ON CONFORMALLY FLAT LORENTZIAN SPACES SATISFYING A CERTAIN CONDITION ON THE CURVATURE TENSOR

M. Erdoğan

Abstract

In this paper we prove a local classification theorem for the conformally flat lorentzian spaces satisfying the condition R(X,Y)R=0.

Let M be a Riemannian space and R be the curvature tensor of M. Assume that M has a condition

- (*) R(X,Y)R=0, for any tangent vectors X and Y, where R denotes the Riemannian curvature tensor and R(X,Y) operates on the tensor algebra at each point as a derivation. K. Nomizu [3] studied the effect of this condition for hypersurfaces in the Euclidean spaces. P.J. Ryan [5] treated the same condition for hypersurfaces of spaces of non-zero constant curvature. On the other hand, some authors discussed the effect of the condition
- (**) R(X,Y)Q = 0, for any tangent vectors X,Y for hypersurfaces of the Euclidean space, where Q denotes the Ricci tensor (see [6], [7], [8]). In [1], the author and T. Ikawa classified conformally flat Lorentzian spaces satisfying the condition (**).

The purpose of this paper is to consider the condition (*) in Lorentzian space and prove

Theorem. Let M^n be an n-dimensional (n > 3) complete conformally flat Lorentzian space satisfying the condition (*). Then M^n is one of the followings:

- (1) A Lorentzian space of constant curvature.
- (2) Locally a product space of an m-dimensional Lorentzian (or resp. Riemannian) space of constant curvature K and an (n-m)-dimensional Riemannian (or resp. Lorentzian) space of constant curvature -K.
- (3) Locally a product space of (n-1)-dimensional Lorentzian (or resp. Riemannian) space of constant curvature and a 1-dimensional Riemannian (or resp. Lorentzian) space.

¹⁹⁸⁰ Mathematics Subject Classification. (1985 Revision) Primary 53C50; Secondary 53C21.

§1. Preliminaries.

Let M^n be an n-dimensional (n>3) complete Lorentzian space. The Lorentzian metric of M with signature $(-,+,\cdots,+)$ will be denoted by g. The Riemannian curvature tensor of M will be denoted by R. If M is conformally flat, then the curvature tensor R satisfies

(1.1) $R(X,Y) = (1/(n-2))(QX \cdot Y + X \cdot QY) - (TrQ/(n-1)(n-2))X \cdot Y$ for any tangent vectors fields X and Y, where Q denotes a field of symmetric endomorphism which corresponds to the Ricci tensor Ric, that is $\mathrm{Ric}(X,Y) = g(QX,Y)$ and $X \cdot Y$ denotes the endomorphism which maps Z upon g(Y,Z)X - g(X,Z)Y.

The condition (*) gives for all vectors X, Y, Z, V, W tangent to M that (1.2) R(X,Y)R(Z,V)W - R(Z,V)R(X,Y)W - R(R(X,Y)Z,V)W - R(Z,R(X,Y)V)W = 0. Using (1.1) and (1.2), we then obtain the following equation: (1.3)

$$\begin{split} &[g(V,W)g(QY,QZ)-g(Z,W)g(QY,QV)]X\\ +&[g(Z,W)g(QX,QV)-g(V,W)g(QX,QZ)]Y\\ +&[g(X,V)g(Q^2Y,W)-g(Y,V)g(Q^2X,W)-g(Y,W)g(QV,QX)+g(X,W)g(QV,QY)]Z\\ +&[g(Y,Z)g(Q^2X,W)-g(X,Z)g(Q^2Y,W)+g(Y,W)g(QZ,QX)-g(X,W)g(QZ,QY)]V\\ +&[g(Y,V)g(Z,W)-g(Y,Z)g(V,W)]Q^2X+[g(X,Z)g(V,W)-G(X,V)g(Z,W)]Q^2Y\\ -&(TrQ/(n-1))\{[g(V,W)g(Y,QZ)-g(Z,W)g(Y,QV)]X\\ +&[g(Z,W)g(X,QV)-g(V,W)g(X,QZ)]Y\\ +&[g(X,W)g(QV,Y)-g(Y,W)g(V,QX)+g(X,V)g(QY,W)-g(Y,V)g(QX,W)]Z\\ +&[g(Y,W)g(QX,Z)-g(X,W)g(QZ,Y)+g(Y,Z)g(QX,W)-g(X,Z)g(QY,W)]V\\ +&[g(Y,V)g(Z,W)-g(Y,Z)g(V,W)QX+[g(X,Z)g(V,W)-g(X,V)g(Z,W)]QY\}=0. \end{split}$$

Since g is the Lorentzian metric and Q is a symmetric endomorphism of the tangent space T_pM , Q has one of the following four forms [2], [4]:

$$Q_p = \begin{bmatrix} a_1 & & & & \\ & a_2 & & & \\ & & \ddots & & \\ & & & a_n \end{bmatrix}$$
 (1)

$$(b \neq 0)$$

$$Q_{p} = \begin{bmatrix} a & 0 & & & & \\ 1 & a & & & & \\ & & a_{3} & & & \\ & & & \ddots & & \\ & & & & a_{n} \end{bmatrix}$$
(3)

$$Q_{p} = \begin{bmatrix} a & 0 & 0 & & & & \\ 0 & a & 1 & & & & \\ -1 & 0 & a & & & & \\ & & & a_{4} & & & \\ & & & & \ddots & & \\ & & & & a_{n} \end{bmatrix}$$
(4)

