-positive symplectic manifold. Then,
there is a Baire set of second category-H among all the smooth pairs (J,v) such that for
any (J,v) e H

(1) Ma(g,k,J,v) is a smooth, oriented manifold of real dimension
261(V)(A) +2(3 - n)(g — 1) + 2k;

(2) Ta and E;’k extends to continuous maps, still denoted by the same symbols, from
MA(Q, k,J,v) to ﬂg,k and V¥, respectively;

(8) The boundary Y 4 x E;k (Ma(g, k, J,v)\Ma(g, k, J,v)) is of real codimension at least
two.

Putting aside technical details for the time being, we can intuitively define the GW-
invariants as follows: let V' be any symplectic manifold and A € Hy(V,Z). For any
homology classes [K] € H,(M,x, Q) and o; € H.(V,Z), represented by cycles K, A;, re-
spectively, we define \Il&’%k) ([K];a1,- -+ , ax) to be the number of tuples (X; 1, - - - , zk; f)
with appropriate sign, satisfying: £ € K, f : ¥ — V solves a given inhomogeneous
Cauchy-Riemann equation, and f(z;) € A;, whenever

Zcod(Ai) + cod(K) =2¢1(V)(A) +2(3 —n)(g — 1) + 2k; (1.5)

We simply put \Il&,g’k)([K]; a1, , o) to be zero if (1.5) is not satisfied.

This approach towards defining new invariants has been used before in many cases (cf.
[R], [R3], [RT], [KM], [Wi]). For complex surfaces, using unperturbed holomorphic maps,
the first author already defined the invariant ¥ in the very important case that k = 0 and
(K] = _Mg,o. However, in each case, there are specific difficulties to be overcome. Using
the techniques we developed in [RT], we will first prove
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Theorem A. If V is a semi-positive symplectic manifold, the GW-invariant \I’YA, g.k) con

be well defined for any g,k > 0 with 2g+k > 3. Moreover, ¥V depends only the symplectic
structure of V and is independent of any semi-positive symplectic deformation.

One new consequence of our definition, which was not obvious at all to physicists based
on mathematically unjustified path integrals, is the necessity of symplectic structures.
The path integral starts from a Lagrangian. The Lagrangian for sigma model or sigma
model coupled with gravity is valid for any almost complex manifolds (symplectic or not).
Naturally, one would think that its correlation functions will be the invariants of homotopy
class of almost complex structures. This is in fact false. Our invariants are symplectic
invariants rather than the invariants of almost complex structures. In particular, they
can distinguish different symplectic manifolds with the same homotopy class of almost
complex structures (see section 5 or [R], [R1]).

3. Composition Law

One of the fundamental properties of a topological field theory is the axiom on the
decomposition of correlation functions. For a topological field theory coupled with gravity,
there is a composition law as well. In our case, the GW-invariants serve as the correlation
functions. Therefore, in order to make them more useful, or at least to construct a correct
model for the topological field theory, we need to verify that our invariants satisfy the
composition law.

The composition law governs how the GW-invariants change during the degeneration
of stable curves. Its classical cousin in enumerative algebraic geometry is the degeneration
formula, which was only derived in very special cases. It never became a general theory
as neat as the composition law describes. One reason might be that the classical counting
of holomorphic curves, particularly of higher genus, does not obey the composition laws
predicted by physicists, even for the projective plane P2. Namely, the way of counting was
not good. In [RT], we found the correct counting in terms of inhomogeneous holomorphic
maps and established the composition law at least for the mixed invariants, corresponding
to the o-models without gravity. Based on the same techniques developed in [RT}, we are
also able to prove the composition law for all GW-invariants.

Assume g = g; + g2 and k = k; + ko with g; + k; > 2. Fix a decomposition S = S; US>
of {1,---,k} with |S;| = k;. Then there is a canonical embedding 85 : Mg, x,11 X
Mg, ky+1 = Mgk, which assigns to marked curves (Zg; 2%, -, 2}, 1) (8 = 1,2), their
union ¥; U Xy with :c,lcl 41 identified to aci2 +1 and the remaining points renumbered by
{1,--- ,k} according to S. There is another natural map p : Mg_1 k42 — M, . by gluing
together the last two marked points.

