WEAK*- INVARIANTLY COMPLEMENTED SUBSPACES OF $L^{\infty}(1/\omega)$ AND IDEALS OF $L^{1}(\omega)$ WITH A BOUNDED APPROXIMATE IDENTITY

Z. Argün & C. Tonyalı

Abstract

For a locally compact group G let $L^1(\omega)$ be the weighted group algebra and let X be a weak \star -closed translation invariant subspace of $L^{\infty}(1/\omega)$. In this paper for a certain class of functions we show that the following conditions are equivalent: (i) X is topological invariantly complemented in $L^{\infty}(1/\omega)$; (ii) X is invariantly complemented in $L^{\infty}(1/\omega)$; (iii) The left ideal X_{\perp} has a bounded right approximate identity.

Introduction

Let G be a locally compact group with fixed left Haar measure dx. By a weighted function on G we mean a positive and locally bounded measurable function ω on G such that $\omega(st) \leq \omega(s)\omega(t)$ and inf $\omega(s) = \gamma > 0(s,t \in G)$. We may assume that ω is upper semi-continuous on G (see, for example, ([7], page 83)). If we set

$$L^{1}(\omega) = \left\{ f : \parallel f \parallel_{\omega}^{1} = \int_{G} \left| f(t) \right| \omega(t) dt < \infty \right\}$$

then, $L^1(\omega)$ is a Banach Space: as usual, we equate functions equal dx almost everywhere. under convolution product defined by the equation

$$f * g(x) = \int_G f(y)g(y^{-1}x)dy \quad (f, g \in L^1(\omega))$$

 $L^1(\omega)$ becomes a Banach algebra. Since ω is locally bounded, $L^1(\omega)$ contains the space of functions of compact supports. We also indicate that it has a bounded approximate identity (in the sequel we abbreviated it as a.i.) (see, for example ([1], Lemma 1.4.1)).

Recall that the isometric involution "*" on $L^1(G)$ defined by $f^*(x) = \Delta(x^{-1})\overline{f(x^1)}$, does not in general, apply to $L^1(\omega)$. In fact, f^* need not even be in $L^1(\omega)$. This is shown by examples in ([7], chapter 1, § 6.1). In this study we therefore assume the

weighted function ω satisfies that ess $\sup \{\omega(x^{-1})/\omega(x) : x \in G\} = \delta < \infty$. This situation does not imply that ω is bounded. For example, the weighted function ω defined by, $\omega(x) = 1 + \frac{1}{2}\left(\frac{x}{2} + |x|\right)$ is not bounded on $(\mathbb{R}, +)$, but $\sup \omega(-x)/\omega(x) = 3$ and $1 \le w(x)$ for all $x \in \mathbb{R}$. Note also that the involution "*" is continuous with $\|f^*\| \le \delta \|f\| \le \delta^2 \|f^*\|$. In this case the involution "*" becomes a topological algebraic anti-isomorphism of $L^1(\omega)$.

Using the notation of [5] and [6], for $f \in L^1(\omega)$ and $x \in G_x f(y) = f(xy), f_x(y) = f(yx)(y \in G)$. Then xf, f_x belong to $L^1(\omega)$ and

$$\|x f\|_{\omega}^{1} < \omega(x^{-1}) \|f\|_{\omega}^{1}, \|f_{x}\| \le \Delta(x^{-1})\omega(x^{-1}) \|f_{x}\|_{\omega}^{1}.$$

The dual space of $L^1(\omega)$ is $L^{\infty}(\omega)$, Banach space of complex valued measurable functions φ on G for which φ/ω is essantially bounded; that is $\varphi/\omega \in L^{\infty}(G)$. The norm in $L^{\infty}(1/\omega)$ is;

$$\|\varphi\|_{\omega}^{\infty} = ess \sup \{|\varphi(t)|/\omega(t) : t \in G\} \quad (\varphi \in L^{\infty}(1/\omega))$$

and the duality is implemented by

$$\langle f, \varphi \rangle = \int_G f(x) \overline{\varphi(x)} dx \quad \left(f \in L^1(\omega), \varphi \in L^{\infty}(1/\omega) \right).$$