In cases (1) and (2), Q_p is represented with respect to an orthonormal frame $\{e_1, e_2, \dots, e_n\}$; i.e., they satisfy $g(e_1, e_1) = -1$, $g(e_i, e_j) = \delta_{ij}$, $g(e_1, e_j) = 0$, $(2 \le i, j \le n)$. In cases (3) and (4), Q_p is represented with respect to a pseudo-orthonormal frame $\{u_1, u_2, \dots, u_n\}$; i.e., they satisfy $g(u_1, u_1) = g(u_2, u_2) = g(u_1, u_i) = g(u_2, u_i) = 0$, $g(u_1, u_2) = 1$, $g(u_i, u_j) = 0$ $\delta_{ij} (3 \leq i, j \leq n)$.

§2. Proof of Theorem.

The proof of theorem will be divided into four parts, according to the four possible forms of Q.

(1) Suppose that Q_p is of the form (1). If $a=a_j$ for any j, $(1 \le j \le n)$, then Qreduces to Q = aI, where I is the identity transformation. Hence M^n is Einstein, and from (1.1), it follows that M^n is a space of constant curvature. By taking X = Z = $e_1, V = e_2, Y = W = e_j, (3 \le j \le n)$ in (1.3), at each point, it follows that

$$(2.1) (a_j^2 - a_1^2) - (TrQ/(n-1))(a_j - a_1) = 0.$$

(2.1) $(a_j^2 - a_1^2) - (TrQ/(n-1))(a_j - a_1) = 0.$ By putting $X = Z = e_1, Y = e_2$ and $V = W = e_j, (3 \le j \le n)$ in (1.3), we also get

$$(2.2) (a_2^2 - a_1^2) - (TrQ/(n-1))(a_2 - a_1) = 0.$$

Then, for any $j(2 \le j \le n)$ we have

$$(a_j^2 - a_1^2) - (TrQ/(n-1))(a_j - a_1) = 0.$$

Therefore, if a_j and a_1 are distinct eigenvalues of Q, it follows that

(2.3)
$$a_j = [TrQ/(n-1)] - a_1$$
.

Now, if $a_1 = a_2 = \cdots = a_{n-m} =: a$ and $a_{n-m+1} = \cdots = a_n =: b$, then (2.1) implies that

(2.4)
$$a + b - TrQ/(n-1) = 0$$
 or equivalently (2.5) $(n-m-1)b = (1-m)a$.

If
$$a = 0$$
, (2.5) implies $b = 0$ or $m = n - 1$, that is

(2.6)
$$Q_p = \begin{bmatrix} 0 & & & & \\ & b & & & \\ & & b & & \\ & & & \ddots & \\ & & & & b \end{bmatrix}$$

Otherwise, (2.5) implies that

where $m \neq 1$ and ab < 0.

Now, first let us consider the case (2.7). If

$$W = \{x \in M^n : Q_x \text{ has the form } (2.7)\},\$$

then W is an open set by the continuity argument for the characteristic polynomial of Q. We denote a connected component of W by W_0 .

On W_0 , two distributions T_1 and T_2 are defined by

$$T_1(x) = \{X \in T_x M : QX = a(x)X\}$$

$$T_2(x) = \{X \in T_x M : QX = b(x)X\}$$

The restrictions of the metric on T_xM to $T_1(x)$ and $T_2(x)$ are nondegenerate. Then m is constant, a(x) and b(x) are smooth functions on W_0 , therefore $T_1(x)$ and $T_2(x)$ are (n-m) and m-dimensional distributions of T_xM which are involutive and smooth. Thus, by the theorem of Frobenius, there are maximal integral submanifolds M^{n-m} and M^m of $T_1(x)$ and $T_2(x)$ for every point x of M^n .

For $Z, V \in T_1(x)$, from (1.1), since M^n is conformally flat and $X \in T_1(x)$ satisfies QX = a(x)X, we have $R(Z, V) = K(Z \cdot V)$, K = (a-b)/(n-2). Similarly, for $T, W \in T_2(x)$ we have $R(Z, W) = -K(T \cdot W)$. By the second Bianchi identity, we can see that K is constant. Therefore, M^n is locally a product space of an m-dimensional Lorentzian (resp. Riemannian) space of constant curvature K and an (n-m)-dimensional Riemannian (resp. Lorentzian) space of constant curvature -K.

Next assume that the rank of Q is n-1 at some point x. Namely, let Q_x is given as in the case (2.6).

