Tr. J. of Mathematics
20 (1996) , 291 — 303.
© TUBITAK

PIRINCIPLES OF RADIATION FOR HELMHOLTZ
EQUATION IN N-DIMENSIONAL LAYER WITH
IMPEDENCE BOUNDARY CONDITIONS.

B. A. Iskenderov & A. 1. Mehtieva

Abstract

The principle of limit absorption and A. G. Sveshnikov’s partial conditions of
radition for Helmholts equation in multile dimensinal layer with impedance boundary
conditions were studied. The behavior of the solutions of corresponding initial-
boundary value problem for non-stationary wave equations as ¢ — +oo was studied
too.

Introduction

The study of diss emination of waves in homogeneous layer bounded by plane-
parallel boundaries from two sides is very important for physics. The dissemination of
the radio-wave at a great distance in the atmosphere, dissemination of sound in sea relate
to phenomena like these. The enumerated physical phenomena lead to the boundary
problem in the layer for Helmholtz equation. The principle of the limit absorption in
two-dimensional layer was researched by L. M. Brekthovskikht in [1]. The principles of
the limit absorption and the limit amplitude and A. G. Svesnikov’s partial conditions of
radiation were researched by A. G. Sveshnikov in [2].

The principles of radiation in n-dimensional layer for Helmholtz equation with the
boundary conditions of Dirichlet and Neumann were studied in [3]. The same problems
for cylindrical domin were studied in [4], [5]. The principles of radiation for Helmholtz
equation in n-dimensional layer with impedance boundary conditions were proved in this

paper.
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1. Construction of Green’s function and the principle of limit absorption.

Let

H ={z: (2, zny1), = (v122,...,20),

— 00<z; <400,—a < Tpy1<a, j=1,2,...,n; a>0}

be the layer in n + 1-dimensional Euclidean space R,;. We consider the next boundary
value problem in []

(A—HQZ) Uk, x) = f(z), (1)

13}
<3$n+1 + om) U(k,z)

where A is the Laplacian; f(z)-finitary infinitely derived function; , a-complex param-
eters.

=0, (2)

xn+1::|:a

Definition 1. The function U(k,x) satisfying equation (1) and boundary conditions (2)
in the sense of the generalized functions [6] is called a solution of the problem (1)-(2).
We consider the problem

(A + &%) G(k,2,y) = 8(z,y), (3)

a
( G+ an) Gk, 2,9)

together with the problem (1)-(2).

=0, (4)

Tn41 =+a

Definition 2. Let Im x? # 0. The decreasing solution of the problem (3)-(4) in [] when
x — oo is called Green’s function of problem (1)-(2) where 6(z,y) is Dirac’s function.

Now we consider the construction of Green’s function. By principle of the limit
absorption the unique solution of boundary value problem (1)-(2) with real parameter x>
is searched as limit of solution of boundary value problem (1)-(2) with complex parameter
k2 = k¥ +ie(e > 0) when € — 0. So we shall solve the boundary value problem (3)-(4)
with the complex parameter k2. To solve this problem we apply Fourier transformation
with respect to x’

d2 -~ Y
[F + (K:g - pz)} G(ﬁ/,$n+1,yn+1, ”s) =6 (xn+1,yn+1) ety ) (5)
n+1
Losan)ale ) 0 ©)
QKe y Tn4+1yYnt1y Ke =Y,
d$n+1 1o Ynt1 Tppr1=xa
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where G = F(G), Fur ¢ is Fourier transformation with respect to ', p = |€|.
The solution of the boundary value problem (5)-(6) has the following representation:

, o [ cosh[iV/RZ= 77 (20 = lone = ynia])]
G(§ ,xn+1,yn+1;’£e) :elfy - +
2i\/Kk2 — p?sinh (21'(1\/}@3 - pz)

[(a® = 1) k2 + p*| cosh [i\/ng — P2 (Tpy1 — ynﬂ)}
+
2i\/Kk2 — p? [(a® +1)Kk2 — p?]sinh (2ia\/;<;§ - pz)
ke sin h [i\/ng —p? (Tpy1 + yn+1)}
[(@? + 1) k2 — p?]sinh (2ia\/ﬂg - p2)

from (7) it follows that G is an analytic function with respect to p and the points

m,2 = £/(1 + a?) K2, nf::l:y/ng—ZZezz,é:O,l,Z...aresimplepolesofé.