Furthermore for each $\varphi \in L^{\infty}(1/\omega)$ and $x \in G$ $_x\varphi(y) = \varphi(xy), \varphi_x(y) = \varphi(yx), \tilde{\varphi}(x) = \overline{\varphi(x^{-1})} y \in G$, and $_x\varphi, \tilde{\varphi}$ belong to $L^{\infty}(1/\omega)$ with $\|_x \varphi\|_{\omega}^{\infty} \leq \omega(x) \|\varphi\|_{\omega}^{\infty}, \|\tilde{\varphi}\|_{\infty}^{\omega} \leq \delta \|\varphi\|_{\omega}^{\infty}$. Moreover, for $f, g \in L^1(\omega)$ and $\varphi \in L^{\infty}(1/\omega)$ we have

$$< g, f^* * \varphi > = < f * g, \varphi >$$

Where $f * \varphi(x) = \int_G f(y) \varphi\left(y^{-1}x\right)$ dy and $f^* * \varphi(x) = \int_G \overline{f(y)} \varphi(yx) dy$. Let RUC $(1/\omega)$ be the closed subspace of $L^{\infty}(1/\omega)$ consisting of continuous functions $\varphi \in L^{\infty}(1/\omega)$ for which the mapping

$$G \longrightarrow L^{\infty}(x/\omega), x \longrightarrow_x \varphi \quad (x \in G)$$

is continuous.

H. Rosenthal classified in [8] the closed ideals in $L^1(G)$ for which I^{\perp} is complemented in $L^{\infty}(G)$ in the case of an abelian group G. By Theorem 4 in [6] it turns out that the closed ideals X_{\perp} of $L^1(G)$ has a bounded a.i. when X is invariantly complemented in $L^{\infty}(G)$, where

$$X_{\perp} = \{ f \in L^1(G) : \langle f, \varphi \rangle = 0, \ \varphi \in X \}$$

Recently Bekka in [2] has proved that a weak *-closed left translation invariant subspace X of $L^{\infty}(G)$ is invariantly complemented if and only if X_{\perp} has a bounded right a.i. when G is locally compact group.

In this work, our main purpose is to generalize Bekka's results in [2] for a certain class of weighted functions.

Definition 1. A weak *-closed left translation invariant subspace X of $L^{\infty}(1/\omega)$ is said to be invariantly complemented in $L^{\infty}(1/\omega)$ if X has a closed left translation invariant compmlemented in $L^{\infty}(1/\omega)$ or equivalently, if X is the range of a bounded projection on $L^{\infty}(1/\omega)$ or equivalently, if X is the range of a bounded projection on $L^{\infty}(1/\omega)$ commuting with left translation. Indeed, if X has a closed left translation invariant complement in $L^{\infty}(1/\omega)$ then there exists a closed subspace Y of $L^{\infty}(1/\omega)$ such that if $\varphi \in Y$, then $_{X}\varphi \in Y$ ($X \in G$) and $L^{\infty}(1/\omega) \cong X \oplus Y$. Define a mapping Y on $L^{\infty}(1/\omega)$ such that Y such that Y is routine to show that Y satisfies the conditions of a bounded projection commuting with left translations.

On the other hand if P is a bounded projection commuting with left translations on $L^{\infty}(1/\omega)$ with its range X, then the kernel of P is a left translation invariant subspace and complement of X in $L^{\infty}(1/\omega)$.

Definition 2. We say that X is topologically invariantly complemented in $L^{\infty}(1/\omega)$ if X is the range of a bounded projection P on $L^{\infty}(1/\omega)$ such that $P(f * \varphi) = f * P(\varphi)$ for all $f \in L^{1}(\omega)$ and $\varphi \in L^{\infty}(1/\omega)$ where X is a weak *-closed left translation invariant subspace of $L^{\infty}(1/\omega)$.

A close examination of the proof of Theorem 4.1 in [9] shows that a bounded projection on $L^{\infty}(1/\omega)$ commuting with left translations need not commute with left convolution by functions from $L^1(\omega)$. The notion of (topologically) invariant complemented subspace of RUC $(1/\omega)$ is defined in a similar way.

Now, we need the following lemmas.

Lemma 1. If $\varphi \in RUC(1/\omega)$, the $_x\varphi \in RUC(1/\omega)$ for all x in G.

