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ON HOMOGENEOUS RIEMANN BOUNDARY VALUE
PROBLEM

K. Kutlu

Abstract

In this work we consider homogeneous Riemann boundary value problem (BVP)
on general open rectifiable curves. We prove certain estimates for Cauchy type
integrals in terms of local moduli of continuity and local maximum of modulus, which
allow us to describe the solvability of Riemann BVP with unbounded oscillating
coefficients on a wide class of non-smooth rectifiable Jordan curves.

1. Introduction

Let v be an open rectifiable curve in C with ends a;,a,, oriented from a; to
az(y :alvag).

It is well known (see [3], [7]) that the main tool in investigating Riemann boundary
value problem (BVP; see (1) below) is the Cauchy type integral

1 T
R = g [ £z,

In recent years great attention has been paid to the consideration of Riemann BVP
on non-smooth curves (see [2], [4], [8], [11]) and even on non-rectifiable curves (see [5],
(12], [13]) under various assumptions about coefficients G,g in (1). In particular, in [6],
[9], where further references can be found, the case of oscillating coefficients has been
considered.

In this paper we use techniques from [11] and [9] to get estimates for Cauchy
type integral that are used to solve Riemann BVP on a wide class of non-smooth open
rectifiable Jordan curves. Our results intersect with the ones in [9], but we impose less
restrictive conditions on the curve -y.

The class of functions ¢(z), defined and holomorphic off +y, continuously extendable
to v\{a1,az2} from both sides of +, and such that in the vicinity of endpoints they satisfy
the estimates |¢(z)| < Clz — ag| ™, < 1,k = 1,2 and ¢(cc) = 0, will be denoted
by K{(v) and the functions in K(v) will be called picewise-holomorphic functions (PHF)
with jump line . ¢*(¢) will stand for the boundary values of ¢(z) at a point ¢ from left
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and from right correspondingly. With B(y) we shall denote the class of functions with
properties as above except that they are just bounded off ~.

Now consider the problem of finding a function ¢ € K(v) (or ¢ € B(y)), satisfying
the boundary condition

_ ~ def
¢*(t) = G(1)p~(t) + 9(t),t €4 = Y\{a1, a2}, (1)
where G, g are given coefficients. Usually this problem is called Riemann boundary value
problem (BVP).
If g =0 in (1) the problem is called homogeneous.
Following [10] let us introduce the characteristics

6:(8) = meas{& € y: |t — €| < 6} = measvys(t),t €v,6 >0,
6(6) = supb:(6),6 > 0.

tey

It is evident that 6,(6),0(6) are non-negative, non-decreasing functions of § and that

lim, (8) = lim6(8) = 0.

For a function f:~v\{ax} — C, which is bounded for each £ on the set v\v¢(ax),
consider the following characteristics (cf. [1])

Q) = sup |f(O), £€>0,
t€v\ve(ak)
wi*(6,§) = sup |f(t)—f(r)l, 620, £>0.
t,7€v\vg(ag)
[t—7|<6

Functions Q%*(€), w*(6,£) are non-increasing in &, wi*(6,€) is non-decreasing in
bwi*(6,€) < 2Q%*(€) and the fact that there exists %ir%w;’“ (6,€) = 0 is equivalent to the
continuity of f on v\{ax}.

Denote with L(~y) the class of Lebesque integrable functions on ~.

We write f = 0(g) if there exists C > 0 such that f(z) < Cg(z) in the domain of
f and g, and write f < g, if f =0(g) and g = 0(f).

2. Cauchy Type Integral
To solve Riemann BVP we first will need the following
Lemma Let v =ajas be an open rectifiable Jordan curve and let f : v\{ax} — C be

bounded for every £ >0 on y\ve(ax) and f € L(v).
Then for Cauchy type integral
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1[4
B =5 [ Far s,

the following estimate holds (e = |z — agl)

1
|—/ (T) —/ I )dtl <
2me ,YT—z 270 Jo\y(an) T

€ d Wi (z,e/2
< C(%/o w?‘“(Qe,:c)dG(ac)4-6//2 f—(—QdG(:c)-}—

2

3e YOk T,€ € d T
b [ ) 4 0y 10D [ @)

€ xz
where the constant C > 0 does not depend on z, and d = diam-y.
Note that estimate (2) is meaningful only if

/36 Md&(x) < oo.

