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FINITE DIMENSIONAL ATTRACTORS FOR A CLASS OF
SEMILINEAR WAVE EQUATIONS

A. Eden & V. Kalantarov

Abstract

In this paper we give a self-contained survey of results related with the global
attractors for a class of nonlinear wave equations with damping or viscosity terms.
In particular, we prove the existence of a finite dimensional attractor and estimate its
fractal dimension by imbedding it in an exponential attractor. Some results on global
stability, existence of finite dimensional attractors were already partially discussed
in Kalantarov [44] and in Eden et. al. [25], however we simplify the framework
by introducing a unified approach to both the existence of attractors through «-
contractions and the construction of exponential attractors via some Lipschitzianity
condition of the non-linear operator.

1. Introduction

We consider nonlinear damped or viscous wave equations that can be realized as
abstract evolution equation of the form

Puy + Quy + Au+ Flu] = h,

with initial conditions

u¢(0) = uy and u(0) = wo,

where u; and wy come from an appropriate Hilbert space H. Under some natural
conditions on the linear operators P, @, and A and on the nonlinear term F, the existence
of a dynamical system can be established. In particular, we show that by the uniqueness
and existence result, Theorem 1, one can define a continuous semigroup of operators
S(t) from an appropriate Hilbert space X into itself, satisfying the semigroup condition
S(T + s) = S(t)S(s). Also in the first section we prove the existence of an absorbing
set B in X. In the process we define both a Lyapunov like functional L(t) and an
Energy function E(t), that is equivalent to the usual norm of the Hilbert space X that
reveals the dissipative structure of the underlying evolution equation. The energy function
will be used throughout the rest of the paper when we show the existence of a global
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attractor by the theory of a-contractions, i.e. Hale’s approach [37]. Then the existence
of an exponential attractor is established via the discrete squeezing property that was
introduced in [32] and utilized in the construction of exponential attractor in [28], where
we also utilize a recent result for the existence of exponential attractors for a-contractions
(see [23]). Since the same energy function is used uniformly this approach simplifies a
similar one introduced in [25] and in [26] for a more restricted class of equations. In the
second section, in addition to the uniform approach that we bring to these problems, we
also show the existence of exponential attractors for all of the examples given in the last
section. In particular the existence of an exponential attractor for the sin-Gordon equation
in any space dimension and for the modified von Karman equations are new results. In
order to obtain these results we also use basic imbedding theorems and interpolation
theory as applied to Sobolev and Besov spaces. Since the latter results are not all easily
accesible, we also give the statements of the required results. In the final section, we
discuss some equations for which the theory is applicable.

2. Existence and Uniqueness of Solutions: The Absorbing Set

Consider the following abstract Cauchy problem on a separable Hilbert space H:

Pu(t) + Qu(t) + Au(t) + Flu(t)) =h (v =) (2.1)

U(O) = Ug, UI(O) = Uuz. (22)

Here A, P and Q are linear (not necessarily bounded) positive self-adjoint operators on
H :; the inverse of A is compact and the domains of these operators satisfy:

D(A) € D(Q) < D(P).

There exist positive constants «, 3, such that

o u | < Q*ul|< B A?ul| for all u € D(A'?) (2.3)

| P2y || < X || QY2u || for all u € D(QY?) (2.4)

We set D; = D(P'/?), D, = D(Q'/?) and denote the dual spaces with respect to
the inner product in H by D_;, D_5 and D_s, respectively. For notational ease we will
use the bracket (u,v) both for the inner product in H and the duality pairing between
the elements of D; nad D_; where i = 1,2,3. F is a nonlinear operator that is defined
on D5 and that maps D3 into D_, in a continuous and bounded fashion. We also assume
that F(.) is a gradient of some functional G(.) : D3 — R and there exists C' > 0 such
that

(F(u),u) — G(u) > =C,G(u) > =C for all u inDs. (2.5)
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Finally, we assume that & is an element of D_5. Let X denote the Hilbert space D3 x D .
We define the inner product on X in the usual way by
((u,0), (w,2)) = (A 2u, AY?w) + (P20, P'/%2).
In the third section we will also need an assumption on the relation between P, Q and
A:PA=AP;QA = AQ on D(A).
A) Existence of Absorbing Set:

For the moment we will assume that the Cauchy problem admits a unique solution
for initial data in X . Later on, we will utilize the apriori estimates obtained in the process
to deduce the existence and uniqueness of solution.

Theorem 1. Suppose that the operators A, P, and Q and the non-linear function F(4)
satisfy all the properties cited at the beginning, especially those given in (2.3), (2.4) and
(2.5), and further assume that the problem (2.1) and (2.2) with initial values in X has a
unique weak solution (see definition 3 below) u(t), t > 0 with the properties

U() S C(R+;D3),Ul(') € C(R+,D1) mLQ,loc(R+;D2)

and for a.e. t >0,

SLW) = T3 1 PP I 4 1l A2ut) |2 +G(u(t) = (hyu)] =
— 1@V (1) |, (2.6)

where y(t) = (u(t), (u'(t))). Then the semigroup S(t),t > 0 (defined by S(t)(ug,u;) =
(u(t),u'(t))) generated by the problem (2.1) and (2.2) is bounded dissipative.