Proof. Let $\varphi \in \mathrm{RUC}(1/\omega)$ and $x \in G$. Then for given any $\varepsilon > 0$ there exists a relatively compact neighborhood U of the unit e_G of G such that;

$$\|s \varphi -_t \varphi\|_{\omega}^{\infty} \langle \varepsilon$$

when $st^{-1} \in U$. let W be an open subset of U which contains e_G . If $uv^{-1} \in x^{-1}Wx$, then we have $(xu)(xv)^{-1} \in W \subseteq U$ and so,

$$\|x_u \varphi - x_v \varphi\|_{\omega}^{\infty} = \|u(x\varphi) - v(x\varphi)\|_{\omega}^{\infty} \langle \varepsilon;$$

that is, we have found an open neighborhood $x^{-1}Wx$ of e_G such that;

$$\|u(x\varphi) - v(x\varphi)\|_{\omega}^{\infty} \langle \varepsilon \rangle$$

when $uv^{-1} \in x^{-1}Wx$. By definition of the right uniform continuity, $x\varphi \in RUC(1/\omega)$, as required (see, for example ([7], ch.3, § 1.8) for the definition of the right and left uniform

continuity).

Lemma 2. If $g \in L^1(\omega)$, then for each $\varepsilon > 0$ there exists a symmetric neighborhood V of e_G (then unit of G) such that;

$$\|x - y - y - y \|_{\omega}^{\infty} \langle \varepsilon \quad when \ xy^{-1} \in V.$$

Proof. $f \in L^1(\omega)$ with compact support K. By Lemma 20.4 (i) in [5] and ([7], p. 85, § 7.2) for given any $\varepsilon' > 0$, there exists a relatively compact neighborhood U of e_G such that $\|u\|_{L^2} f - f\|_{L^2} (\varepsilon')$ when $u \in U$. Let V be a symmetric neighborhood of e_G such that $V \subseteq U$. Then for all $v \in V$, $\|v\|_{L^2} f - f\|_{L^2} (\varepsilon')$.

On the other hand, for all $v \in V$ we have;

$$supp(_v f - f) \subseteq V^{-1}K \cup K = VK \cup K \subseteq \overline{U}K \cup K$$

and $\overline{U}K$ is compact (hence $\overline{U}K \cup K$ is compact).

Now set $Q = \sup\{\omega(z) : z \in \overline{U}K \cup K\} < \infty$. If $v \in V$, then we obtain

$$\begin{aligned} \|_{v} f - f \|_{\omega}^{1} &= \int_{G} \left| \left(_{v} f - f\right)(y) \right| \omega(y) dy \\ &= \int_{supp(_{v} f - f)} \left| \left(_{v} f - f\right)(y) \right| \omega(y) dy \\ &\leq \int_{VK \cup K} \left| \left(_{v} f - f\right)(y) \right| \omega(y) dy \\ &\leq \int_{\overline{U}K \cup K} \left| \left(_{v} f - f\right)(y) \right| \omega(y) dy \\ &\leq Q \|_{v} f - f \|_{1} < Q\varepsilon' = \varepsilon \end{aligned}$$

which completes the proof of this Lemma.

Lemma 3. If $f \in L^1(\omega)$ and $\varphi \in L^{\infty}(1/\omega)$, then $f * \varphi \in RUC(1/\omega)$. **Proof.** Let $f \in L^1(\omega)$ and $\varphi \in L^{\infty}(1/\omega)$. Thus

$$|f * \varphi(vx) - f * \varphi(x)| = \left| \int_G f(t)\varphi(t^{-1}vx)dt - \int_G f(t)\varphi(t^{-1}x)dt \right|$$
$$= \left| \int_G f(vxz^{-1})\varphi(z)\Delta(z^{-1})dz - \int_G f(xz^{-1})\varphi(z)\Delta(z^{-1})dz \right|$$

$$= \left| \int_{G} (f(vxz^{-1}) - f(xz^{-1})) \overline{\tilde{\varphi}(z^{-1})} \Delta(z^{-1}) dz \right|$$

$$= \left| \int_{G} (vxf - xf)(z) \overline{\tilde{\varphi}(z)} dz \right|$$

$$\leq \|vxf - xf\|_{\omega}^{1} \|\tilde{\varphi}\|_{\omega}^{\infty}$$

$$\leq \delta \|vxf - xf\|_{\omega}^{1} \|\varphi\|_{\omega}^{\infty}$$

where for the first term $z = t^{-1}vx$ and for the second term $z = t^{-1}x$.