T

Corollary If in addition Q%*(£) = 0(In %), Wi (6,€) = 0(8/¢) for 6 <€, k=1,2, and
6(6) < 6, then

1 1 1
l—./MdT——,/ ()d|<Cln—,e—|z—ak] (3)
2m J, T — 2 210 Jo\y(ar) T

where C > 0 is independent of z.

Proof of Lemma Without loss of generality we may assume that a; = 0 and ay = 1.
Now consider two cases.

1) Let p(z) def dist(z,7v) > €/8,¢ = |z|. Denote with 7, any of the points in
yN > .(0) O, (a) ={€€C:|¢~a|]=r}) and write the representation

I R (OO N B (G YO
4= 271'@[,7'—2 211 L\%(O) T dr =
:L/ f, f(T)-f(Tz)a,TJr

2mi Sy 0y T — 2 2mg 7\7 o T(1—2)

+ f(T”)(/ / Y9 4y 1 Ay 1 A,
2m Sy T2 o) T

and estimate the terms A;, A; and Aj.
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Since in A7 we have |f(7) — f(72)| < wjof(|7—7'z|,min{|7'|, I721}) <
|7 — z| > dist(z,v) > €\8 and |7 — 7| < 2¢, it follows

4 4
1‘11|§ “’O(IT 2|’>7l)|d3|§
f
T€ Jy.(0) me (0)

7e(0

w?‘(|7_7—z‘7 |T|)7

w?(?e, |T])ldr]|.

Applying now lemma from [10] we get

4 €
Al < — W% (2, 2)db(z).
f
me Jo

Now estimate Az. We have |f(7) — f(72)] < w?(|7 — 7|, min{|7],|7.|}) < w?c(|7'| +
7], €) < w27, €) and since p(z) > €/8 it follows that |7| < 9|7 — z|. Applying once
again lemma from [10] we get

7y — f(7,
|As| = 2i| Mdﬂ <
T Jy\7e(0) (1 - 2)
Wl (2|7, a9z, e/2
< el e [T )
2T J o\~ (0) 7] 2m Je z

To estimate Az write As = %lﬁ, where

dr

'Ye(o) T—z

As above, evidently

/6:

dr

(o) T(T = 2)

182 < |

- 27

_ / (
7\ (0)

| <

96/ /d
P 5 S
27 Jo\re(0) 171 ¢

1

T—Zz

- %)dT =1 + fa.

|_dz_| df(z) .

2

Now estimate (3;. Denote with Ob the component of 7.(0), containing a; = 0 and

with Ob the segment joining O to b. Then we have decomposition . (0) = (Uj_,7;)U Ob,
where p < oo, arcs 7; have both endpoints on ) _(0) and do not intersect with each
other. Denote with I'; the arcs of ) _(0) with the same endpoints as v; and such that
z is not contained in domain D;, bounded by v; UT';. Then, since p(z) > €/8, we
have meas I'; < B meas 7; with absolute constant B (meas E stands for the arclength
measure on »__(0) or on ). Then applying Cauchy theorem we obtain

i
bT—Z

8 8 —
—ZBmeanyj + —measOb <
€& €

dr

D

J

Il

|61

< Zmeasf‘ +|/b’r—z <
Z(@(e) +e) < 26(6).

IA
o0
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The obtained estimates prove (2) in first case.
2) Let now p(z) < €/8. Denote with x, any of the points for which |z —z,| = p(z)

and write
1 f(r) = f(=:) z f(r) = f(z2)
A= — —rdr + — T
2mi / (0) T—z + 27i _[7\7 0 T(T—2)

+ ) / / de1+B2+BS
27rz T =2 Jy\y(o) T

In By we have |f(7) — f(z.)] < wf(|7 — x|, min{|7|,|z;|}) and |7 — z,| <
|7 — 2| + |z — x| < 2|7 — 2|, so that

1 WO(|7 — z,], min{|7|, |z
B, < _/ A7 = @], min{|7],| z'})ldrl:B{—l-B{’,
7¢(0)

|7 — x|

where integration in Bj is over 7,/2(0) and in BY over the remaining part Ye(0)\Ve/2(0).
In B} we have |z,| > |2| — |z, — 2| > L fe> /2, |t —z,| <|7| — |z, — 2| + |2] <
€/2+€/8 + € < 2, |T—mz|26/2—6/8>e/4 Therefore

