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ON CONFORMALLY FLAT LORENTZIAN SPACES
SATISFYING A CERTAIN CONDITION ON THE
CURVATURE TENSOR

M. Erdogan

Abstract

In this paper we prove a local classification theorem for the conformally flat
lorentzian spaces satisfying the condition R(X,Y)R = 0.

Let M be a Riemannian space and R be the curvature tensor of M. Assume that
M has a condition

*) R(X,Y)R =0, for any tangent vectors X and Y,
where R denotes the Riemannian curvature tensor and R(X,Y) operates on the tensor
algebra at each point as a derivation. K. Nomizu [3] studied the effect of this condition
for hypersurfaces in the Euclidean spaces. P.J. Ryan [5] treated the same condition for
hypersurfaces of spaces of non-zero constant curvature. On the other hand, some authors
discussed the effect of the condition

(**) R(X,Y)Q = 0, for any tangent vectors X,Y
for hypersurfaces of the Euclidean space, where @ denotes the Ricci tensor (see [6], [7],
[8]). In [1], the author and T. Tkawa classified conformally flat Lorentzian spaces satisfying
the condition (**).

The purpose of this paper is to consider the condition (*) in Lorentzian space and
prove

Theorem. Let M™ be an n-dimensional (n > 3) complete conformally flat Lorentzian
space satisfying the condition (*). Then M™ is one of the followings:

(1) A Lorentzian space of constant curvature.

(2) Locally a product space of an m-dimensional Lorentzian (or resp. Riemannian ) space
of constant curvature K and an (n —m)-dimensional Riemannian (or resp. Lorentzian )
space of constant curvature —K .

(8) Locally a product space of (n—1) -dimensional Lorentzian (or resp. Riemannian ) space
of constant curvature and a 1-dimensional Riemannian (or resp. Lorentzian ) space.
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§1. Preliminaries.

Let M™ be an n-dimensional (n > 3) complete Lorentzian space. The Lorentzian
metric of M with signature (—,+,---,+) will be denoted by g. The Riemannian
curvature tensor of M will be denoted by R. If M is conformally flat, then the curvature
tensor R satisfies
(11) R(X,Y) = (1/(n - 2))(QX Y + X - Q¥) — (TrQ/(n — 1)(n — 2))X - Y
for any tangent vectors fields X and Y, where @) denotes a field of symmetric endo-
morphism which corresponds to the Ricci tensor Ric, that is Ric(X,Y) = g(QX,Y) and
X -Y denotes the endomorphism which maps Z upon ¢(Y,2)X — g(X,Z)Y .

The condition (*) gives for all vectors X,Y,Z,V,W tangent to M that
(1.2) R(X,Y)R(Z,V)W — R(Z,V)R(X,Y)W — R(R(X,Y)Z,V)W — R(Z, R(X,Y)V)W = 0.
Using (1.1) and (1.2), we then obtain the following equation:

(1.3)

[9(V,W)g(QY,QZ) — g(Z,W)g(QY,QV)|X

+[9(Z,W)g(QX,QV) — g(V,W)g(QX,Q2Z)]Y

+[g(X,V)g(Q*Y, W) — g(Y,V)g(Q*X, W) — g(Y,W)g(QV,QX) + g(X, W)g(QV, QY )| Z
+9(Y, 2)9(Q* X, W) — g(X, Z)g(Q*Y, W) + g(Y,W)g(QZ,QX) — g(X,W)g(QZ, QY )|V
+[g(Y,V)g(Z,W) — g(Y, Z)g(V,W)IQ*X + [¢(X, Z)g(V,W) — G(X,V)g(Z,W)|Q’Y
—(TrQ/(n — )){lg(V,W)g(Y,QZ) — 9(Z,W)g(Y,QV)]X

+[9(Z,W)g(X,QV) - g(V,W)g(X,QZ)|Y

+g(X, W)g(QV,Y) — (Y, W)g(V,QX) + g(X, V)g(QY, W) — g(Y,V)g(QX,W)|Z
+g(Y,W)g(QX, Z) — (X, W)g(QZ,Y) + 9(Y, Z)g9(QX, W) — g(X, Z)g9(QY, W)V
+g(Y,V)g(Z,W) — g(Y, Z)g(V,W)QX + [9(X, Z)9(V, W) — g(X,V)g9(Z,W)|QY } = 0.