Now by the Lemma 2, for given any $\varepsilon > 0$ there exists symmetric neighborhood V of e_G such that; $\|v_x f - f\|_{\omega}^1 \langle \varepsilon \text{ when } v \in V \text{.}$ This inequality and boundedness from below of ω imply that $f * \varphi \in RUC(1/\omega)$ for each $f \in L^1(\omega)$ and $\varphi \in L^{\infty}(1/\omega)$, as required.

Lemma 4. let G be a locally compact group and let $L^1(\omega)$ be its weighted group algebra. If I is a closed left ideal in $L^1(\omega)$ then, its annihilator

$$I^{\perp} = \{ \varphi \in L^{\infty}(1/\omega) : \langle f, \varphi \rangle = 0 \text{ for all } f \in I \}$$

is a weak *-closed left translation invariant subspaces of $L^{\infty}(1/\omega)$. Conversely, if X is a weak *-closed left translation invariant subspaces of $L^{\infty}(1/\omega)$ then, its annihilator X_{\perp} is a closed left ideal in $L^{1}(\omega)$.

Proof. Recall that $\langle g, f * \varphi \rangle = \langle f^* * g, \varphi \rangle$ for all $f, g \in L^1(\omega)$ where; $f^*(x) = \Delta(x^{-1})\overline{f(x^{-1})}$ and Δ denotes the modular function of G. If I is a left ideal in $L^1(\omega)$ then obviously, I^{\perp} is a weak *-closed subspace of $L^{\infty}(1/\omega)$ and if $\{u_{\alpha}\}$ is a bounded a.i. of $L^1(\omega)$ then, we have

$$\langle f,_x \varphi \rangle = \lim_{\alpha} \langle u_\alpha * f,_x \varphi \rangle = \lim_{\alpha} \langle f, u_\alpha^* *_x \varphi \rangle$$

$$= \lim_{\alpha} \langle \Delta(x) f, (u_\alpha^*)_x * \varphi \rangle$$

$$= \lim_{\alpha} \langle \Delta(x) ((u_\alpha^*)_x)^* * f, \varphi \rangle$$

$$= 0 \left(since f \in I \right)$$

for all $x \in G$ and $f \in I$ which implies that I^{\perp} is left tanslation invariant.

Conversely, let X be a weak *-closed left translation invariant subspace of $L^{\infty}(1/\omega)$. Then for each $x \in G$ and $\varphi \in X$, we have ${}_x\varphi \in X$. Let $g \in X_{\perp}$ and $f \in L^1(\omega)$. Then

$$\langle f * g, \varphi \rangle = \int_G (f * g)(x) \overline{\varphi(x)} dx$$

$$= \int_{G} \left\{ \int_{G} \Delta \left(t^{-1} \right) f \left(t^{-1} \right) g(tx) dt \right\} \overline{\varphi(x)} dx$$

$$= \int_{G} \left\{ \int_{G} {}_{t} g(x) \overline{\varphi(x)} dx \right\} \Delta \left(t^{-1} \right) f(t^{-1}) dt$$

$$= \int_{G} \langle {}_{t} g, \varphi \rangle \Delta \left(t^{-1} \right) f \left(t^{-1} \right) dt$$

$$= \int_{G} \langle g_{,t^{-1}} \varphi \rangle \Delta \left(t^{-1} \right) f \left(t^{-1} \right) dt = 0.$$

It follows that X_{\perp} is a left ideal in $L^1(\omega)$. Obviously, is closed. Hence X_{\perp} is a closed left ideal of $L^1(\omega)$, as required.

Theorem 5. Let G be a locally compact group, X be a weak *-closed left translation invariant subspace of $L^{\infty}(1/\omega)$ and let X_{\perp} be the annihilator of X in $L^{1}(\omega)$. Then the following statements are equivalent:

- (i) X is topologically invariantly complemented in $L^{\infty}(1/\omega)$;
- (ii) X is invariantly complemented in $L^{\infty}(1/\omega)$;
- (iii) $X \cap RUC(1/\omega)$ is invariantly complemented in $RUC(1/\omega)$;
- (iv) $X \cap RUC(1/\omega)$ is topologically invariantly complemented in $RUC(1/\omega)$;
- (v) The closed left ideal X_{\perp} has a bounded right a.i..