Proof. Let us rewrite the equation (2.1) in an equivalent from as the system

u' =vand Pv' = —Au — Qu — F(u) + h, (2.7)

and consider the Lyapunov like functional defined on X by

Gow2) = 3 | P22 2 45 | A% | 4Glw) — (h,w)

+ n(Pw,2)+ 2 | Q7w P, (2.8)

with (w, 2)eX , where n > 0. Let (u(t),v(t)) be the solution of the system (2.7). Then
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%%(U(t),v(t)) = (PV'(t),v(t)) + (Au(t), v(t) + (F(u(t)), v(t)) = (h,v(1))

+ n(Pu(t), v(t)) + n(Pv'(t), u(t)) + n(Qu(t), u(t))
= (PV'(t) + F(u(t) = h,v(t)) +n || P?o(t) ||*
+ n(PV'(t) + Qu(t), u(?)).

From this relation and (2.7) we deduce that

%%(U(t),v(t)) = — | Q%) II* +n || P/?u(t) |I* —n | A ?u(t) |I?
— n(F(u(?)), u(t)) + n(h, u(t)). (2.9)
Now from (2.9), for some 6,0 < § <7, we have:

%%(U(t)»v(t)) + 6¢n(ult),v(®)) = = | Q2u(®) II? +(n + ) I P 2u() |2 +

+ (on+ ) 1 AV2u(t) 2 —n(F(u(e), u(t)
+ (0= 8)(h,u(®) + 6G(u(D) + nd(Pult), o)
+ 2@ |

Due to conditions (2.3), (2.4) and (2.5), it follows from the last equality that

i¢n( ( ), 0(1)) + 565 (u(t), v(t)) < ~ | Q2v(t) > +(n + g)V 1 QY2u(t) |17
+ (-n+3 )I\ AV () |1 +6[G(u(t) — (F(u(t)), u(®)] + (6 — n)(F(u(t), u(t))
+ (7= 8) | Q2R Il Q2ult) || +né || P Pu(t) Il P2u(t) || + L QV2u() |2

< = QV2u(t) I +(n+ g)V 1 QY2v(t) I* +(-n + ) I A 2u(t) |12

+ nC +B(n—6) | Q2h ||| A Pu(t) |
+ neAB || AY2u(t) ([ @M%u(t) |l

2
O A P (1 (N
6§ 62X\ énB?

B | Qe |

ettt 5) I A 2u(t) ||2 +nC
B*(n —6)? -1/
L | Q™ 2h . (2.10)
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Choosing the numbers ¢ and 7 sufficiently small we get that

d
53 9n(u(®), (1)) + 66 (u(t), v(?)) < K (2.11)
where K depends only on C,\,8 and || Q~*/2h ||2. From (2.11), it follows from

the standard arguments that there exists an absorbing ball B in X . Thus the semigroup
S(t),t > 0 is bounded dissipative. O

B) Weak Solution. Existence and Uniqueness:

Definition 1. W?'(a,b) is the Hilbert space of vector-valued functions v(t) such that
veL?(a,b; D3),v'eL?(a,b; D1) furnished with the inner product ((,)) defined by

b
((u,v)) = / {(P2d/(t), P2/ (1)) + (A Pu(t), AV u(t)) }at

Definition 2 W%(O,T) is the set of functions v such that veW'(O,T) and v(T) = 0.

Definition 3. If ueW'(O,T),u(0) = uo and for every neWL(O,T) the following
equation is satisfied

/0 {=(PY2d(8), P20/ () — (Qu(t), Q%1 (1)) + (A ?u(t), A/ (1))

+ (Fu(®)),n(t)}dt = (h,n(t)) + (P?us, P'?n(0))
+ (Q"?ug, Q"/*n(0)). (2.12)

then we will say that u(t) is a weak solution of the problem (2.1) and (2.2).

Since we have assumed that the inverse of A is compact it follows that the spaces
D(A") defined in the usual way are compactly imbedded in Ds, whenever v < 1/2.
Henceforth, we will use the following short notation for various D(AY norms:

Il v ||ly= D(A”) norm of u.

Theorem 2. Let the operators P, Q, A and F(.) satisfy the conditions (8), (4) and (5).
Suppose also that

| @2 (F(w) — F(v)) l< M(| AY?u ), || AV [ lu—v ||y for allu,v € Dy, (V)
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where M(-,-) : R> — R* is a continuous function, and v < 1/2. Then the problem (2.1)
and (2.2) with ug tn D3,u; in D; has a unique weak solution in the sense of definition
3.

Proof. Let wy,ws, - ,wy, -+ be a complete system of linearly independent elements of
Ds, e.g. the complete system of eigenvalues of A. We define an approximate solution of
the problem (2.1), (2.2) in the form

Z cj(tyws = um(t)

as the solution of the following problem

(Pl/zu::l(t),Pl/zwj) + (Ql/zu:n(t),Ql/zwj) + (Al/zum(t),Al/ij) + (F(um(t),w;)

= (h7w])a] = 1,2,---,m, (213)

um(0) = uom and ul,(0) = uim (2.14)

where ug,, (respectively win, ) is the projection in D3 of ug (respectively uq) onto the
n-dimensional space spanned by wsi,ws, -, w,. According to the Peano’s existence

theorem for ordinary differential equations this problem is locally solvable. In order to
obtain solutions for all finite time, we deduce an a priori estimate on the solutions by
multiplying (2.13) by c}(t) and summing up from j =1 to j = m, we get

@G P2 (0) 7 41 1 A (8) 2 G m ()1 1| @20 (1) =
(hyin (0)) < 5 1| @722 43 1) Qul(6) 1 (215)

It follows that

I P2upy () 117 + 1| A ?um(e) |I°< Cr- (2.16)

The last inequality implies that the sequence of approximate solutions {u.,(¢)}
is bounded in the Hilbert space W1'(0,T'). Therefore there exists a weakly convergent
subsequence which converges to an element u of W'(0,7) in the norm of W1(0,T). It
is clear that this subsequence will also converge in W(a,b) whenever 0 < a < b < T.
Without loss of generality using the same indices for the subsequence, for any a,b such
that 0 < a < b < T, we have

b
/ (I P20/ (@) [P + 1| AY2u(t) |P)dt <
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b .
timint [ {1l P20, (0 17 + 1 A (6) 17}t < Crlb— a)
since a and b was arbitrary it follows that for almost all ¢, 0 <t < T

| P2 0) |2 + || AY2u(t) |P< Cr,

that is,

u'eL>(0,T; D1),ueL™®(0,T; D3).