If £ni1 # Yna1, s0 G is absolutely integrable function with respect to €. Applying
Fourier inverse transformation we obtain

(7)

7;7_1—n/2

4(2m)™/* 1

xH, o (VOF 02 RIT) + 30 6y g (ke ) ge (ke ynsn) HY)) (m)} ,(8)
=1

G(K“Eax’y) = -

n/2—1
{[\/ (1—!—042) Hg} 9o (’{Eamn—i-l)go ("%ayrw—l) X

where

aK e
_(_ ake —QKeTn4l
9o (Ke, Tn+1) (sinh (2aa/€s)) ’ |

%COSh(a — Tpi1) % + akesinh(a — xp41) ;f_ﬁ

[a (o242 + Z2£)]"/?

gr (/65, $n+1) =

)

H,/9_1(Z) is the Hankel function of the first kind, T = |z’ —y'|, Ky = /K2 -- 7:;1122_ So

we proved the theorem.

Theorem 1. Green’s function of problem (1)-(2) (when n = 1,2;a # 1) is analytic
furzctz'on with respect to k. without branch points k. = %’f and stmple pole-points k. =

ize= (£ =0,%1,%2,...) and the representation (8) is true.
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The solution of the boundary value problem (1)-(2) is defined by formula

uo%¢)=/~x/quf—su%H@mnf@nﬁ. (9)

Using the asymptotic representation of Hankel function Hfll/)z_l(Z) when Z — oo we

obtain that series (8) and its derivative converge uniformly by ¢ when 7 > 0. We can
take the limit in (9) when € — 0 and get the following theorem.

Theorem 2. The principle of the limit absorption takes place for the problem (1)-(2)
when n#i% (and for n = 1,2 when k # % .

2. The behavour of the solutions of initial-boundary value problem for the
wave equation as t — +oo.

Now we consider the non-stationary problem corresponding to the problem (1)-(2)

8 1wt
Q@+Qmwwﬂm, (10)
with initial conditions
U©,7) =0, 3—“%1& —o, (11)

and impedance boundary condition

0 0
— t
<8$n+1 +a8t) U( ,33)

where f(z) is finitary infinitely derived function with a supp{f(z)} = Q C [], w is a
real parameter. We can prove the following theorem.

Tn41 :i(l

Theorem 3. Let w # %,w £ 2L 0 =0,+1,42,...;a— a real numbber (|| #1 when

2aa’

n =1,2). The asymptotic representation takes place for the solution of problem (10)-(12)

U (t,z) =V (iw,2) + @ (t,7,w,a) + ¥ (t,z,w,a)t 2+ 0 (t727),

when t — 400 uniformly with respect to x in every compact from M. Here v(iw,x)
is the solution of corresponding stationary problem chosen by he principle of the limit

absorption. The functions ® (t,z,w,a), ¥ (t,z,wa) are bounded on all changes and will
be defined below.

Proof. Implying U (t,z) as generalized function over the space D’ (look [2]) we apply
in (10)-(12) Laplace transformation with respect to ¢. So we have the following problem
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(A+K2)V (5,3) = /(=) (13)

Kk —iw’

0
(3xn+1 + om) V (k,z)

where V(k,z) = LU(t,z),-L is Laplace transformation and Rex > 0. Let 7, (ik) # 0
and so Green’s function of problem (3)-(4) exists and is unique. The solution of the
boundary value problem (13)-(14) is defined by means of the formula (9) in which & is
replaced with ix,a with —ia and the solution of (10)-(12) is defined with the solution
of (13)- (14) with Laplace transformation in distribution.