Proof. $(i) \Longrightarrow (ii)$; Let $P: L^{\infty}(1/\omega) \to X$ be a projection with $p(f * \varphi) = f * P_{\varphi}$ for all $f \in L^{1}(\omega), \varphi \in L^{\infty}(1/\omega)$. Let $\{e_{\alpha}\}$ be an a.i. for $L^{1}(\omega)$. By the equation $\langle g, f * \varphi \rangle = \langle f^{*} * g, \varphi \rangle$ and lemma 3 we have

$$\begin{split} \langle f, P(_x\varphi) \rangle &= \lim_{\alpha} \langle e_\alpha * f, P\left(_x\varphi\right) \rangle \\ &= \lim_{\alpha} \langle f, e_\alpha^* * P\left(_x\varphi\right) \rangle \\ &= \lim_{\alpha} \langle f, \Delta(x) P\left((e_\alpha^*)_x * \varphi\right) \rangle \\ &= \lim_{\alpha} \langle f, \Delta(x) (e_\alpha^*)_x * P\varphi \rangle \\ &= \lim_{\alpha} \langle f, e_\alpha^* *_x (P\varphi) \rangle \\ &= \langle f,_x P\varphi \rangle \end{split}$$

which implies that $_x(P\varphi) = P(_x\varphi)$ and so, x is invariantly complemented in $L^{\infty}(1/\omega)$.

To show $(ii) \Longrightarrow (iii)$; let $P: L^{\infty}(1/\omega) \to X$ be a bounded projection on X commuting with left translations. If $\varphi \in RUC(1/\omega)$ and $\varepsilon > 0$

$$\|_{x} P\varphi -_{y} P(\varphi)\|_{\omega}^{\infty} = \|P(_{x}\varphi) - P(_{y}\varphi)\|_{\omega}^{\infty} = \|P(_{x}\varphi -_{y}\varphi)\|_{\omega}^{\infty}$$

$$\leq \|P\|\|_{x} \varphi -_{y}\varphi\|_{\omega}^{\infty}$$

$$< \|P\|\varepsilon$$

whenever $xy^{-1} \in U$ where U is a neighborhood of e_G the unit of G. Hence $P\varphi \in RUC(1/\omega)$; that is, $P\varphi \in X \cap RUC(1/\omega)$. On the other hand, if $\varphi \in X \cap RUC(1/\omega)$ then $\varphi \in X$ and so, $P\varphi = \varphi$. Moreover, φ being an element of $RUC(1/\omega)$ the restriction $P \mid_{RUC(1/\omega)}$ of P to $RUC(1/\omega)$ is onto. By the definition of invariantly complemented of $X \cap RUC(1/\omega)$, it is an invariantly complemented subspace of $RUC(1/\omega)$, as required.

For the proof of implication $(iii) \Longrightarrow (iv)$ it is enough to show that the mapping P which is taken in the implication $(ii) \Longrightarrow (iii)$ satisfies the equality $P(f*\varphi) = f*P\varphi$ for all f in $L^1(\omega)$ and φ in $RUC(1/\omega)$. To this end, let $\varphi \in RUC(1/\omega)$ and, set $\Psi(y) = \int_G f(x)_{x^{-1}} \varphi(y) dx$.

Then we have $\Psi \in L^{\infty}(1/\omega)$ and

$$\begin{split} \|_{y} \ \Psi -_{z} \ \Psi \|_{\infty}^{\infty} &= \operatorname{ess \ sup} |_{y} \Psi(u) -_{z} \ \Psi(u) / \omega(u) | \\ &= \operatorname{ess \ sup} |\Psi(yu) - \Psi(zu) / \omega(u) | \\ &= \operatorname{ess \ sup} \left| \int_{G} f(x) \left\{ \varphi(x^{-1}yu) - \varphi(x^{-1}zu) \right\} dx \right| / \omega(u) \\ &= \operatorname{ess \ sup} \left| \int_{G} \left\{ f(yuv^{-1}) = f(zuv^{-1}) \right\} \varphi(v) \Delta(v^{-1}) dv \right| / \omega(u) \\ &= \operatorname{ess \ sup} \left| \int_{G} \left(yuf -_{zu} f(v^{-1}) \overline{\varphi(v^{-1})} \Delta(v^{-1}) dv \right) / \omega(u) \right| \\ &= \operatorname{ess \ sup} \int_{G} \left| u(yf -_{z} f(v)) \right| |\varphi(\tilde{v})| dv / \omega(u) \\ &\leq \operatorname{ess \ sup} \omega(u^{-1}) / \omega(u) \cdot \|_{y} f -_{z} f \|_{\omega}^{1} \cdot \| \tilde{\varphi} \|_{\omega}^{\infty} \\ &\leq \delta^{2} \|_{y} f -_{z} f \|_{\omega}^{1} \| \varphi \|_{\omega}^{\infty} \end{split}$$