Now let us prove that for each neL?(0,T; D),

i [ (Fun()n(0)dt = [ (Pt te

m— 00 0

Due to the condition (V) of the Theorem 2 and (2.16), (2.18) we have

/O (F(um(t)) — F(u(t)), n(t))dt

(@]

< My{ /O | um(t) — u(t) | de}/?{ /O | QY2n(t) |7 dey/2

< / 1 QY2(F (um(t)) — F(u(t) = F(u(t))) Illl @'/*n(t) || dt

(2.17)

(2.18)

(2.19)

(2.20)

where the condition (V) on the nonlinearity is used. The space W(0,T) is compactly

imbedded into L?((0,T; D(A)) (see [51] and [52]), therefore

T
/ | wm(t) — u(t) ][3 dt — 0, as m — oco.
o

Hence (2.20) is valid. Now using the standard scheme we can easily prove that u(t) is a
weak solution of (2.1), (2.2). The condition (V) also implies the uniqueness of solutions

as we will see in the next section.

|

431



EDEN & KALANTAROV

3. a-Contractions and Exponential Attractors

We impose another Lipschitz condition on the nounlinearity F in the form

I Q7 *(F(u) = F(v)) lly< M(|| AY?u ||, ]| AY?v |)) || A2 (u—w) |
for all u,v € D(AY?), (W)

where M (-,-) is a continuous function of its vatiables and 7 is positive but very smal in
the applications, see the last theorem of this section. This condition on the nonlinearity
will be only needed on the absorbing set B, i.e. when u and v ranges over a bounded
subset of either D(A'/?) or, if needed, a more regular space, see the applications section.
Let u(t) and v(t) be two solutions of (2.1) and (2.2) with respective initial values, we set

w(t) = u(t) — v(t) for t > 0, (3.1)

then w satisfies the evolution equation

Pwy + Quy + Aw + Flu] — Flv] =0, (3:2)

In H we take the inner product of (3.2) with the function 2(w; + hw), after some
simplification we obtain

d
B (wi,w) +2n | AP || 42(] QY wy |IF = || PY2uwy [1?) < 2(T,wy +1w),  (3.3)
here the energy functional E is defined on X by

E*(w,w) =|| PY?wy |2 + || A0 |2 + || Q2w |2 +2(Puwy, w). (3.4)
It follows from the assumptions (2.3) and (2.4) that if 7 is chosen so that

nAB < 1/2, (3.5)
then the energy functional defined by (3.4) is equivalent to the usual norm on X, more
precisely,

(1/2) || (we, w) [IP< E*(wy, w) < p) || (we, w) || 2 (3.6)

where p = max{3/2,3}. The strategy is to further restrict the size of the parameter 7
to ensure the dissipativity of the energy and then by utilizing the equivalence in (3.6)
establish the a-contractivity of the solution semigroup S(t). The term in the parenthesis
in (3.3) can be estimated from below by (2.3) since for

n\? < 1/2, (3.7)
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it follows that

1 QY 2wy [|* =n [| P we 7> (1/2) || @2wy > (1/252/ || PY2w, |*> 5 | P2, |° .

(3.8)
Hence the inequation in (3.3) results in the inequalities
d
T B (wow) + 2 || Aw || +(1/2) | Q2w ||< 2/(T, wy + nw)| (3.9)
d o 2
— E*(wi, w) 4+ 2nE* (wy, w) < 2|(T, ws + nw)| (3.10)

dt

the differential inequality will be simplified using the assumption made on F. First, to
establish the continuity of the solution semigroup we set

M = M(|| A%u ||, || A0 ) (3.11)
and estimate the right hand side of the inequality (3.10), by

2[1 Q7T Il @2 (we + nuw) ||

2|(T, we + nw)| <
< 2M|[fw fly (I @*wy || + || @"/*nuw ||)
<
<

2M|llw fly (Il @*wy || +n8 || AY?w |)
Bl w [1)? + (1/2) | Q2w ||? +n || AV ?w ||? (3.12)

where k = 2M? + nBM?, with M as in (3.11), hence it follows that

d
S B (wiw) + 0 | Aw ||+ ]| @Y%we |I< k(| w |I,)? (3.13)
Now we choose the value 1/2 for  and utilize the inequality (3.6) to deduce that
d
2B (we,w) + 0 | A0 || + || Q' Pwy ||< 2kE (wy, w) (3.14)
it follows that
E*(wy, w) < exp{2kt} E?(w;,wo) (3.15)

From the last inequality we can deduce various conclusions. First of all, it guar-
antees the uniqueness of solution as stated in Theorem 2, secondly, once the existence
and uniqueness is established we can proceed with the solution semigroup as stated in
the first section and prove the existence of the absorbing set B. Furthermore, we can
use our conditions on the nonlinearity, given in (V), only on the absorbing set B in order
to get an explicit estimate on £ in (3.15), since the norm on X is equivalent to the one
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furnished by E we can then conclude that the solution semigroup is in fact Lipschitz
continuous for every ¢, and the Lipschitz constant can be estimated by

Lip(S(t)) < (2p)"/? exp{kt} (3.16)

Now we will use the stronger condition on the nonlinearity and assume that v <
1/2, this would allow us to utilize the compact imbedding of

W(0,T) — L%(0,T, D(A'?)). (3.17)
Returning back to inequality (3.13) and using (3.6) once again we obtain that

& B wew) + (0 ) Ewerw) < k| w |2 (3.18)

The last inequality when integrated from 0 to to, implies that the solution semi-
group is an a-contraction, hence guarantees the existence of a compact attractor. Let
us remind that since the solution semigroup does not consist of compact maps, we do
especially need the asymptotic smoothness property that is satisfied by a-contractions.
Now let us recall the basic definitions and theorems related with a-contractions, we follow
here the outline given in [26].