=0, (14)

Tn41 =+a

e+100

1
Ut z) = %/ V (k,00) edk,

—100
where € > 0.
Series in expression V(k,z) converge uniformly with respect to k. Therefore

integrating this expression we obtain the following representation for the solution of the
problem (10)-(12)

Ut,z) = Ti@n) T /Q/T T2Go (6, y) f(y)dy+

oo

1 22 ’ ) e
+ Ee - Zaeg COSh(a—an);—a/.../Tl—if(y)Ge,o (t’x/ay')COSh(a_yn+1);—ady
B Q

wl n . b 94
+ %/ e /Tl_if(y)Gl,l (t,2',y")sinh[2a = (Tns1 — Yn1)] W+
Q

194

. 194 _n .
+ sinh(a— Tpy1) %/ . /Tl 2 f(y)Go2 (¢, 7',y ) sinh (a — yni1) %dy , (15)
0 ,

where

GO (t,.’l?,y) = %

H(%l)_1 (iT (1- 062)/‘332) dk,
/E+ioo (alﬁ:)m (iK/e)n/Qfl

emico (K —1w) (a®K2 + %2—)

1 /6+ioo ake®lt—(Tnt1—ynt1)]
£

(VA=) " x s

—ico (K —iw)sin h2aak

Gl,m (t,m7y) - 5.

5l H(%lll (ikeT) e™tdk. (17)
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The integrals in (16), (17) converges in the dictribution, but integral in (16) converges
in usually sense if |a| > 1, (Ja] = lat n = 1,2). Consider now each integral in (16), (17)
indivindually when ¢ — 4+o00. The function under integral in (16),(17) in (16) has simple
poles in points k = iw and k = izi;%. Using Cauchy’s theorem when ¢t — +00 we get

aiwe[iw(t_a(mn+1 + yn+1)}

GO (t,:c,y) =

—~——\ 2! ‘
sin h (2aiow) (z|w| a? — 1) H(%lll <Z|w|7'\/oﬁ) +

00 g-1
T v 1 (1) K2 1
+ W VZ:IGV (tamn-é—l’yn—i—l) v <7'% 1- ?) H%—l (Z%T 1- a_z' 3 (18)

where
; elvazt—a(Tnsr + yny1)l  pmiglt—a(@nis + ynia)] 19
v (t Tnt1, Yn =(-1)"
(t, Tnt1,Ynt1) = ( ){ ™ ow + It qu } (19)

Now we can consider the functions Gy, (t,2,y). The function under integral in

expression for Gy, (t,z,y) has simple poles in kK = iw, K = i% and branch points in

K = :!:i—g—f. We make cut on the plane and consider contour

T, =T, ucHur, ucH?,

where Cél) and C’§2) are circles with radius £ and centres in points kK = ﬂ:z’z% and
I';,T, banks of cut. We suppose the parts of cut near the points k = :I:i;’—tf to be
parallel to the real line for comfort of applying the Laplace method.

Then

_ 21
v oy (i)™ et w22 : a . 72
Gom (t,2',y') = %%2—-—042(.‘12 W ¢ H%_1 T\ e Y +
21
B L. A N O J1= 2 ) @ (0, 8) + Qe (£,2,9)  (20)
12(1 a? z1 22CLT 042 £m (&, W, Lm\L, T, Y

ia im0\l | eiziat _1)me—izikt
q)e,m (aaw7t) =5 < ) [ xl ( ) ) (21>

e
2 2a aw — 2= ow + 5=

1 m /- %—1 Kkt
Qom (t,2',y") = —/ ( (k)™ (ire) c H(%lll (ikeT) dK.
)

27 K — iw) (a2k2 + 5
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We study no w Qs (¢,2'y") at t — oo. Let n is odd. Then using

J_(z2-1)(Z2)+e™E" Vs _4(2)
isinhm (% —1)

H(%l)—1(Z) =

Where Ja _1(Z) is the Bessel function of v order and that Z%~'J_(z_1)(Z) is an
entire function we get

(ar)™ (ike)2 et

2mi Jr, (k —iw) (a?k2 + £

Qum (t,2',y') = Jz_1(ikeT) dE. (22)

The integrals on contours C’éj ), j = 1,2 in (22) tent to zero uniformly with respect
to 7 at ¢ — 0. Taking into consideration values of function (ir)2 ™" Jz_1(ikeT) on
shores of section and

n_1 . n_1q
72 J%_l(—Z)——Z2 J%_l(Z)
we obtain

(ak)™ (ikg)? ' ert

K — iw) (a2m2 + %)

Qe,m (tax,ay,) = l/[‘ (

Ja_q (3 dk. 23
- 11 (iner) di (23)

By using expansion J,(z) in series for non-integral v in (23) and restricting
ourselves only to the first members of the expansion (the other menbers of the expansion
for large ¢ will be smaller than first member) we obtain

T2 )/F (ar)™ (ikg)" " e (24)

m tIZ?I, "= n X
Qem (t,2y) 23~ 1mil (% + (kK —iw) (a2n2+%;)

Applaying the Laplace method to (24) we obtain

(—a)" ritin (i) T

(1 —a?)