By Lemma 2 for give any $\varepsilon > 0$, there exists a symmetric neighborhood U of e_G such that $\|y f - z f\| < \varepsilon (yz^{-1} \in U)$, and so, if $yz^{-1} \in U$, then

$$\|_{y} \Psi -_{z} \Psi \|_{\omega}^{\infty} < \varepsilon \delta^{2} \| \varphi \|_{\omega}^{\infty}$$

which implies that Ψ belongs to $RUC(1/\omega)$. By the definition of the convolution product $\int_G f(x)_{x^{-1}} \varphi dx$ represents f * g. Thus it is not difficult to see that $P(f * \varphi) = f * P(\varphi)$.

To prove $(iv) \Longrightarrow (v)$, let $P: RUC(1/\omega) \to X \cap RUC(1/\omega)$ be a bounded projection onto $X \cap RUC(1/\omega)$ with $P(f*\varphi) = f*P\varphi$ for all $f \in L^1(\omega), \varphi \in RUC(1/\omega)$. Define $P': L^\infty(1/\omega) \to L^\infty(1/\omega)$ by

$$\langle p, P'\varphi \rangle = \overline{P(f^* * \varphi)(e_G)} \quad (\varphi \in L^1(1/\omega), f \in L^\infty(\omega))$$

To see that the range of P' is X, first observe that when $\varphi \in RUC(1/\omega)$ $\overline{P(f * \varphi)(e_G)} = < f, P\varphi >$; that is, $P'|_{RUC(1/\omega)} = P$. Let $\{e_\alpha\}$ be a bounded a.i. in $L^1(\omega)$. By Lemma 3, we obtain

$$< f, P\varphi >= \lim_{\alpha} < e_{\alpha} * f, P\varphi > = \lim_{\alpha} \overline{P(f^* * e_{\alpha}^* * \varphi)(e_G)}$$

$$= \lim_{\alpha} \overline{P(f^* * P(e_{\alpha}^* * \varphi))(e_G)}$$

$$= \lim_{\alpha} < f, P(e_{\alpha}^* * \varphi) >= 0$$

which implies that $P'\varphi \in (X_{\perp})^{\perp} = X$. Thus the range of P' is a subset of X.

If $\varphi \in X$, $g \in X_{\perp}$, then $\langle g, f^* * \varphi \rangle = \langle f * g, \varphi \rangle = 0$ and so $f^* * \varphi \in (X_{\perp})^{\perp} = X$. Hence $f^* * \varphi \in X \cap RUC(1/\omega)$ and

$$\langle f, P'\varphi \rangle = \overline{P(f^* * \varphi)(e_G)} = \overline{f^* * \varphi(e_G)} = \langle f, \varphi \rangle;$$

that is, $P'\varphi=\varphi$ for all $\varphi\in X$ and so, the range of P'isX. Obviously, P' is linear and since

$$|\langle f, P'\varphi \rangle| = |P(f^* * \varphi)(e_G)|$$

$$= \omega(e_G) |P(f^* * \varphi)(e_G)| / \omega(e_G)$$

$$\leq \omega(e_G)ess \sup_{x \in G} |P(f^* * \varphi)(x)| / \omega(x)$$

$$= \omega(e_G) ||P(f^* * \varphi)||_{\omega}^{\infty}$$

$$\leq \omega(e_G) ||P|| ||f^* * \varphi||_{\omega}^{\infty}$$

$$\leq \delta\omega(e_G) ||P|| ||f||_{\omega}^{\omega}||\varphi||_{\omega}^{\infty}$$

P' is continuous with $||P'|| \le \delta\omega(e_G) ||P||$. Consequently P' is an extension of P to $L^{\infty}(1/\omega)$ as a bounded projection.

