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PRODUCTS AND QUOTIENTS OF (p,0)-ABSOLUTELY
CONTINUOUS OPERATOR IDEALS*

Enrique A. Sanchez Perez

Abstract

We obtain a generalization of the ideal M, ,) of (g,p)-mixing operators-in the
sense of Pietsch- as a consequence of the study of the quotients of (p,s)-absolutely
continuous operator ideals Py, -in the sense of Jarchow and Matter-. Inclusions
Pp,o(E, F) C M(q,s)(E, F) are also investigated, specially for the cases £ = C(K)
and F =L,.

The ideal P, of (p,o)- absolutely continous operators -where 1 < p < oo and
0 < o0 < 1— was defined by Matter [6] in order to give good characterizations of super-
reflexivity and other properties of Banach spaces. It is closely related to the ideal of
absolutely continuous operators defined by Niculescu [8], and it was introduced as an
interpolated operator ideal between P, -the ideal of p-absolutely summing operators-
and L -the ideal of continuous operators-using an interpolative procedure ([4], [12]). This
technique was motivated by the characterization of the uniform closure of the injective
hull of an operator ideal proved by Jarchow and Pelczynski [3].

The ideal P, , satisfies intermediate properties between P, and 'P(%,p) -the ideal

of (£, p)-absolutely summing operators- and its description generalizes the case Pp.
The aim of the first section of our work is to study those operators -that we call (¢, p,0)-
mixing operators and we denote M, , »- that satisfy Py ;oM (415 € Py . We obtain
in this way a generalization of (g, p)-mixing operators. The second part of this paper is
devoted to find inclusions between the ideals of (p, o)-absolutely continuous operators and
the ideals of (g, p)-mixing operators. Special attention is paid to operators from C(K)-
spaces and L) -spaces on arbitrary Banach spaces F'. In this study we obtain some
properties of operators belonging to £(L;,F') that factorize through Lorentz function
spaces and spaces of Schatten-Von Neumann classes, that are closely related to a theorem
due to Carl and Defant (see [1] and [2]). In the third section we obtain some results about
products of (p, o)-absolutely continuous operators.

* This research has been supported by a grant of the Ministerio de Educacion y Ciencia.
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0. Background and Notation

Throughout this paper we employ standard Banach space notation. We shall
consider only operators on Banach spaces. E,F and G are Banach spaces and Bg
is the unit ball of E. W(Bg/) is the set of all regular Borel probabilities on Bp in the
weak ™ topology. If (z;) € [,(E), we denote

Wy((x;)) := sup (il <z x > |p>l/p’ Lp((z4)) := (i | @ Hp)l/p

z'€Bg i=1

l1-—o

and  6,,((z;)) = sup (i(|<ri,m'>|1_” | ||0)%)T.

z'€Bg i=1
The following definition is due to Matter.

Definition 0.1. [6]. Let U be an operator ideal and let 0 < o < 1. An operator
T':E — F belongs to U, if there exist a Banach space G and an operator S € U(E,G)
such that | Tz ||<[| = || || Sz || Ve € E. If U is a normed operator ideal and « is
its norm, Uy, is a normed operator ideal with norm infa(S) =7 .

For the particular case U = Py, the following theorem holds.

Theorem 0.2 [6]. For every operator T : E — F, the following are equivalent:
(i) T € P,o(E,F).
(i1) There is a constant C' > 0 and a probability measure . on Bg: such that

1—0o

| Tz ||< C(/ (| <z, 2 >|" |z |]")Tf?du(a:’)) " VzeE.

B!

(iii) There exist a constant C' > 0 such that for every finite sequence z1,---,zn in E

Lz ((T2:)) < Copo((i)).

In addition, the operator norm m,,(T) on Pp.(E,F) is the smallest number C
for which (1) and (i) hold.

Let E be a Banach space and consider u a probability defined on Bg:. We denote
by J, the map E — Ly(Bg/, ) given by Jy(z) =< z,. >, and by N(J,) the kernel of
Jp. We write E, for the quotient space E/N(J,), and || ||, for the quotient norm.

Consider an interpolation couple (Eo,E1)1—51. The norm restricted to Eq is
equivalent to

1nf{z || x; |H—0H x; Hg: in =, x; € EO V1 <73 < Tl}

i=1 =1
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(see [7]). Throughout this paper we use this expression for the interpolation norm, since
we only need its explicit formula for the elements z € Ey.