4

B < — w§(2¢, min{|7|,e/2})|dr| <

e ’75/2(0)
= [ whealriar < 2 [ wyomase
— €| < — wr(2e,x z).
T€ Jy ) f me o 7

In BY we have |z,| > €/2, |T—z,| < |7|+|z. — 2] +]|2| < 3¢ and so Ye(0)\ve/2(0) C
Y3e(z,). Then

1 W —z,],¢/2
gL i =wl)
21 Je(en) |7 — 2|
1 /3e wi(y,€/2) 1 /3‘ wi(y,€/2)
S o= ——db,, (y) < — ———df(y).
o W) <55 | )
Further,
O = 2], min{|7|, |z,
Bicf [ Hrmbmnlrle),
2T Y\ (0 'THT - Zl
U7 — z,], Le
< o 2259 e~ By 4 1y,
20 Sy U7l = 2]
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where the integration in B} is over 7\72(0) and in By - over 7v2.(0)\7.(0).
In Bj we have |7 —z.| < |7 + 2€ < 3¢, |7 — x| > |7] — |z2| > Ze, s0

3 WO T-CL'Z,ZE 3 wl T—Z‘Z,ZG
me [ ATt A= eeh 594
7\72(0) R )

o |7 — |2 |7 — x.|?
3¢ 4 Wiy, Le 3¢ 14 Wwi(y,€/2

< _6./ f(y—ZS)dez(y) < _6/ Mdg(y)
2m 7/8¢ ) 2m €/2 Y

Analogously, taking into account that in BJ we have |7| > € and |7 — z,| < 3e,
2

we get

3 wo T—2 ,16 1 LA)O T—l'z7z€
B! < 6/ #( 218)|d7|§—/ #(l lg)|d7_|§
726(0)\75(0) 725(0)\75(0)

= or |7||m — x| T |7 — z,|?
1 W7 — x4, €/2 1 13 Wi (y,€e/2

Y (i Y (L
T Jyse(zs) |7 — 2| ™ Jo Y

To estimate By write Bs = f%:__)g’ where

dr dr dr
g = +z —~ — — =01 + 09 + 03.
2e(0) T = 2 20 T(T = 2) Lo \re0) T

It is evident that
d
df
pa[ g [0
\2(0) I7] 2 T

and

0(2¢)

€

03] < Z[60(2) = Boe)] <

To estimate o, write

— dr dr o "
gy = + =07 + agq.
Yesa(z:) T 7% Y2e(O\vey2(z) T 7 %

In [11] it was proved that |of| < Clmeasyeo(z.) with absolute constant C, so
ot ] < C26(c/2).
In 0! wehave |7 —z| < |7|+|2| <3¢, |[T—2| > |T—2,| |2 —z.| > €/2—¢/8 = Ze.

Therefore
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8 8 8
lo}| < —/ < —00(2¢) < —6(2¢).
3€ Jpae(O\vepalen)  3€ 3¢

Since |f(z:)| < wi*(|z2]) < Q;’“(%e) < w$*(€e/2) the obtained estimates prove (2)
in the second case as well and this completes the proof of lemma.

3. Homogeneous Riemann BVP

Now consider problem (1) with g =0 and G(t) = exp(2mif(t)), where f € L(v).
Introduce the quantities

, 1 f(r)
k
= 1 R d 4
Ac qgiﬁlakln]z—aﬂ el S T—2 ™) )
1
AI; = lim——Re(/ Md’r), (5)
r—0lnr Nyrlar) T

k=1,2.
In case A’é is finite, let

[ Ak, if Ak €7

38’“‘{ (A% +1, fAE¢Z,k=1,2 (6)

and
& =& + &,.