Since on a Hilbert space E, a set is compact if and only if it is closed and totally
bounded, the only way a closed set fail to be compact is when it is not totally bounded.
Kuratowski [46] introduced a way to measure the noncompactness of a set by means of a
real valued function defined as

a(A) =inf{d > 0: there is a finite cover of A with open sets of diameter less than d}
(3.19)
Notice that if the Lipschitz constant of the solution semigroup is strictly less than 1, then
all the solutions converge to the unique steady state. Hence the only way to have non-
trivial dynamical behavior is when the solution semigroup fails to be a strict contraction.
The notion of a a-contraction comes into the play at this point:

Definition 4. (see [37]) A continuous map T from E to itself is called an «-contraction
if there exists q,0 < g < 1, such that a(TA) < qa(A) for every subset A of E.

Recall that a real valued function n on E is called a pseudonorm when all the
properties except the one on vanishing norms, i.e. n(z) = 0 no longer implies that z = 0.
We will call n to be precompact with respect to the usual norm of E if every bounded
sequence in (E,|| ||) has an n-convergent subsequence.

The concept of a precompact pseudonorm allows a useful characterization, see [37],
namely,
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Proposition Let B be bounded subset of E and T is a continuous function on E leaving
B invariant , i.e. TB is a subset of B, and satisfying, for some q, 0 < q < 1,

| Tz —Ty ||<qllz—y | +n(z —y) for all z and y in B (3.20)
with n precompact pseudonorm on E, then T is an o-contraction.

If the solution semigroup is an a-contraction on B then the w-limit set of B,
denoted by A, under T' is a compact subset of E, where

A= w(B)=n{cg(T"B): anatural number }. (3.21)

This set remains invariant under 7' and furthermore attracts all solutions in the
sense that the distance of Tz to A goes to zero as n goes to infinity. A is called the global
attractor. Hence in order to guarantee the existence of a compact attractor, it suffices to
show that for a fixed time ¢y the map defined by T' = S(to) is an a-contraction. Going
back to the inequality (3.18) and integrating it from 0 to tq, we obtain that

E?(wy, w) < exp{—nto/u}E* (w1, wo) + /0 i k| w(s) || ds (3.22)

If we choose o such that exp{nto/u) = g < 1, then T = S(ty) is an a-contraction
when H = D(A"), and the compactness of the imbedding given in (3.17) shows that the
pseudonorm introduced by the integral terms is precompact with respect to the usual
X norm. Consequently, we obtain a compact set A that attracts all solutions in the
invariant set B uniformly. A similar argument results in a stronger property of the
solution semigroup, the discrete spueezing property:

Definition 5. A solution semigroup {S(t) : t > 0} is said to satisfy the discrete
spueezing property if there exists to > 0, such that the map defined by T = S(to) satisfies:
there exists an orthogonal projection P of rank M such that for every z and y in X, if

| P(Tz —Ty) |<|| (I = P)(Tz - Ty) | (3.23)
implies that

[Tz =Ty ||<Q/8) |z -yl (3.24)

This property allows one to construct a finite dimensional set that attracts all
solutions at a uniform exponential rate. Such a set is called an exponential attractor and
1s not unique. The argument that leads to this property is exactly paraliel to the one
given for a-contractions, the only difference lies in the fact that the estimates are done
after projecting the equation by I — P to the complement of the finite dimensional space
PX. In the process we finally make use of the assumption that the operators P and Q
cominute with A on D(A).
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Definition 6. A set M is called an exponential attractor for the solution semigroup
{S(t) : t > 0} on the set B if

(i) ACMC B,

(ii) S(¢)M C M,

(11i) M has finite fractal dimansion,

(1v) for every z in B, dist (S(t)z, M) < c; exp{—cat} where ¢; and ¢y are universal
constants.

Theorem 3. (/28], [25], [23]) If the solution semigroup {S(t) : t > 0} satisfies the
discrete squeezing property on B and if the map T = S(to) is Lipschitz with Lipschitz
constant L then there exists an exponential attractor M for the solution semigroup satis-
fying

dr(M) < M max{1,In(16L + 1)/In2} (3.25)
and for all t > 0,

dist(S(t)z, M) < ¢q exp{(—cz/to)t} (3.26)
where ¢; and co are universal constants independent of L,M and tq.

We summarize the results discussed above in the following theorem:

Theorem 4. Suppose that the linear operators P,Q, and A satisfy the properties as-
sumed in Theorem 2, furthermore, we assume that they all commute with the orthogo-
nal projection Py onto the space spanned by the vectors wi,---,wyn, where the vectors
wy, -, WN, -+ form a basis of H. Assume further that the nonlinear term F(u) satisfy
the condition (v) and for each u,v in D3

| Q‘I/Z(F(U) ~ F(v)) ||~r§ Ma(]| u ”1/25 | v ”1/2) | w—v ||1/2,

where Ma(-,-) is a continuous function of its variables. Then the semigroup S(t): X —
X,t > 0, generated by the problem (2.1) and (2.2) has an exponential attractor.