1. (g,p,0)-Mixing Operators

Definition 1.1. Let T be an operator. We say that T is (q,p,0)-mizing if it belongs
to the quotient operator ideal Mg, 0 1= ’P,I_’;O'Pp,g. We denote by M4 p o) the quotient
ideal norm sup {mp 5(S0T) : 74+ (S) < 1}.

Obuiously, this definition and the following characterization can be adapted to the
case Pp, and Py, when o # v. We restrict our attention to the case o = v.

Theorem 1.2. For every operator T : E — F' the following are equivalent:

(i) T € Mg po)(E,F).

(ii) There is a constant C > 0 such that for each probability measure p on Bp: there
is a probability measure v on Bp: such that

i P 1—0o n
. — l1—0o
inf {Z( [ (<wy > Pl o) ™ aut) T Y- Tx} <
i=1  Brr i=1
- 2 1o n
1—-0o
< C inf {Z(/ (| <z, > || 2 ||0) dv(w')) o Zmz = :z:}
i=1 Bgr im1
Vr e FE.
(i1i) There exist a constant ¢ > 0 such that for every finite sequence 1, -+, X, in E
P
m Sj n 1-o n = 1o
me{Z(Zl <vhu> 1Tl 1) 7 Yy =ij} )?
=1 i=1 k=1 i=1

< Cépo ()7 (k)

In this case, M4, - = inf C, where the infimun is taken over all C' satisfying (ii) or all
satisfying ().

Proof. (i)— (i) If T € M(y,0)(E,F) and p is a probability measure on Bps, the
canonical embedding I : F — F,, — (F,,Lq(t))1-4,1 is (p,0)-absolutely continuous [7]
and hence I,T € Ppo(E,(Fyu,Le(it))1i-0,1).- By theorem 0.2 there exists a probability
measure v on Bg: such that for all z € E
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l1—0o

| IoTz ||< WP,G(IOT)(/ (<o > o)) ™ aue) ? 1)

E!

where || JoTz || is the norm of the element JoT'x of the interpolated space (F,,, Ly(1))1-0.1,
ie.

i=1 B,

|| IoTx H: inf {Z(/ (| < yi,y/ > '1—17 ” Y; ”Z>T~_Udﬂ(y/))% . Zyz — T(E} .
i=1

Just by using the triangle inequality, we find that the second part of (1) can be replaced
by

n

Tp,o(I0T) inf {Z(/ <| <zpx >V |7 )ﬁdy(m'))l—;—z : i:ci = a:}

i=1 By
Now we claim that || ||, in (1) can also be replaced by | ||; consider a representation

Zyi of Tz and suppose that || ;1 [|.<|| y1 ||. For each € > 0 there is an yo € N(J,)

=1
verifying || yo +v1 ||< (1+€) || y1 || Obviously,

g l1-0o

(Fa,, (1 <ot unsy > P w0 17) ™7 dut) ™+

1-g
1—o

(S5, (1< w00 > 1 w0 I7) ™ duy)) © <

=3 7
<(1+e)F (fB (I <yny' > IIZ) du(y’))
n

Thus, it is enough to consider the new representation Zyz + (y1 + Yo) — Yo = Tz. The

1=2
result is obtained by repeating the argument for all 2 < i < n and let ¢ — 0. Finally,
since mg (1) < 1,7p o (I0T) < Mg p.0)(T).
(11)——»(111) Let (yp)n—y C F' and consider the probability measure on Bps given by

B= Z I ys 17 6k) (Z | v [|9)"", where & is the Dirac measure & at the point
/
HyLH Y - Then
m Y n ‘ 1-o n = 1-o
(Zinf{Z(Z|<yf,yk 1yl (17 ) g ;Zy}:ij} ) P
=1 i=1 k=1 =1
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= 1,77((5})) (me{z / |<vly' > 171yl |75 duy’ >)

Zn:yj- =T:c]~}”)l% <
< Clé“’((ym)(i( / I <apa > P g | (@))) 7 < Ol (W)

(iii) — (i) Condition (iii) means that all discrete probability measures u on Bp: satisfy
forall z1,---,z2, C E

(i {Z/ <y > 1 ) Zy]—TwJ} B
< Cbyo((25) )

Since the set of all discrete probabilities is dense in W(Bp/) with respect to the weak
C(Bp)-topology, we only need to verify that the function f()\) defined on Bp: by

Sj

fm::(iinf{z(/ <y > I I ) T ZyJ—TmJ} )7

j=1 i=1 Y Br

is continuous with respect to this topology to see that inequality (2) holds for every
A € W(Bp+). But this holds since fB | <y,¢/ > 7|y |55 dA(y') is continuous for
each y € F.