Now let $\{e_{\alpha}\}$ be an a.i for $L^{1}(\omega)$ bounded by M. Set $I = X_{\perp}$ and $C = (1 + \delta \omega(e_{G}) \parallel P \parallel) M$. Let E' be an element of $(L^{\infty}(1/\omega))'$ which is $\sigma((L^{\infty}(1/\omega)', L^{\infty}(1/\omega)))$ closure of $\{e_{\alpha}\}$ in $L^{1}(\omega)$. Define a linear functional E on $L^{\infty}(1/\omega)$ such that

$$<\varphi, E> = <\varphi - P'\varphi, E'>$$

for all $\varphi \in L^{\infty}(1/\omega)$. Then $||E|| \le (1+||P'||) ||E'|| \le (1+\delta\omega(e_G)||P||)M = C$ and $\langle \varphi, E \rangle = 0$ for all $\varphi \in I^{\perp}$. Thus $E \in B_c(I'') = \{F \in I'' : ||F|| \le C\}$ where I'' denotes the continuous bidual of I. By the Alaoglu Theorem $B_c(I)$ is weak *-dense in $B_c(I'')$, and so, there exists a net $\{u_{\beta}\}$ in $B_c(I)$ such that $u_{\beta} \to E$ with respect to $\sigma(I'', I')$ topology. Since X is complemented in $L^{\infty}(1/\omega)$, it is easy to see that, also $u_{\beta} \to E$ with restrict to $\sigma(L^1(\omega)'', L^{\infty}(1/\omega))$. It has a right a. i. bounded by C if and only if it has a weak right a.i. bounded by C (see, for example ([3])) and so, we need only to show that $\{u_{\beta}\}$ is a week right a.i. for I. To this end, let $f \in I, \varphi \in L^{\infty}(1/\omega)$. Then we have

$$\lim_{\beta} \langle f * u_{\beta} - f, \varphi \rangle = \lim_{\beta} \langle f * u_{\beta}, \varphi \rangle - \langle f, \varphi \rangle$$

$$= \lim_{\beta} \langle u_{\beta}, f^* * \varphi \rangle - \langle f, \varphi \rangle$$

$$= \langle f^* * \varphi - P'(f^* \varphi), E' \rangle - \langle f, \varphi \rangle$$

$$= \langle f^* * \varphi, E' \rangle - \langle f, \varphi \rangle - \langle P'(f^* * \varphi), E' \rangle$$

$$= \lim_{\alpha} \langle e_{\alpha}, f^* * \varphi \rangle - \langle f, \varphi \rangle - \lim_{\alpha} \langle e_{\alpha}, P'(f^* * \varphi) \rangle$$

$$= \lim_{\alpha} \langle f * e_{\alpha}, \varphi \rangle - \lim_{\alpha} \overline{P(e_{\alpha}^* * f^* * \varphi)(e_{\beta})} - \langle f, \varphi \rangle$$

$$= -\lim_{\alpha} \overline{P((f * e_{\alpha})^* * \varphi)(e_{\beta})}$$

$$= -\langle f, P' \varphi \rangle = 0 \quad \text{since } P' \varphi \in X)$$

which implies that $\{u_{\beta}\}$ is a bounded weak right a.i.. This completes the proof of the implication $(iv) \Longrightarrow (v)$.

Finally to show $(v) \Longrightarrow (i)$, let $\{u_{\alpha}\}$ be a bounded right a.i. for X_{\perp} and E be the weak *-limit point of the net $\{u_{\alpha}\}$ in $L^{1}(\omega)''$. Then the mapping $P: L^{\infty}(1/\omega) \to L^{\infty}(1/\omega)$, defined by,

$$\langle f, P\varphi \rangle = \langle f, \varphi \rangle - \langle f^* * \varphi, E \rangle$$

For all $f \in L^1(\omega)$ and $\varphi \in L^{\infty}(1/\omega)$. It is not difficult to verified that P is a bounded projection with range X. For all $f \in L^1(\omega), \varphi \in L^{\infty}(1/\omega)$ since

$$< g, P(f^*\varphi) > = < g, f^*\varphi > - < g^* * f * \varphi, E >$$

= $< f^* * g, \varphi > - < g^* * f * \varphi, E >$
= $f, f * P\varphi > (g \in L^1(\omega))$

we have $P(f*\varphi) = f*P(\varphi)$ and it follows that X is topologically invariantly complemented in $L^{\infty}(1/\omega)$, as required. This completes the proof of the Theorem.