4. Imbedding Theorems and Interpolation Results

Typically, the operator that appears in (2.1) will either be the negative of the
Laplace operator, i.e. —A, or the biharmonic operator, i.e. A? or a linear combination
of these operators with the identity operator, furnished with the appropriate boundary
conditions. In this paper we will only deal with the homogeneous Drichlet boundary
conditions. Therefore, either

A= —A,u =0 on the boundary of Q, D(A) = H*(Q) N H}(Q) (4.1)
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or A= A% u= g—“ = 0 on the boundary of Q, D(A) = H*(Q) N H2(Q) (4.2)

n

It follows that the interpolation spaces that appear in the conditions (V) and (W) are
either:

D(A*/?*) C H*(Q) and the corresponding norms coincide, (4.3)

or D(A*/?) C H?*(Q) and the corresponding norms coincide. (4.4)

Hence in the conditions (V) and (W) one is required to estimate the growth of the
non-linear term on the fractional order Sobolev spaces H*(Q2), where 0 < s < 1/2 (or
0 < s < 1). In addition to the standard Sobolev space theory for fractional orders, (see
for example Adam’s book [1], and Bergh and Lofstrom’s book [11]) we will be needing
the theory of Besov spaces which can be obtained from Sobolev spaces by interpolation.
Here we use the definition given in Bennett and Sharpley [10]:

Definition 7. (Besov Spaces) Let us denote the r'* -order difference operators by
A f(x) = Anf(z) = f(z +h) ~ f(z)forz,h € R

AL f(z) = Dy(A f(=)),r = 1,2,
and denote the modulus of continuity of these differences by
wr(f,t)p = sup || ALf |lp, for fe€LP(R"),t>0,1<p< .
|h|<t

For a > 0,1 <p,g <oo,r >a and r natural number, the Besov space is defined by

By = {f € LP(R™) || f llgg, < +oo} (4.5)

where
IS lBg ,=I1f llp + 11 7 %wr (£, 8)p | Lago,00522) - (4.6)

Theorem 4. (see [11] and [10]) (Imbedding Results)

Let w be a open bounded subset of R"™ with smooth boundary then the following
inclusions are continuous

(i) By ,(Q) S B3l (Q) for s-—
(i) for n > 2s, and q < 2n/(n — 2s
(iii) B34 (Q) C Loo(9).

s1— 25, (1<p<pi <o00,1<q,q1 < 0)

5=
), H5(2) — LY(Q) is compact.
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Definition 8. (Interpolation of Banach Spaces by K-method): Let Ay and A;
be two Banach spaces that are included in another Banach space A. For any element a in
Ap + Ay define a function

K(t,a) =inf{|| ao |4, +t || a1 la,: a0 € Ag,a1 € A1 and a=ap+ a1}

for 0<0 <1 and 1< g < o0, set

(Ao, A1)o,g = {a € Ao+ A1 1 t7PK(t,a) € LP(0, 00, dt/t)} (4.7)

and furnish this space with the norm

lalanann,= ([ oK@ ap )’ (4.

t

The Besov spaces as defined in definition 7 can also be captured by interpolation
of Sobolev spaces:

Theorem 5. (see [11]) (H**(Q), H**(R)), , = B3 ,(Q) where s = (1 —0)so + Qs1.

The Besov spaces which interpolate between the Sobolev spaces have better imbed-
ding properties than the Sobolev spaces that they interpolate. see for example Theorem
4 (iii). Due partly to this better imbedding property they play a crucial role even in the
estimates involving only Sobolev norms. The following results is inspired by a similar
result stated in Chueshov [15, 17] for n = 2:

Proposition 2. Let s > 0,9 > 1 and set a« = s+ (n/2(1 —1/q) and 8 =n/(2q)

| wllge@)< C | ullga@ll v |lusy whenever ue H*(Q) and ve HP(Q).
(4.9)
Proof. We use the fact that H*(Q2) = B3 ,(2) and the Besov-norm on the Sobolev space
H?*(Q)). Let us denote the H*-norm of u by || u ||s, then for p and ¢ Holder conjugate,
ie. 1/p+1/q =1, we have

a2 e | +2/ e {|S|u<rz | Anu[[zeel| v(- + R ||p2a + || Anv [|ped]| u lIsz}
0 t|<

dt
S <clull, v,

Then we use the imbedding of Sobolev spaces into Besov spaces, namely,

438



EDEN & KALANTAROV

B;Q’Q D H* = B;Q’a -n/2=s5-n/2,
and similarly, for o replaced by § and p replaced by ¢, and obtain the desired result. O

Remark 1. We will be making some standard choices for the parameters that appear
in the spaces above. When n = 2, our estimate gives

v ey C [l grieqey - | laresescays  with 3 Cs=1>0, (4.10)

and when n = 3, taking s = 1/q, we obtain that
[ uv =)< C || u lge-2r2@)ll v | gser2q) - (4.11)
Remark 2. It is possible to improve the estimate for n = 2, following Chueshov [17]:

using the fact that H'~%(Q) is continuously imbedded in L2/5(Q), for 0 < § < 1, we
estimate the difference operator in the following way

v [2<] wv |2 +2/ t* {f}lﬁl I At flzee || v(- + h) [[L20 + | Apv || por || v Hqu'}
0 t<

dt
— <O
t

[l v B+ 1w 2. 0

where 1/p+1/g=1=1/p'+1/q , then the idea is to choose the parameters p,p’,q, and
q¢' in an optimal way and combine it with the imbedding theorem of a Sobolev space into
the appropriate Besov space, namely