Ql,m (thlay/) = - t_%\I’Z (t>w7m) +0 (t_%_l) , (25)

where

n — -l 4
(—1)2+m leigat  emifat

Wy (t,w,m) = . 26
() = = (20)

From (20), (25) it follows that
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P PP § =1 3
o —ofw da

‘ Bkl { 1
LT { Lo —
+ (‘mﬁl ~ ) Hyl, (2_\" T )*e.m{n,m:w[r ),

Let m is an even number. Similary to the case above it can be shomwn that at { — +o0c

2-1 e ——
i :u.-r ]
L'.Lm [h-"".!;’} E:; ] (T L F - ) H“'I (f-;r ﬁ_uﬁ ) +

d(—a)™ (i :Ig'+m Tinrg-

I'I:I..:I-!rl'l' [ilT:yJ] = H’[] _“2]

=¥ 0y (tw,m) + O (t7F),

Where 9, (¢, w,m) is defined by [26).

Taking into account the resuits obtained for Ge,, and Q. in (15) introduced
denctements we have

e (1, 2) = V [iw, )+ Pt ow)+ r":”'I"(t..ar,....:.n:r.u] <+ £ [t“*”}

where

itz ow)=— 2[2 :Ii 12[( ) 'i*;,;.{cx,w.!]mlﬁﬁu.tshiu—.rﬂ+l:|;-—:+
+ By (o, t) by (s :Isunhl:u--.z'n.,..:l—-— +n—£§“{a w ) [z }]

Wit 2piq, o) B8 bounded fonetion of the all varables, where

|:|||"[-'Er}I % _Lf f "'-l'_ﬂ :|||'1"|:J:I (_r J - l)t‘i@hlﬂ—ﬂuﬁl_dﬂ
be{-r'}l = %( s _) f f I~ E_H!.IJH“’ (.';—:rqll,l'l = ﬂi-: sim 1@ —_!.|,4|]E@y.

ce[2') = ae(2")sink(a Iy ol ﬁ + by (2] cos b (e — :r“_..}#—r

The tehorem is proved O
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Consequence. From theorem 3 it follows that the solution of non-stationary problem
(10)-(12) consists of limit amplitute and counting number of normal wave corresponding
to continuons and point spectrum of stationary problem (1)-(2) at ¢ — 4o0.

Theorem 3 is true when n > 3 in resonance case w = ’;—ﬁ, w = %,K =

0,+1,42,... too. In that case when n < 3 the solution of the boundary value prob-
lem (10)-( 12) grows. We can obtain it from the following theorem.

Theorem 4. Let w = -2’%, n =2 and « is a real number so that |a| # 1. Then for the
solution of the problem (10)-(12) the following estimation takes place

U (t,z)| < Ce*

uniformly with respect to = in every compact subset from [[, € > 0 is sufficiently small
number

Theorem 5. Letn =2, w = %(f =0,+1,%2,...) and «a is a real number so that
la| # 1. Then the asymptotics takes place for the solution of problem (10)- (12) when
t— +oo

: 2
—igkt - " sin h(a — z3) " + by(! _ )™
e ‘zaa'Y (t,z) = 107 <2a) [ag(x )sin h(a x3)2a + by(z") cos h(a x3)2a+

+ %C@(m')] +0(1)

uniformly with respect to = in every compact subset of ].
When n =1 in the paper [7] it is shown that in resonance case when w = g—f the
solution of the problem (10)-(12) grows like t'/2.

3. A. G. Sveshnikov’s partial conditions of radiation.

Now we derive the conditions of infinitary for the solution of homogeneous boundary
value problem corresponding to the problem (1)-(2) and these conditions provide trivial
solution. We denote

Uy (v,2') = / U (r,0) ge (k) Tnst) donss

—a

Consider A. G. Sveshnikov’s partial conditions of radiation when z’ — oo

0 . 1=n
(507 - ot (ri) =0 (121'5").
£=0,1,...,v (27)
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2a!f~z|}

where v = [ -

The following theorem is true.