Hence if S € Py, (F,), theorem 0.2 gives

1e_((SoTz;))
m S5 pd 1-0
< wq,a(s>(2inf{z(/ <y > 01 I duty)) T ZyJ —ij} )7
j=1 i=1 Y Bg
< C7g,0(5)ép,o((25))-
This means that 7, ,(SoT") < Cmy,(T) which completes the proof. G

Definition 1.3. Consider 1 < p < q < oo such that %—l—% = %. For any finite collection
of vectors x1, -+ ,x, € E we set

327



SANCHEZ, ENRIQUE

M(aper (@) 7= inf {1z ((7))8g.0((a9)) : Vi, s = iaf,af € B}

1-o

We are going to use this expression to characterize when a Banach space operator
belongs to Mg ».-)- We need the following lemma.

Lemma 1.4. For every (z;)i, C E,

P 1l—0c
q

m<q,p,a>((mi>>=sup{(§j( /B A<l > 1@ du(@))*) :ueW(BE,)}.

Proof. For every set of factorizations z; = T,;CL‘?, 1 <i<n, and every u € W(Bg')
the following inequalities hold, just by applying Hélder’s inequality with indexes r/p and

q/p-

2 1—0o

(i(/B | <aia’ > |7 @ |7 du(a’)) ") T =

i=1 E'
l1—0o P l1—-o

) (i('”'(/}aw |<ala > (7 of [ du@)) T )TT) T <

1=
n

< (L) T (Z [ i<aba> et = @) T € 1 () (&)

2==1

The other inequality holds in the same way that on proposition [9]16.4.3. using the
set F of continuous convex function as

n

bucl(6)) = 26+ 7F [ <> [l |7 du(e)

i=1 By

defined on

K = {(&) e K™Y € <o 6> o}
=1

where 0 sup(i(/,g <> [ o 5 dpe) ) T
i=1

E/

Zx]

for some ¢ > 0. Taking & = (fBE,| < zpx > |7 @ || d,u(x’)) for each

n
1 < i < n, we obtain ¢,((&)) < 97 and Z&f < 9757, since = 1 and
i=1

328



SANCHEZ, ENRIQUE

A=) = E Sinee the set F is concave and for each Tunetion .. there is an element

r-l-q
(£:) e K qu:"h that ¢, .([£&)) = AT we can apply Ky Fan's lemma (see for mam]}]:

E.4.[8]) in order to obtain an element (£]) € K wrlf:rms 'J:f;.. [(EM) < 875 for all

@y simultaneously. Now, if we define = |.E';’I 7 and ! = 77 'z; the inequality

1 e (7))o ((2]'}) < ¢ holds, using the fact that

L1 - n I—_d
{L| s,z > || 22 |3 = h_mﬂ{'_i:[.f,- bR < > [T |75
=1 =
< 5"

for each * € E' verifying || ' || 1 as can be deduced from oy, ([£])) < A7 | where
by is the Dirac measure at the point x'. This proves the lemma, (

Proposition 1.5. Let T € L(E F). The following tuo statements are equivaleni:

{t) There is a € =0 such that for every () C F,

Mg pe{ (T2 £ Crdy o ((T3))

(it} There is a €3 = 0 such hat for every (2}, C E and (Wi, © F' the follvwing
inequalidy holds

i B 1=

{Z[ZI{TI. ve > [T T [F5) " ) 7 < Cabpo ({2 (0D,
j=] k=]
Moreover, if T wverifies these conditions, inf Oy = inf Cz.