H'FTsn/2a C B3, 5 for ¢ > 1.
Now one sets, 1/p=0=1-1/q and 1/p' = 1/q — s and obtains that

Fuv llm=< CU vl sl el ez + ] u Il Ml e z) S2C v (sl w llose
(4.12)

We will also need an interpolation result on Lipschitz operators due to Peetre [60
61] and Tartar [67):

2

Theorem 9. Let T be a Lipschitz operator from A; to B;, for i = 0,1 with Lipschitz
constants less than M, and let A = (Ao, A1)e,q and B = (Bo,B1)g,q then T is also
Lipschitz from A to B with Lipschitz constant less than M.
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Remark 3. This result will be used for the particular nonlinear function sinu, although
it is a Lipschitz function from LP to LP for 1 < p < oo, it is not Lipschitz from H'(Q)
to itself for n > 2. Hence it will be necessary to seek Lipschitzianity between different
order Sobolev spaces.

5. Applications and Examples

The framework that is developed in the second and third sections of the arti-
cle applies to a variety of equations. However, the conditions that we impose on the
non-linearity sometimes forces us to work with stronger damping terms than necessary.
Therefore, although we are able to obtain new results in the cases of sin-Gordon equation,
von Karman equations, dissipative Boussinesque equation etc., we are not able to capture
the best results in the three dimensional Klein-Gordon equation and various beam equa-
tions. We refer the reader to specific articles where better results are obtained. Unless
otherwise mentioned all the equations will be complemented with homogeneous Drichlet
boundary conditions on the boundary of an open bounded domain in n-dimension with
smooth boundary, so that all the imbedding theorems apply. Other boundary conditions
can be treated similarly. We will also deal systematically with the homogeneous versions
of the equations, however, the analysis given below easily extends to non-homogeneous
cases where the forcing term h(z) is time independent and comes from the appropriate
space. We will give the details only for the selected applications. In the other applications
one must perform parallel computations. The general references on these equations are
the following books: Lions Ladyzhenskaya, Haraux, Babin and Vishik [6], Eden et al.,
Hale, Temam [68], Gajewski et al [33].

5.1. Nonlinear Klein-Gordon Equation:

g — Au+yuy + f(u) = 0, where f(u) = —Au+ |u|’u, with p >0, (5.1)

In space dimension 3, these equations arise in relativistic quantum mechanics, with
p = 2. The global stability of this equation has been studied by Strauss [66, Theorem
3, p- 150] where it was established that all solutions converge to the unique steady state
u=0 when A =0.

Muszynksi and Makoveckaja [54], Ball [9], Webb [69]; Babin and Vishik [4,5] have
obtained preliminary results on the existence of attractors, later Haraux [39], Ghidaglia
and Temam [35] Ladyzhanskaya [50] have proven the existence of attractors, partial results
on exponential attractors are obtained in Eden et al [2], and in Eden and Milani [20].
Although Webb in [69] has considered only the one space dimensional case, n = 1,
he showed that the trajectories are precompact and his results have paved the way for
further advances in the field. Whereas the asymptotic stability results established in
Makoveckaja and Muszynski [54] did not influence the developments on these equations.
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Another attempt on showing the precompactness of the trajectories was done by Babin
and Vishik [4,5], they were only able to get some weak results in this direction. The first
conclusive result was obtained by Haraux in. Haraux was able to prove the existence of
the global attractor for the range p < 2, in three space dimension. Later, Ladyzhenskaya
in was able to resolve the case of the critical exponent p.= 2,n = 3 for smooth solutions.
The existence of the finite dimensional atractor and estimate of its dimension was obtained
in Ghidaglia and Temam [35], Ladyzhenskaya [50] not including the critical case p = 2.
Babin and Vishik [6] have proved the existence of the finite dimensional attractor in the
critical case. The theory developed in Ladyzhenskaya [48], [50] was used by Kalantarov
[38, 39, 40] and Chueshov [14, 15, 16] to prove the existence of a finite dimensional
attractor for a variety of equations with stronger dissipative terms. Clearly, depending
on the dimension of the space the value of the p that one is allowed to take changes.
For example, in one and two space dimensions there is no restriction on it. However, in
three dimensions p = 2, in contrast due to the strong nature of the conditions (V) and
(W) of our specific framework, we are only able to allow p = 1. However, if we assume
the regularity of the attractor then we can relax this restriction, see Babin and Vishik
[6] for the H? regularity of the attractor. Using the H?-regularity of the attractor, one
can show as in Eden et al [25] that the cubic nonlinearity induces a Lipschitz map both
from L? into itself and from H!' into itself, on a bounded invariant set that contains
the attractor, hence the conditions on the nonlinearity will be satisfied automatically.
Here for illustrative purposes, we consider the two dimensional case with p arbitrary, for
computational convenience we will take p = 2p + 1, with p a positive integer. One only
needs to check the conditions (V) and (W) for the term u?P*!, again using the imbedding
of H'~% into L?/% for 0 < § < 2, we see that on the absorbing set, which is bounded in
H'(Q), the H'-norms are uniformly bounded. Consequently,

J P =P <u = e Y [ u® [lpsall 7 s
a+pB=2p

for 1/¢+1/¢' =1, where we have utilized the imbedding of H'/2 into L* and a Holder
estimate. The terms in the summation sign are all bounded by H'-norm, which implies
that on the absorbing set u?P*! is Lipschitz from H 1/2 into L?. To verify the condition
(W) we proceed to estimate the H®-norm of the difference using the estimate of Chueshov
on fractal order estimates on the products, for n = 2, see Remark 2. If s+ (2p+1), <1,
then by induction on a + G = p, one can prove that