If $W = \{x \in M : \text{ the rank of } Q \text{ is } n-1 \text{ at } x\}$, then W is open and non-zero eigenvalue of Q, say λ , is a smooth function on W. Two distributions T_1 and T_0 on W are defined by

$$T_1(x) = \{X \in T_x M : QX = \lambda(x)X\}$$

 $T_0(x) = \{X \in T_x M : QX = 0\}.$

Then, it follows that they are smooth, T_1 is involutive and geodesic whose tangent belongs to T_0 is infinitely extendible. Moreover, T_1 and T_0 are parallel. The restrictions of the metric on T_xM to $T_1(x)$ and $T_0(x)$ are non-degenerate. Hence T_1 (resp. T_0) has maximal integral submanifolds M^{n-1} (resp. M^1) of M^n . Since M^n is conformally flat and $X \in T_1(x)$ satisfies $QX = \lambda(x)X$, from (2.2), for $a_1 = 0$ and $a_2 = \lambda$, using (1.1), M^{n-1} has constant curvature $K = \lambda/(n-2)$. Therefore, M^n is locally a product space of (n-1)-dimensional Lorentzian (or resp. Riemannian) space M^{n-1} of constant curvature K and a 1-dimensional Riemannian (or resp. Lorentzian) space M^1 .

(2) Let us consider that Q_x is of the form (2). Then it follows that

$$Qe_1 = ae_1 - be_2, Qe_2 = be_1 + ae_2 \text{ and } Qe_j = a_je_j \qquad (j = 3, \dots, n).$$

By taking $X=Z=e_1$, $V=e_2, Y=W=e_j$, $(3\leq j\leq n)$ in (1.3), at each point, we get $a_j^2-a^2+b^2-(TrQ/(n-1))(a_j-a)=0$ and a=(TrQ)/2(n-1). From these equations we obtain that

$$(a_i - a)^2 + b^2 = 0.$$

This contradicts the assumption that $b \neq 0$. Thus, this case can not occur.

(3) Suppose that Q_x is of the form (3). Then it follows that

$$Qu_1 = au_1 + u_2, Qu_2 = au_2, Qu_j = a_ju_j (j = 3, \dots, n).$$

By taking $X = Z = u_1, V = u_2$ and $Y = W = u_j$ in (1.3), we have that (2.8) 2a = (TrQ)/(n-1).

Next, again putting $X = Z = u_2, V = u_1$ and $Y = W = u_j$ in (1.3), we also get $(TrQ)/(n-1) = a + a_j$. By virtue of (2.8), it follows that $a_j = a$ for all j. Then, since TrQ = na from the third form of Q_x , using (2.8), we write 2a = (na)/(n-1) or a((n-2)/(n-1)) = 0. So, for n = dimM > 3, this implies that a = 0. Therefore, it follows that $Q_x = 0$ and that R(X, Y) = 0 for any tangent vectors X and Y by virtue of (1.1).

(4) Finally, we suppose that Q_x is of the form (4). Then we write that

 $Qu_1 = au_1 - u_3, Qu_2 = au_2, Qu_3 = u_2 + au_3$ and $Qu_j = a_ju_j, (j = 4, \dots, n)$. Putting $X = Z = u_j, Y = W = u_1, V = u_2$ in (1.3) we have 2a = (TrQ)/(n-1) and taking $X = Z = u_2, V = u_1, Y = W = u_j$ we obtain $a_j + a = (TrQ)/(n-1)$ for all

 $j, (4 \le j \le n)$. Hence we easily see that a = 0 by virtue of dim M > 3. Therefore it follows that $Qu_1 = -u_3, Qu_3 = u_2$ and $Qu_j = 0$ for any j other than 1 and 2. Thus we may conclude that R(X,Y) = 0 for any tangent vectors X and Y by virtue of (1.1).

References

- [1] Erdoğan, M. and Ikawa, T.: On conformally flat Lorentzian spaces satisfying a certain condition on the ricci tensor, (to appear).
- [2] Magid, M.: Lorentzian isoparametric hypersurfaces, Pacific J. Math. 118, 165-198 (1985).
- [3] Nomizu, K.: On hypersurfaces satisfying a certain condition on the curvature tensor, Tohoku Math. J. 20, 46-59 (1968).
- [4] O'Neill, B.: Semi-Riemannian geometry with applications to relativity, Academic press, London (1983).
- [5] Ryan, P.J.: Homogeneity and some curvature conditions for hypersurfaces, Tohoku Math. J. 21, 363-388 (1969).
- [6] Sekigawa, K. and Takagi, H.: On conformally flat spaces satisfying a certain condition on the ricci tensor, Tohoku Math. J. 23, 1-11 (1971).
- [7] Tanı, M.: On a conformally flat Riemannian space with positive ricci curvature, Tohoku Math. J. 19, 227-231 (1967).
- [8] Tanno, S.: Hypersurfaces satisfying a certain condition on the ricci tensor, Tohoku Math. J. 21, 297-303 (1969).

EĞRİLİK TENSÖRÜ BELİRLİ BİR ŞARTI SAĞLAYAN KONFORMAL FLAT LORENTZ UZAYLARI HAKKINDA

Özet

Bu çalışmada R(X,Y)R=0 şartını sağlayan konformal flat lorentz uzayları için lokal bir sınıflandırma teoremi ispatlanmıştır.

M. ERDOĞAN, Department of Mathematics, Fırat University, 23169, Elazığ-TURKEY Received 27.4.1995