Proof. (i) — (i) Let T € L(E,F). Given g}, 4 € F' we define the discrete
probability g as in theorem 1.2((i#) — (#34)). We obtain in this way an integral expression
of

{E{El <Toush > 0175 17%) )

=1 k=

for every (r; )", . Using the previous lemma the result holds, (i) — (i) Take [x,)7., C
it

E. As in the case {fif] — (i) of theorem 1.2, (Z{f | « Txiyph > |7 || T I,|IL':
= \Ja,
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B, L=F
:.l‘.p] '} " < Cyfipal(zy)) holds for each discrete probability on W(Bg ). The fact that
these probabilities are dense in W{Bp: ] and lemma 1.4 complete the prool, O

Corollary 1.6 Let T € L(E, F). If T verifies {i) {and {1} of proposition 1.5, then
T E "Hl:lr.l'.ﬂ'_l'

As inmediate consequences of the characterization given m theorem 1.2, the follow-
g corollares hold,

Corollary 1.7, Lefl <p<g<r<ccand 0 <o <1, Then MiypmoMpgpa ©
Mirpo-

Corollary 1.B. Let l1<p EmEmeq<oandd<a<]. Then My, 5 €
Mg pa ol

Remark 1.8, Let 1 <p<g<r < oo and U an operator ideal such that Pyald © P,
Consider an operator T e (E F), 0<o <1 and § € Py .(F,G). By definition 0.1,
there exists an Sp € Py satislying || Sy |1<|| v [|7]l Sow ||I*™* for every y € F. Thus

I 8Tz || T |*|| ST "< T I7)| = 7|l STz '~
for every r € £ and 5,T' € T;,. This means that ST € Py .. Hence

HC M, implies WCMig.po)

As an inmediate consequence, if r verifies % = then

1=4
R

.pr '-: M';"F.P] C M{q.p.ﬂ}
A
2. The Inclusion P, .(E. . F) C M ;...

The purpose of this section is to study sufficient conditions to assure P, . (E, F) C
M, (E, F). We obtain special results in this direction in the case £ = C(K) and
E = L. The following assertion gives the best g verilying Py, C My, for every
£ =0 and a fixed o. R

Proposition 2.1. Let p>1, U<eo <1 and € > 0. Then Ppo © Mipsiniiveng Jor
each £ = (0,

Marenver, % = Sl 'I*il' i P C M-:o.pfl} ]
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Proof. By [6] the minimum ¢ satisfying P, , C P, is 2. On the other hand, if

= l—f—% then P, ) C M(s_c Ve > 0. Thus P, C M(p/(o(14¢)),p) for each € > 0.

p q
Since M, ) C Pgpy if % = %—F 5, if we take a s > p/o then P,, C 73(___671,) a
contradiction. a

There are many examples of Banach spaces F such that this inclusion is satisfied
for € = 0. For example, if either F' € space (M(p/o p)) or E € space (M0, (see [9]
for notation) then Py, (E, F) C M0, (E, F) is easily verified.

Even equality is available in certain cases:

Let 1 < p,q < oo with % = |§—% . Carl and Defant proved that £(I1,1,) = M4 1)(l1,1,)
for these p and ¢. This also means that £(l;,L,) = Mg,2)(L1, Lp), since M,y C
Mg, 2 [9]. on the other hand, Matter obtained the equality £(Li,L,) = P2 ,(L1,L,)
for i < p < 1=, (Theorem 9.1.(i) [6]). In particular, this means that P, ,(L;, L,) =
M(2/U,2 (L1, L, )

An application of proposition 2.1 to another results of Matter allows us to obtain
the following corollary about operators on L; factoring through spaces of Schatten-Von
Neumann classes S, , and Lorentz spaces Ly, ;. It holds just by applying 2.1 to theorem
9.2 of Matter [6] and Grothendieck’s theorem.

Corollary 2.2. Let F a Banach space, p,g <1 and q < o <1 such that 1+6 <p,g<

170. Suppose that T' € L(Ly,F) admites a factorization T = Ty0Ty through B = Lyq
or Sp 4 verifying Ty € P2(B,F). Then T € P1(L1,F).

However, the inclusion Pp,(C(K),F) C M(,/0p) does not hold for the general
case. The following proposition characterizes those Banach those Banach spaces F' such
that the inclusion

P1o(C(K),F) C (M, (C(K),F) holds.

Using this result we find a Banach space F' such that inclusion is not true.

Proposition 2.3 Let F be a Banach space and K compact set. The following assertions
are equivalent for 0 < o < 1.

(Z) Pl,U(C(K)7F) C M(l/a,l)(C(K)’F)'
(ii) P 1) (C(K),F) =P_(C(K),F).