Since g is the Lorentzian metric and @ is a symmetric endomorphism of the tangent
space T, M, Q has one of the following four forms [2], [4]:

ai
az

Qp = (1)

a b
-b a

Q= s (2)

an
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(b#0)
a 0
1 a
Qp = s (3)
an
[ a 0 O 1
0 a1
-1 0 a
QP = ag (4)
= an -
In cases (1) and (2), @, is represented with respect to an orthonormal frame {e;, ez, -, e, };
i.e., they satisfy g(e1,e1) = —1, g(ei,e;) = bij, g(e1,e;) =0,(2 <i,5 <n). In cases (3)
and (4), Qp is represented with respect to a pseudo-orthonormal frame {u1,uz,--,un};

i.e., they satisfy g(uy,u1) = g(uz,uz) = g(u, u;) = g(uz,u;) =0, g(ur,uz) = 1, g(us, u;) =
6;(3 <14, <n).

§2. Proof of Theorem.

The proof of theorem will be divided into four parts, according to the four possible
forms of Q.
(1) Suppose that @ is of the form (1). If a = a; for any j, (1 < j < n), then Q
reduces to Q = al, where I is the identity transformation. Hence M™ is Einstein, and
from (1.1), it follows that M™ is a space of constant curvature. By taking X = Z =
e,V =e,Y=W=¢;,(3<j<n) in (1.3), at each point, it follows that

(2.1) (a —a}) - (TrQ/(n — 1))(a; — a1) = 0.
By putting X =Z =e€;,Y =ey and V=W =¢;,(3 <j <n) in (1.3), we also get
(2.2) (a3 —a}) — (TrQ/(n - 1))(az — a1) = 0.

Then, for any j(2 < j < n) we have

(af — a?) = (TrQ/(n - 1))(a; — a1) = 0.
Therefore, if a; and a; are distinct eigenvalues of @, it follows that
(2.3) a; = [TrQ/(n—1)] —a;y.
Now, if a1 = a2 =+ = ap—m =t a and ap_m41 = -+ = an, =: b, then (2.1)
implies that
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(2.4) a+b—-TrQ/(n—1) =0 or equivalently
(2.5) (n—m-1)b=(1-m)a.
If a =0, (2.5) implies b=0 or m =n — 1, that is
0
b
(2.6) Qp = b
b
Otherwise, (2.5) implies that
o -
a
(2.7) Qp = b
- b -

where m # 1 and ab < 0.
Now, first let us consider the case (2.7). If
W = {z € M™: Q. has the form (2.7)},
then W is an open set by the continuity argument for the characteristic polynomial of
Q. We denote a connected component of W by W,.
On Wy, two distributions 77 and T, are defined by

Ty(z) = {X € T,M : QX = a(z)X}
Ty(z) = {X € T,M : QX = b(z) X}

The restrictions of the metric on T, M to Ti(z) and T,(z) are nondegenerate. Then
m is constant, a(z) and b(x) are smooth functions on Wy, therefore Ti(x) and Ty(z)
are (n —m) and m-dimensional distributions of T, M which are involutive and smooth.
Thus, by the theorem of Frobenius, there are maximal integral submanifolds M™ ™ and
M™ of Ty(z) and T»(z) for every point = of M™.