Remark 6. The involution $\tilde{\varphi}(x) = \overline{\varphi(x^{-1})} \left(respf^*(x) = \overline{f(x^{-1})} \Delta(x^{-1}) \right)$ on $L^{\infty}(1/\omega)$ (resp. $L^1(\omega)$) transforms every left invariant subspace of $L^{\infty}(1/\omega)$ (resp. left ideals of $L^1(\omega)$) into a right invariant subspace of $L^{\infty}(1/\omega)$ (resp. right ideals of $L^1(\omega)$). Furthermore, $(\tilde{X})_{\perp} = (X_{\perp})^*$ for $X \subseteq L^{\infty}(1/\omega)$ and a left ideal I of $L^1(\omega)$ has a bounded right a.i. if and only if I^* has a bounded left a.i. since the involution "*" is continuous. Thus the Theorem 5 has an obvious version for right invariant subspaces of $L^{\infty}(1/\omega)$.

Remark 7. If we take $\omega \equiv 1_G$ $(1_G(x) = 1, x \in G)$, then $L^1(\omega) = L^1(G)$ and so, this study is clearly a generalization of the work [2].

We also would like to mention here that the equivalaence $(i) \Longrightarrow (v)$ in the Theorem 5 is true for arbitrary Banach algebras (see, ([4], 4.1.4)

References

- [1] Argün Z.: Multipliers, Quasi-multipliers and Arens semi- regular Banach algebras. Ph. D. Thesis (1992), Uni. of Wales.
- [2] Bekka Mohammed E. B: Complemented subpace of $L^{\infty}(G)$, ideals of $L^{1}(G)$ and Amenability. Monatsh. Math., 109 (1990), 195-203.
- [3] Doran R. S. & Wichmann, J. Approximate identities and Factorization in Banach modules. Lect. Notes Math (768). Springer (1979).
- [4] Forrest B: Amenability and ideals in the Fourier algebra of locally compact groups., Ph. D. Thesis, Uni of Alberta. edmonton (1987).
- [5] Hewitt E. & Ross K. A.: Abstract Harmonic Analysis I. Springer Verlag (1963).
- [6] Liu T. S & Van Rooij A. & Wang J. K.: Projections and approximate identities for ideals in group algebras. Trans AMS., (1973), 149-159.
- [7] Reiter H. Classical Harmonic Analysis and locally compact groups, Oxford. Uni. Press (1968).
- [8] Rosenthal H. P. Projections onto translation invariant subspace of $L^P(G)$. Mem. Amer. Math. Soc., 175 (1973), 469-482.
- [9] Rudin W.: Invariant means of $L^{\infty}(G)$. Studia Math., 44 (1972), 219-227.

$L^\infty(1/\omega)$ UZAYININ INVARYANT TAMLANMIŞ ALT UZAYLARI VE $L^1(\omega)$ ' NİN YAKLAŞIK BİRİME SAHİP İDEALLERİ

Özet

 $L^{\infty}(\omega)$ lokal kompakt G grubu üzerinde ağırlıklı grup cebiri ve X de $L^{\infty}(1/\omega)$ nin zayıf *-topolojisine göre kapalı, sol ötelemeye göre invaryant olan bir alt uzay olsun. Bu çalışmada;

- (i) $X, L^{\infty}(1/\omega)$ içinde topolojik olarak sol ötelemeye göre invaryant ve tamlanmış bir alt uzaydır;
- (ii) $X, L^{\infty}(1/\omega)$ da sol ötelemeye göre invaryant ve tamlanmış uzaydır;
- (iii) $L^1(\omega)$ içindeki her X_{\perp} sol idealinin yaklaşık birimi vardır;

önermelerinin denk olduklarını gösteriyoruz. Dolayısıyla X in $L^{\infty}(1/\omega)$ 'da tamlanmış bir alt uzayı olması için gerek ve yeter şart X_{\perp} nin en az bir yaklaşık biriminin olmasıdır.

Ziya ARGÜN
Karadeniz Technical University
Mathematics Department Gazi Education Fac.
Gazi University Teknik Okullar,
06500 Ankara-TURKEY
Cevriye TONYALI
Mathematics Department The Fac. of Arts and Sci.
Gazi University Teknik Okullar,
06500 Ankara-TURKEY

Received 16.3.1995