Choose a homogeneous basis {8 }1<p<r of H«(V,Z) modulo torsion. Let (nss) be its
intersection matrix. Note that 1, = B, - Bp = 0 if the dimensions of 3, and 3, are not
complementary to each other. Put (7®) to be the inverse of (14). Now we can state the
composition law, which consists of two formulas.
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Theorem B. Let [K;| € H.(Mg, r,+1,Q) (i = 1,2) and [Ko] € Ho(My—1112,Q). For
any a1, , o in H(V,Z). Then we have

(3.1)
V) O (K1 x Kali {es})
B A=AX1:+A2 g \IIX“l’ghlirl)([Kl]; {astishn, BT WLy, g, by 1) (1K) Bos {05} 5501 )
(82)  Wagm(alKolion, - or) =3 Wy oy ko) (Kolien, -, g, Ba, Bo)n®

a,b

The composition law is closely associated with the structure of ﬂg k. Here we also
prove two other properties of ¥ corresponding to the reduction of marked points 7y :
Mg K Mg k—1. These formula will be important later for the generalized string equa-
tion and the dilaton equation of the generating function.

There is a natural map my : Mg k= Mg k-1 as follows: For (X,z9, - ,x%) € Mg,k,
if z, is not in any rational component of ¥ which contains only three special points, then
we define

(5, 21, -+, 2k) = (5,21, -+, Tp—1).
Notes that a distinguished point of ¥ is either a singular point or a marked point. If zj, is
in one of the rational components, we contract this component and obtain a stable curve
(X1, ,Zk—1) in My x_1, and define m(Z, 21, -+ ,zx) = (', 71, - , Th—1).

Clearly, 7y, is continuous. One should be aware that there are two exceptional cases
(9,k) = (0,3),(1,1) where m is not well defined. Associated with 7, we have two
k-reduction formulas for ‘I,X‘l, 9.k)"

Proposition 3.1. Suppose that (g, k) # (0, 3), (1,1).
(1) For any a1, - ,ax—1 in Hy(V,Z), we have
(33) \I’E/A,g,k)([K]; Qi - 5 Qg—1, [V]) = ‘I(E/A,g,k—l)([ﬂ'k(K)]; (23 PR ’ak—l)

(2) Let ax be in Ho,—2(V,Z), then
(3.4) (A,g,k)([Wk (K)sa1, -+ op-1,0) = O‘Z(A)‘I’XA,g,k—l)([K]Wla"' ) Qk—1)

where o, is the Poincare dual of a.

4. Generalized Witten conjecture

In order to formulate the generalized Witten conjecture in terms of our invariants, we
need to introduce special cycles in ﬂg,k. Let 7 : m — WA—g,k be the universal family of
stable curves of genus g and k¥ marked points. Each marked point gives rise to a section o;
(1 < ¢ < k) of this fibration. Following Witten, we let £; be the pull-back of the relative
cotangent sheave of w : @ — X/l_g,k by o;. Then we put Wy, ... 4, to be the Poincare
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dual of the cohomology class ¢1(£1)% U ¢y (£2)% --- U e (L)% . We call these Wy, ... 4,
Witten cycles.
For convenience, as Witten did, we use
< Tdy,on) Tdz,azy " Tdk,ak g,k

to denote the GW-invariants ¥4 ¢ ry([Wa,,... 4 ); 1, -+ , o). Following Witten, we in-
troduce potential functions

F ;ZH ta)nra H’r’j&’c‘ >,g:0a172’“"
Np,o THO

These functions are only well defined as formal series at this moment. It seems to be a
hard problem whether or not this series is convergent in certain region of t&. We will not
address this convergence problem in this paper. We further define

=Y F,
920

One of fundamental problems on FV, even to physicists, is to find the complete set of
equations F'V satisfies. By imitating the arguments of Witten in [Wi2], we will prove

Theorem C. FV satisfies the genemlized string equation

OFV _
(4.1) P nabtoto + Z Sty Bt“ .