I w=v)@?® 4+ +vP) [gs< Clu=vllm— D N u’ aeer< Collu—v s

here C; is a function of p and M, where M is the bound in H!-norm for the absorbing
set.
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5.2. Sin-Gordon Equation:

Most of the references given for the first equation also applies to this one, the
systems given below are taken from Temam [68].

usr — Au + yuy + sinu = 0, (5.2)

systems of sin-Gordon equations:

U +ug — Au+sinu+ (u —v) = fr and vy +v; — Av+sinv + (v —u) = f;  (5.3)

Ugr + Uy — Au+sin(u + v) = f1 and vy + v — Av + sin(v — u) = fo; (5.4)

Here we only discuss the sin-Gordon equation, similar arguments will apply to
systems given above. Since the non-linearity is mildly behaved we are able to prove the
existence of an exponential attractor in any space dimension, this result improves the one
obtained in Eden et al [25] where the space dimension was restricted to n 3, and regularity
results for the attractor was used. Clearly, f(u) = sinwu is Lipschitz from L2(2) into itself
with Lipschitz constant less than or equal to one. To estimate the difference sinu — sinwv
in higher Sobolev norms, we will use the fact that f(u) is also Lipschitz from L(f2) into
itself. Since © is a subset of R™, the Sobolev space H(™+1)/2(Q) is imbedded into L(2)
only for € > 0. Therefore, we have the following estimate

| sinu —sinv || < || V(u—v)cos || + || (cosu — cosv) 7 u ||

<
S u=vim +llu=viz=llv

since H("9)/2 is imbedded into L, the estimate above allows us to bound the Lipschitz
constant uniformly on the absorbing set, which is a bounded subset of H!(2). Next we
utilize Peetre’s Theorem on the interpolation of Lipschitz operators in conjuction with
the characterization of the interpolation spaces of Sobolev type by the K-method and
deduce that sin is a Lipschitz function from (L2(Q), H"+9/2(Q))g , = H("+)/2(Q) into
(L3(Q),H'(Q))g2 = H?(Q). Choosing § = 1/n, it follows that sin is Lipschitz on the
absorbing set from H'(Q) into H'/™(). Consequently, the condition (W) is also satisfied
for the nonlinearity in any space dimension. To reveal the exact nature of the role of the
space dimension in the estimate of the fractal dimension of the attractor requires finer
analysis that we refrain from doing here.
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5.3. Wave Equation With Strong Dissipative Term:

ugy — Au — aAuy + f(u) = 0, where f(u) is as above. (5.5)

The global stability of this equation was studied by Webb [70], Fitzgibbon [31], and
Massatt [57] mainly for mild non-linearities f. Webb utilized this mild form of the non-
linearity and the strong dissipation to establish the existence of a Lyapunov functional
and proved the convergence to steady states. Whereas Fitzgibbon studied the asymptotic
behavior of a similar equation where the function f is assumed to be Holder continuous
but depends only on the gradient of u. Later on, Massat discussed a more general situ-
ation but he assumed the existence and uniqueness results without proof. The existence
of an absorbing set was discussed in Kalantarov [43] under milder conditions on the non-
linearity f, the existence of an attractor and the estimate of its finite dimensionality is
established in [44] and is mentioned in Hale [37], and later on in more detail in Ghidaglia
and Marzochhi [24]. The existence of an exponential attractor follows from the framework
developed here. The values for p that are allowed ranges between 0 and 4, for n = 3,
and is arbitrary for n =1 or 2.

5.4. The Vibrating Beam Equation:

ugt + 2(@A? + §)uy + Au = f(u), (5.6)

where f(u) =T -Au+p-vVu+k < Yu,Vu > Au+ 0 < Yu,vu; > Au and p and T
are constant vectors in R"™. The global stability of the solutions and the convergence of
solutions to steady states are discussed in Ball [7,8], Hale [37], refers to a preprint of Lopes
and Ceron [53] for the proof on the existence of the attractor, results in similar direction
are also obtained by Chueshov [14], and Eden and Milani [26]. When o is not 0, our
treatment does not apply automatically, since f is also a function of u;, the argument
that will be given for the generalized beam equation will also apply to the case above
when o = 0. The existence of an exponential attractor was established in [26] under
some regularity conditions on the attractor. In our framework we are able to remove this
extra condition on the regularity of the attractor.

(1 —al)uy — (6 — €A)uy + A*u = —[v + 6,u] and A?v = [u, u] (5.7)

where [u,v] = UgaVyy +UyyVsz — 2Uzy sy, (2, y) is from a domain Q in the plane, fe H*(Q)
the constants o and € are assumed to be positive. This model was developed by Morozov
in [58] as a dynamical system its properties were discussed in Aviles and Sandefur [3] the
existence of a finite dimensional compact attractor was first proved in Chueshov [17], the
analysis given in [14] is sufficient to verify that the linear and nonlinear terms satisfy the
necessary conditions. Here we take P =1 — aA;Q = § — €A and A = A?, the Drichlet
boundary conditions on u and its normal derivatives at the boundary of € are set, hence
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D(A) is given as in (4.2). Instead of the condition (2.5) one can directly show the existence
of an energy functional that is decreasing on trajectories. The same functional allows one
to obtain an absorbing set. Here we will only check the two conditions (V) and (W) on
the non-linear term. Let us recall the basic Sobolev estimates on the bracket [,] that are
given in Chueshov [17]:

| fu, V] [|i< C || wll2=gll ¥ l3-145 wherel=1,2,0< 3 <1,
| [u, V] [[—i—6< C || u [l2—p+4l ¥ l3-1-p where!=0,1,0<p5<0<1,

these estimates result in the following estimates:

| QY*(F(w) = F@) || < || [7+6,a] — [v+6,u] ||
S Cllv+8lapllu—1alla—p +C || v =7 |l248] @ ||2-5
< C(M+ | [u,u] |—248) | v — @ [|2—p

+ OM || [u,u] = [@, @] [ 244

where we have used the facts that (i)D(Q~'/?) has the same norm as H~'; (i) the first
of the inequalities mentioned above with | = 1, twice; (74¢)0 is a function in H*, and the
constant M depends on the H2-norms of u. There remain two terms in the last line of
the above inequality that need to be estimated.