For Z,V € Ti(z), from (1.1), since M" is conformally flat and X € Ti(z)
satisfies QX = a(z)X, we have R(Z,V) = K(Z-V), K = (a — b)/(n — 2). Similarily,
for T,W € Ty(z) we have R(Z,W) = —K(T - W). By the second Bianchi identity,
we can see that K is constant. Therefore, M™ is locally a product space of an m-
dimensional Lorentzian (resp. Riemannian) space of constant curvature K and an (n—m)
-dimensional Riemannian (resp. Lorentzian) space of constant curvature —K .

Next assume that the rank of Q is n —1 at some point z. Namely, let Q. is given
as in the case (2.6).
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If W={reM: therank of Q isn —1 at z}, then W is open and non-zero eigenvalue
of Q, say A, is a smooth function on W. Two distributions T; and To on W are defined
by

Ti(z) = {X € T,M : QX = \z)X}
To(z) = {X € T,M : QX = 0}.

Then, it follows that they are smooth, T} is involutive and geodesic whose tangent belongs
to Ty is infinitely extendible. Moreover, T; and T, are parallel. The restrictions of the
metric on T, M to Ti(z) and To(z) are non-degenerate. Hence T; (resp. Tp) has
maximal integral submanifolds M™~! (resp. M') of M™. Since M™ is conformally
flat and X € Ty(z) satisfies QX = A(z)X, from (2.2), for a; = 0 and a; = ), using
(1.1), M™~! has constant curvature K = \/(n — 2). Therefore, M™ is locally a product
space of (n — 1) -dimensional Lorentzian (or resp. Riemannian) space M™~! of constant
curvature K and a 1-dimensional Riemannian (or resp. Lorentzian) space M!.

(2) Let us consider that Q, is of the form (2). Then it follows that

Qe1 = ae; — bea, Qey = be; + aey and Qe; = aje; (j=3,---,n).

By taking X = Z =€, V =€, Y =W =¢;, (3 <j <n)in (1.3), at each point, we get
ai —a® 4+ 0> — (TrQ/(n — 1))(aj —a) = 0 and a = (TrQ)/2(n — 1). From these
equations we obtain that

(aj —a)®> +b*> =0.

This contradicts the assumption that b 7 0. Thus, this case can not occur.
(3) Suppose that Q, is of the form (3). Then it follows that

Qui = auy + ug, Qua = auy, Qu; = aju;(j =3,---,n).
By taking X = Z = u;,V =up and Y = W = u; in (1.3), we have that
(2.8) 2a = (TrQ)/(n —1).

Next, again putting X = Z = uz,V = u; and ¥ = W = u; in (1.3), we also get
(TrQ)/(n — 1) = a+ a;. By virtue of (2.8), it follows that a; = a for all j. Then,
since TrQ) = na from the third form of Q,, using (2.8), we write 2a = (na)/(n — 1) or
a((n —2)/(n — 1)) = 0. So, for n = dimM > 3, this implies that a = 0. Therefore, it
follows that Q, = 0 and that R(X,Y) = 0 for any tangent vectors X and Y by virtue
of (1.1).
(4) Finally, we suppose that @, is of the form (4). Then we write that

Qui = au; — u3,Quz = auz,Qus = uy + aus and Qu; = aju;,(j = 4,---,n).
Putting X = Z = u;,Y = W = u;,V = uy in (1.3) we have 2a = (TrQ)/(n — 1) and
taking X = Z = u;,V = u;,Y = W = u; we obtain a; + a = (TrQ)/(n — 1) for all
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J,(4 < j < n). Hence we easily see that a = 0 by virtue of dim M > 3. Therefore it
follows that Qu; = —u3, Quz = up and Qu; =0 for any j other than 1 and 2. Thus we
may conclude that R(X,Y) = 0 for any tangent vectors X and Y by virtue of (1.1).
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EGRILIK TENSORU BELIRLI BIR SARTI SAGLAYAN KONFORMAL

FLAT LORENTZ UZAYLARI HAKKINDA

Ozet

Bu calismada R(X,Y)R = 0 sartim saglayan konformal flat lorentz uzaylarn igin
lokal bir siniflandirma teoremi ispatlanmigtir.
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