Theorem. Under the conditions of the above corollary the homogeneous Riemann BVP
in K(v)

1) in case Ay = —o00 or AL = —co has only trivial solution ¢ = 0;

2) in case when among the values A% | k=1,2, there is +o00 and there is not —oo
has infinetely many linear independent solutions;

8) in case AL € R, k=1,2, has max{e,0} linear independent solutions. If = > 0
one can take as such a system the system of functions x(z),zx(z2),---,2* " x(2), where

j(j)z dr),z € C\n. (7)

x(2), (z —a1) % (2 — ay)™*? exp(/

Proof. . For the sake of simplicity suppose now a; = 0,a2 = 1 and f(1) = 0 (that
is, G(1) = 1). The last assumption means that we can take into consideration only the
behaviour at a; =0, i.e. AZ =0 and &, =0.

Now denote
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_exp/ T),z € C\.
¥

It is evident that the assumptions of theorem imply that

[ oo,
Y\7Ve(t)

T—1

converges as € — 0 uniformly in ¢ ranging over any compact F C v, not containing
endpoints ay,as. Then by results in [14] the integral

),

’YT_Z

is continuously extendable to 4 from both sides of v and the Plemelj-Sokhotsky formulae
are true (see [3], [7]), which imply that Y satisfies boundary condition (1). It is obvious
that Y (2) # 0 for all z € C\y,Y*(t) #0 for all ¢t € 4.
Let ¢(z) be one of the solutions to (1) in K(v). Then
9" _ ¢

Y+—Y—forallt€'y

Then the function F(z) = ¢(2)/Y (z) can be extended to holomorphic in C\{a1, az}
function and F(o0) = 0.

Denote

f(7) f(7)
A(z) = dr — —=dr),
) [17— [Y\’Yi oy T )
/ f(r) dr).
Then one can write
F(z) = ;i(é)) :gb(z)exp(—Re/ Tf(_T)ZdT)exp(iB(z)) =

= ¢(z) exp(iB(z)) exp(—A(z))exp(—Re/ MdT)

Wy 0 T

It is not difficult to see that (cf. [9])

A’} — const < A, < A’} + const. (8)
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Consider following possible cases. Let Ay = A}, Ag = AL
1) Ay = —oo (or, equivalently, in view of (8), Ag = —oc). In this case write

F() = o(z) exp(iB(2)) exp(—A(2)) x
! 5,
ln|z|Re/7\vz(0) T ) ®)

From the definition of Ay it follows that I{r,}2, VM > 0 3np Vn > ny we
have

x exp(—In|z|(

1 f(r)
—R —dr) < -M
e([y\%n (0 )=

Inr,

and hence Vz,|z| = r,, we have

C 1
|F(Z)| < WGXP(CAIII Izl)exp( | I( M))
= constexp(—vInr, + Caln L Min ri) =
Tn n
1
= constexp(ln r—(u +Ca — M)). (10)

n

Now put M =v +C4 41 in (10). Then Vz,|z| = r, we have

1
|F(2)| < constexp(—1n —)
r

n

and the righthand side tends to zero as n — oco. Then

|II(1aX |F(2z)| < constexp(—In ri) — 0,n — oo.
Z|=Tn n

For Ve > 0 3N, Vn > N, const exp(—In —1—) < € and then on the boundary of the
annulus Ky, .. = {z:7p41 <|2| <7,} we have |F(2)| < €. Then in the annulus itself
we have the same bound for |F|. As B, (0) = {z: |2| <7y} = U2y K, i1 WE
get that |F| < e in B,, (o) and this 1mphes the existence of lim,_,q F( ) = 0. This in
turn means that 0 is a removable singularity of F, i.e. can be extended to a function
holomorphic in C. Since F(oo) =0 it follows that F =0. Then ¢(z) = F(2)Y(z) = 0.

Thus, in case Ay = —oo Rieman BVP does not have solutions other than ¢=0
(in particular, it does not have linear independent solutions).

2) Ay = 4oo(or Ag = +00). In this case we have
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1
lim —Re(/ @dﬂ = +o0.
el vy T

Then VM > 0 Jrps Vr < rps we have

Inr T

L Re( / IO 4y > m
7\7-(0)

Now take M =n+ C4 + 1, where n € N is fixed, and then define the functions
dn(2) = 27"Y (2),z € C\y.
We have the following estimate

|6n(2)] = [27"Y (2)| = |exp(—nlnz) exp(A(2)) exp(iB(2)) x
x exp(Re( f—(T—)dT)| <

YN\y20) T

1
exp(Caln — — nln|z|) exp(ln|z|(

1
Re/ f—(—T—)dT)) <
2] Inlz] " w0 T
1

< exp(ln M(CA +n))exp(M In|z|) = exp(—1In %),

AN

and the righthand side tends to zero as z — 0. Thus, ¢, is a solution of (1). Therefore
the system {¢,}2 , is infinite system of evidently linear independent solutions.