(iii) For every Banach space G and every T € L(C(K),F), if T verifies that there is
a probability measure A on K such that there exist a factorization T = TyoTol
where I is the canonical injection C(K) — L 1(), T ¢ L(L 1_1(N),F) and

Ty € PL(F,G), then T € Py(C(K),G).
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Proof. (i} — (ii) For every Banach space F, My, iC(K),F) = 'P._!_ (CTRY. EY
holds (see [2] ex. 32.3). If Py 4{C(K), F) C M101)(C{K), F) then (ii) holds, since for
C{K)-spaces P, _1_ ,,(C(K), F} =P o [C(K), F) is satisfied (see [7] and [11]). (i) — (1)
The inclusion PT!TI:E{H‘,I,F:I C 'Prrh_ul:ﬂ{fl.",l,F] and (i) imply (i}. (i) — (i) By
{iv) of theorem 2.4 of |11], Tol € Py (C{K), F), and every R & Py o CLE), F) can
be factored in this way., ©n the other hand {111) means that R = Tol also belongs to
Mipa ) (C(K), F) a

Observe that (i) — (i) holds for every space E, and not only for £ = C[K].

Counterexaple 2.4 The equality (i) is not valid for all F. Let F = L,([0,1]) for
p = l—l—u > 2 and E = L.([0,1]}. Then by theorem T of [3], L(E,F) # “F'I_E?[.E'.F_:I.
However, by a theorem of Orlice, Z(E, F) = 'p[r_i?.t:u{E~F} (see e.g. 22.6.2 |9]).

Remark 2.5. Consider the canonical map J,, @ E, — [E,, LB, p)h—q for a
given probability p defined on Bg. The canonical inclusion J, @ E, — L,(Bgu)
is p-absolutely summing and thus J, € M . Obviously the identity map of E, s
eontinuous and thus belongs to L(E, E, ) = M n(E., E,). Taking 5 = pfa, 5, = p
and 8; = co, and applving 20.1.13 [9] we obtain that

"'Ff"‘*“' = "HI:I'J'IHI':l[EJ‘-' LF{BH' ' P‘]}]—ﬂ'-..' ]'

This implies that for every couple of Banach spaces (E, F), PpalE, F) € Mipiem(E. F),
a contradiction. These arguments show that there is a flow in [8] 20.1.13. However, there
iz no problem with the application of proposition 20.1.13 in the proof of theorem 20.1.15
[9], since 20.1.13 is only used there for the case Fo = Fy = F,

3. Products of (p, o}-Absolutely Continuous Operators.

The following proposition extends in a certain sense the classical Pletsch result
about products of p-absolutely summing operators [9]: PeoP, C By 0f L = jlt+ % and
p.g.r 2 L
Then

Proposition 3.1. fef 0 < o<1 and 1 < r.p.g < oo such that 1r =4

141
n e

’Pq.,uu?:'mﬁu‘ﬁfp Jor each e =0

Moreaver, this inclusion is alse valid for € = 0for couples | E, F') of Banach spaces which
safisfy Ppo(E,F) C MpiopmlE, F).

Proof. If # =10 then ‘Pm}’—.: = £ aml nothing is to prove. I & = 0, proposition 2.1
and remark 1.9 give the regult.
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Finally, we give some results for the case £ = C(K). - a

Proposition 3.2. Let 1 <r,q < oo such that % = %—1—%, e>0and 4+ —2—,=1.
1l—0c

(%)’
The following inclusions hold for all compact K and for all couple of Banach spaces

(F, G).

i) Pa_o(F, G)oPps(C(K),F) CP_rte0(C(K),G)

i1-o

it) P(l_f_q)/_e’a(F,G)OPP,U(C(K),F) C P ,(C(K),G).

Proof. P (C(K),F) C Ppo(C(K),F) C ﬂPlrd+e(C(K),F) are satisfied (see [6]
€>0
5.2). This means that the inclusion

P%(Fa G)OPP,G(C(K)’F) cP :0+€(C(K)’G)

1

holds, and by remark 1.9, i) holds.
On the hand, since for each € > 0

Pp,o(C(K),G) = P2 1)(C(K),G) C M((_2_y_c1)(C(K),G)

(see [10], [11], [6] or [7], and [9]), we also have the inclusion ii) just by an application of
remark 1.9. O
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(p,0) MUTLAK SUREKLi OPERATOR IDEALLERIN CARPIMLARI VE

BOLUMLERI UZERINE

Ozet

Bu makalede A. Pietsch in tanimladigi M, ,,) operatdr ideallerin bir genellegtirilmesi
tanimlanim, bu kavramin gesitli uygulamalarn ele alinmistar.
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