=0 a

F, satisfies the dilation equation

OF, a x(V)
(4.2) atl = —2+;;t Bt“)F + o O

where x(V') is the Euler characteristic of V.

In general, Witten suggested
62FV , aSFV o _ al+2FV

U = —————" = ——-—: . s —————————————
8t0,lat0,a’ 8t%,16t0,0 ’ 7 6tl+18 () o

,for [ >0

We will regard U® to be of degree I. By a differential function of degree k we mean a
function G(U,U’,U",---) of degree k in that sense. In particular, any function of form
G(U) is of degree zero, and (U’)? has degree two.

Generalized Witten Conjecture: For every g > 0, there are differential functions
Gm,on,p(Ua, Us' U, ) of degree 2g such that

0%F,

— -9 G, .. Ua, Uy UL, - -+
aTm,aaTn,B m,a,n,ﬁ( ayVa a )

up to terms of genus g.
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This conjecture was affirmed in case V = pt by Kontsevich [Ko]. When g = 0, it
is a consequence of the associativity equation proved in [RT]. But the general case is
still open. In this paper, we will focus on the lower genus cases. As a corollary of our
composition law, we will verify the generalized Witten conjecture for genus 1, 2.

Theorem D: The generalized Witten conjecture holds for genus < 2.

We call \I»'K4 . k)([ ¢,k); ) primitive GW-invariants of genus g. Those invariants
correspond to the enumerative invariants of counting genus g holomorphic curves passing
through generic k cycles in enumerative algebraic geometry.

Corollary E. For genus < 2, the Witten invariants <> can be reduced to primitive
GW-invariants.

In general, we conjecture that all the Witten invariants can be derived from primitive
GW-invariants.

5. Stabilizing Conjecture

Our invariant can be also applied to studying the topology of symplectic manifolds.
As an example, we will verify the Stabilizing conjecture of the first author in the case of
simply connected elliptic surfaces. The conjecture claims: Suppose that X, Y are simply
connected homeomorphic symplectic 4-manifolds. Then X, Y are diffeomorphic if and
only if X x S?, Y x S? are deformation equivalent as symplectic manifolds. He also
verified this conjecture for certain complex surfaces homeomorphic to a Del-Pezzo surface
(cf. [R1]). By calculating our invariants for the product of simply connected elliptic
surfaces with S%, we will prove that

Theorem F: (Theorem 5.1) The stabilizing conjecture holds for simply connected el-
liptic surfaces.

The proof of the theorem follows from the following calculation of GW-invariants.

Proposition 5.2.
29(A-a); m=q(mA=A,),
\If(Tfo“l)(Ml 1) =4 2p(A-a); m=pmA=A4,),
0; m # p,q and m < pq,
where a is a 4-dimensional homology class. In particular,

En
\Il(mAl 1)(Ml 15 )# 0 form:paq'

E} , are homeomorphic and may have different Chern classes. But the blow-up E #P2
have the same first Chern class up to a homeomorphism. Hence, by the theorem of Wall
(Ep #Pz) x 52 are diffeomorphic, have the same first Chern class up to a diffeomorphism
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and hence their complex structures are homotopic equivalent as the almost complex struc-
tures. Our invariants are symplectic deformation invariants and remain unchanged under
blowing up. This shows that

Corollary: The smooth 6-manifold V = (£} q#fﬁ) x 8? admits infinitely many defor-
mation classes of symplectic structures which have the same almost complex structure up
to homotopy

Some of the results in this paper have been lectured by us in last few years. Also, the
main results of this paper were partly announced in the paper [T] of the second author
published in the proceeding of the first ” Current developments in Mathematics”, Boston,
May, 1995. All the basic techniques were developed in [RT].

The first author wish to thank S. K. Donaldson who suggested the example of Section
5 to him.
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