Theorem 6. The solution of homogeneous boundary value problem corresponding the

problem (1) (2) which satisfies the conditions (28) on infinity k # iZ- (when n =

L2,k # 5, ,a #1), £=0,£1,+2,... is the only trivial solution.

Proof. let ], be the lateral surface of circular straight cylinder with basises on planes

Tny1 = *a. Basises are circles with radius r and centres in points (z/,—a), (z/,a).
Green’s formula is true for the solution of homogeneous boundary value problem

corresponding to the problem (1)-(2)

where

Gl(’fwfay) = G("i )+'H(/@,x,y),

H(k,z,y) = ( )_,1 Z’Yege (K, Zn+1) ge (% Ynt1) Tz 41 (Ker) .
=0

is regular solution in [, of the same problem and v = [MTM'} y Ko =/ (1+a?)k?, Ky =

K2 — 712222 .
We denote
_ L KeNET (1) }
Wy(r) = 1 (27T7') {('yg +1) H2 (keT) + 'ng l(ngr)

where v, is constant, v, = 0 when ¢ > v.

Series in expressions for G and % converge uniformly with respect to 7 (7 > Cy > 0)
and so

=St [ [ P o) B s, o

S, is a sphere with radius r and centre in point (z’,0) on [],..
The functions U, (k,z) and Up(k,z’),£ = 1,2,... in R, satisfy equations corre-
spondly
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[An + (0 +1)]Us (k,2") =0, (29)
(An + n%) Up(k,z') =0,

where A, is the Laplacian of z’. We fix point z = & € []. Since U,(k,y’) satisfies the
equations (29) and conditions (27) taking into account the results of [4] we obtain that
v =0 (¢ =0,1,...v) and Up(k,y’) are functions of the first category. The following
estimation is true

Up(r,y) = V10 (|2 'F%) (30)

Taking into account expansion of the solution of the problem and othonormality of system
ge(K, Tny1) we obtain

. AU (k,y') OW,(T)
no_ ) — N2\ 7
Uy (ki) = [5 , (We(f) )y (s,y1) TR ) s, (31)
Since v, =0, £=0,1,2,... then
1/ kg \271
Wer)= -2 (5=)"  HEL, (eer). (32)

2rT

From asymptotics of the Hankel functions H (%1)_1(Z ) and its derivative for Z — oo we
obtain

(2 i) i) =m0 (%), @

Since for large

MUy (k,y') U (k,Y) ( ( 1 ))
= 140 —
or aly'| 1|

in view of (31)-(33) we get

Uy (,#) = / (W( >%_w(n,y')3@§ﬂ)d&+

From (27), (30), (32), (33) it follows that
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Ji(k,2") = /S [Wg(T inely'lg (|y']1;—n) Up(k,y )em”O( —n_ﬂ)} ds, =

= [@2 O(1) + O(r~ )] e2imeT (35)

Similarly.from (27), (30), (32) we obtain

o) =T /s o (o) [0 (115) + eo (115 s, =
s [ o (1) + 0 1y)'F)] ds = o6 (36)
At r — oo from (34)-(36) it follows that

U (k,2')=0, £=0,1,...,0. (37)
Now consider U, (x,z') for £ = v+ 1,v + 2,.... In this case A\, > x%. Considering

Up (k,2') as a distribution with respect to z’ in space C° (R,) and applaying Fourier
transformation to equation (29) we obtain

[— 1€ = Ao + k2| Uy (5,€) = 0.
Since —|¢'|> — Ay + k% < 0, we obtain Uy (x,£') = 0. Therefore

U (k,2')=0, £=v+1v+2,... (38)
From (28), (31), (37), (38) it follows that

U(k,z)=0.

Since the point & is arbitrary the theorem is proved. O

Remark From (8) and the asymptotics of the Hankel functions it follows that the solution
of the problem (1)-(2) chosen by the principle of the limit absorption satisfies the partial
conditions of radiation (27).
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N BOYUTLU KATMANDE iMPE]?ANS SINIR KOSULLARINDA
HELMHOLTZ DENKLEMI ISINLANMA PRENSIPLERI

6zet

Makalede n boyutlu katmande impedans sinir kogullarinda Helmholtz denklemi
igin 1s1nlanma prensipleri ispatlanmig ve rezonans fenomeni incelenmigtir.
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