1@, @) | -24p=l (@] [ -1-9< C || @ ]|2]| & |l2-p< CM?

and

I (8] ~ 4] l—24p< 2CM || u~ |2

where we have utilized the second inequality above first with # = 1— /3, then taking [ =1
and 6 = § as parameters. The condition (V) for the nonlinear term now follows from
the last inequalities. As for the (W) condition, we again use the second estimate on the
Karman bracket with 8 = 3 and [ = 0:

|7 +8,a —[v+6,u] 15 < C|lu— lall 7+ lls—p +CM | [u,u] - [2,] [|-1-p

< C(M+ [ [@a] |-1-p) fu—all2 +CM || [u - @, u] [|-1-5
+ CM || [u—u,4] ||-1-p

by arguments similar to the previous ones the Lipschitzianity of the function into H?
follows.
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5.6. Generalized Beam Equations:

u” () + aAu(t) + (6 +vA)W () + M(|| AYu(t) |*)Au(t) =0, (5.8)

These equations arise naturally as an operator theoretic version of the similar
equation considered by Ball [8], they were introduced by de Brito [13], where the global
stability and convergence to steady states were established. de Brito assumed that A is a
positive linear self-adjoint operator with compact inverse, and the continuous nonlinearity
M , which is non-local type, is assumed to satisfy M(s) > 3+ ks, and M'(s) > 0, for
s > 0, with 8,k > 0. Here we only assume that k£ > 0, however for our conditions, we
need to impose v > 0, whereas de Brito and Ball deals with v = 0. The latter case was
treated in Eden and Milani [26] under some smallness conditions on the parameters that
are involved. Later on, the restriction on the parameters were dropped in Eden et al. [23].
To apply the theory we just need to take I,6 +vA, aA?, as P,Q, and A respectively.
The energy functional approach allows us to obtain an absorbing set in D(A), with A as
in the equation. The estimates on the nonlinear term are of the form:

| Q7 2(f(w)Au = f(@)Av) || < [£(w) ~ F0)| | /24w || +]f(w) || @ /*(Au - 4v) |
< O A=) |

where f(u) = M(|| A*?u ||?), using the conditions on the function M(-) this verifies (V),
to verify (W) similar arguments results in

I AV2Q72(f(u)Au — f(v)Av) < C || A(u—w) ||
5.7 Dissipative Boussinesque equation:

ugt + A%u + aA%u; — Af(u) =0, (5.9)

with o > 0. The global stability of these equation was discussed in Kalantarov [49)],
where the existence of an absorbing set was also established.

5.8. Dissipative Wave Equation With Strong and Weak Damping:

Ut + Uggrr — QUgzgt + YU — f(uz):c =0, (5-10)

where f(u) satisfies an asymptotic monotonicity condition of the form f(v)v—F(v) > —c.
This equation appears both in the theory of viscolelasticity and in gas dynamics, with
different type of non-linearity f(u). Interesting dynamics is observed when the function
is not necessarily convex. The asymptotic stability of the steady states was discussed
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in Andrews and Ball [2], in Kalantarov [44], where the existence of an absorbing set is
also established. In Nicolaenko [59] the existence of an inertial manifold was claimed for
smooth solutions, later in Eden et al [2,7], the existence of an exponential attractor is
established for less regular solutions.

5.9. Longtitudinal Vibrations in a Homogeneous Bar With Viscous Effects:

Ut — 6A’utt — Au — OtAUt + f(U) = O, (511)

Kalantarov [44] established the existence of an absorbing set for this equation, later
Iskenderov [42] has studied the global attractor and related problems. Here the main
difference is on P(=1 —€A),A= —A and Q = aA, the condition on the nonlinearity is
as in the third equation.

5.10. An Abstract Parabolic Equation:

ugs + A%u 4+ Aug + f(u) =0, (5.12)

Although hyperbolic in the first appearence, this equation can be factored to show
its parabolic nature. The global stability results were discussed by Biler [12], the existence
of an absorbing set was established in Kalantarov [44], the attractor was studied in
Humbatov [41].
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BiR YARILINEER DALGA DENKLEMI SINIFI iCIN SONLU BOYUTLU

CEKENLER

Ozet

Bu makalede lineer olmayan bir dalga denklemi simifinin global ¢ekenleri ile ilgili,
kendi i¢inde bitiin bir derleme veriyoruz. Ozel olarak, bir iistel gekene gomerek,
sonlu boyutlu bir gekenin varligini ve onun fraktal boyutu hakkinda bir kestirimi
ispathiyoruz. Global kararliik ve sonlu boyutlu cekenlerin varligr hakkinda baz
sonuglar kismen Kalantarov [44] ve Eden ve digerleri [25]’de tartigilmigtir. An-
cak birlegtirilmig bir yaklagim kullanarak hem «a-daraltmalar yardimiyla ¢ekenlerin
varligini ve hem de lineer olmayan operator i¢in Lipschitz olma kogulu aracilig ile
iistel cekenlerin ingaasim kolaylagtirmig oluyoruz.
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