3) Ay € R(or Ag € R). Let us show that in this case function F' can only have a
pole at 0. From the definition of Ay it follows that Ve > 0 Jr. Vr < r. we have

1
———Re(/ MdT) > Ay — ¢, (11)
Inr @ 7
and 3{r,}5°,3n, Vn > n. we have
1
Re(/ MdT) < Ag +e (12)
Inry, N (0) T
From the estimate
o
|F(z)] < V\exp(—A(z)exp(iB(z) exp(—Re( mdT))l <
|| Ny(0) T
1 1 1
< Cexp((Ca + v)In — exp(ln —( Re/ f(r) dr))
Y\7|21(0)

E |2] " In |z] T

for all z € C\y and such that |z| =r, we get
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1

1
|F(2)] < Cexp((Ca+v+Ap+e)ln a) = CTCA+U+Af+6 :

(13)

From (13) it follows that F'(z) = 2™ P(z) for some m € Z and P(z) is a polynomial
such that P(0) # 0.

It is evident that x(z) [7] satisfies homogeneous boundary condition (1) and x(z) #
0 for z € C\y,x%(t) # 0 for t € 4.Using the definition of Ag for any € > 0 and z close
enough to 0 and off v we have

1
In 2|

Re(/ ;f(__’rlsz) > Ag—¢

and then for small enough €

F) gy

T

x(2)] = Jexp /

= Jexp(=tn T (e [ 7 4ry)s=) < explin (- A +)) <
1 1

< eXP((#‘FG)lnm) = Wﬁ

where

[0, ifAgeZ,
H=1 1-{Ag), if Ag ¢ 7,

and we may assume that p+¢€ < 1.
Let us show now that any solution of homogeneous BVP has the form

¢(Z) = X(Z)Pae—l, z € (C\’y’ (14)

and vice versa, where P,_; is a polynomial of degree at most & — 1 (the polynomials of
negative degree are considered to be =0).

The inverse statement is evident. Let us prove the direct one. From the definition
of Ag it follows that for some sequence {z,}52;, tending to 0, for any € > 0 and large
enough n we have

1
Re( (7) dry < Ag + e
In |2y, YT = 2n
Since, as it was shown above, any solution has the form ¢(z) = Y(2)z™P(z),m €

Z,P(0) # 0, it follows that for large enough n
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C

|2n]”

v

11 f(7) m
|¢(zn)| = Cpexp(—In m(ln—llee('A T_—zndT))ler >

1
Coexp(—In—(Ag +e+m)) = Cp

|2n]  |zp| Ao e

Comparing the degrees on both sides we get that Ag+e+m+v >00orm > —Ag—e—v
which implies m > —Ag —v > —A¢. From the definition of = it follows that Ag < .
Thus, m > —=. Then

v

¢(2) =Y (2)2"P(2) =Y (2)27*(2"T" P(2)) = x(2)Q(2),

where Q(z) is a polynomial. As ¢(c0) = 0 and |x(2)Q(z)| ~ |z|"*+*, where k is the
degree of @, it follows that k¥ < & — 1. This proves (14) and completes the proof of
theorem.

Analogous theorem is true also for the class B(vy). O
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HOMOJEN RIEMANN SINIR-DEGER PROBLEMIi HAKKINDA

6zet

Bu caligmada genel agik diizlendirilebilen egriler iizerinde homojen Riemann
siir-deger problemini aragtiriyoruz. Diizgiin olmayan Jordan egrilerinin genis bir
simfinda, simirsiz salinim yapan katsay1 fonksiyonu oldugu durumda Riemann sinir-
deger probleminin ¢oziilebilirligine imkan veren lokal siireklilik modiilii ve lokal
maksimum modiilleri cinsinden Cauchy tipli integraller igin bazi tahminler ispat
ediyoruz.
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