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DENSENESS

C. W. Baker

Abstract

A function is defined to be hardly open provided that the inverse image of each
dense subset of the codomain that is contained in a proper open set is dense in the
domain. This form of weak openness is shown to be strictly between near feeble
openness and somewhat openness. Characterizations and properties of hardly open
functions are presented.
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1. Introduction

The fact that open mappings inversely preserve dense sets has recently been used to
develop weak forms of openness. In [2] Frolik developed feebly open functions which are
surjections that inversely preserve dense sets. Gentry and Hoyle [3] dropped the surjective
requirement of feeble openness and studied the resulting condition under the name of
somewhat openness. Recently Jankovic and Konstadilaki-Savvopoulou [3] introduced the
notion of nearly feebly open functions which are characterized by having dense inverse
images of open dense sets. The purpose of this paper is to introduce a weak form of
openness based upon denseness that is between somewhat openness and near feeble
openness.

2. Preliminaries

Throughout this paper X and Y denote topological spaces with no separation
axioms assumed unless explicitly stated. For a subset A of a space X, the closure,
interior and boundary of A are signified by CI(A), Int(A), and Bd(A), respectively. A
set A is called condense (nowhere dense) provided that Int(A) = ¢(Int(Ci(A)) = ¢) and
A is said to be semi-open [4] if A C CI(Int(A)).

Definition 1. [3]. A function f: X — Y is said to be somewhat open provided that if
U is a nonempty open subset of X, then there is a nonempty open subset V of Y such

that V C f(U).
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We also shall use the following obvious characterization of somewhat openness.

Theorem 1. A function f : X — Y is somewhat open if and only if for every

A C X, Int(A) # ¢ implies that Int (f(A)) # ¢.

Definition 2. [3/. A function f : X — Y s said to be nearly feebly open if
Int(CU(f(U))) # ¢ for every open subset U of X.

3. Hardly Open Functions

In [3] Gentry and Hoyle showed that a function f : X — Y is somewhat open
if and only if for each dense subset A of Y, f~!(A) is dense X. Similarly, Jankovic and
Konstadilaki-Savvopoulou [4] characterized nearly feebly open functions as those functions
for which inverse images of open dense sets are dense. With these characterizations in
mind we make the following definition.

Definition 3. A function f : X — Y is said to be hardly open provided that for each
dense subset A of Y that is contained in a proper open set, f~'(A) is dense in X .

Obviously hardly openness is between somewhat openness and near feeble openness.
The following examples show that it is strictly between these two conditions.

Example 1.

Let X be any set with two or more points , D, the discrete topology on X, and
I, the indiscrete topoloy on X . Since there are no proper open subsets of (X,I), the
identity mapping f : (X, D) — (X, I) is vacuously hardly open. However, since f~! does
not preserve dense sets, f is not somewhat open.

Example 2.

Let X = {a,b,c} have the topology 7 = {X,¢{-, |}} andlet f: X — X be given
by f(a) = ¢, f(b) = b, and f(c) = a. Since f~! preserves the denseness of {a,b}, the
only proper open dense set, f is nearly feebly open. However, since f~!({a}) fails to be
dense, f is not hardly open.

For T,-spaces every proper set is contained in a proper open set. Therefore we
have the following result.

Theorem 2. If Y is a T -space, then a function f: X — Y is hardly open if and only
if it is somewhat open.

Theorem 2 can be strengthened by replacing the T} -requirement with the following
weaker condition.
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Definition 4. [6]. A subset A of a space X is said to be g-closed provided that CI(A)
C U whenever U is open and A C U. A space X is called a T% -space if every g-closed
set is closed.

The following result due to Dunham [1] provides a useful characterization of Ty
-spaces.

Theorem 3. [1]. A space X is a T% -space if and only if every singleton set is either
open or closed.

Theorem 4. If Yisa T% -space, then a function f: X — Y is hardly open if and only
if it is somewhat open. ’

Proof. Assume f: X — Y is hardly open. Let A be a dense subset of Y. Suppose
y €Y — A. Since A is dense, Int(Y — A) = ¢ and therefore {y} is not open. Since Y is
a Ty -space, {y} is closed. Therefore A is contained in the proper open subset Y — {y}

and, since f is hardly open, f~1(A) is dense in X. |

3. Characterizations of Hardly Open Functions

The first theorem of this section characterizes hardly open functions in trems of
codense sets.

Theorem 5. A function f: X —Y is hardly open if and only if Int(f~(A)) = ¢ for
each set A CY having the property that Int(A) = ¢ and A contains a nonempty closed
set.

Proof. Assume f is hardly open. Let A C Y such that Int(A) = ¢ and let F
be a nonempty closed set contained in A. Since Int(A) = ¢,Y — A is dense in Y.
Because F C A)Y — A CY — F # Y. Therefore f~1(Y — A) is dense in X. Thus
X = Cl(f~/Y(Y — 4)) = CUX — fY(A) = X — Int(f"1(A)) which implies that
Int(f~1(4)) = ¢.

For the converse implication assume that Int(f~*(A)) = ¢ for every A CY hav-
ing the property that Int(A) = ¢ and A contains a nonempty closed set. Let A be a
dense subset of Y that is contained in the proper open set U. Then Int(Y — A) = ¢
and ¢ #Y —U C Y — A. Thus Y — A contains a nonempty closed set and hence
Int(f~2(Y — A)) = ¢. Then Int(f (Y — A)) = Int(X — f~1(A)) = X — CI(f~1(4))
and hence f~1(A) is dense in X. m]

Corollary 1. If f: X — Y is hardly open, then for each closed codense set A, f~1(A)
is codense.
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Corollary 2. If f: X — Y is hardly open, then for each open set V C Y, Int(f~1(Bd(V))) :
& -

It seems reasonable that hardly open functions should be characterizable in terms
of noncodense sets in much the same way as nearly feebly open functions and somewhat
open functions. However, we shall see that this type of characterization holds only for
surjective hardly open functions.

Theorem 6. Let f : X — Y be a function. If Int(f(A)) # ¢ for every A C X
having the property that Int(A) # ¢ and there exists a nonempty closed set F for which
f~Y(F) C A, then f is hardly open.

Proof. Let B C U C Y where B is dense and U is a proper open set. Let
A=f"Y(Y—B)and F=Y —U. Obviously f~}(F)=f"1(Y-U)C f~}(Y -B) = A.
Also Int(f(A)) = Int(f(f (Y — B))) C Int(Y — B) = ¢. Therefore we must have that
¢ = Int(A) = Int(f~*(Y — B)) = Int(X — f~1(B)) which implies that f~!(B) is dense.
It follows that f is hardly open. O

Theorem 7. If f: X — Y is hardly open, then Int(f(A)) # ¢ for every A C X having
the property that Int(A) # ¢ and f(A) contains a nonempty closed set.

Proof. Let A C X such that Int(A) # ¢ and let F' be a nonempty closed set for which
F C f(A). Suppose Int(f(A)) =¢. Then Y — f(A) isdensein Y and Y- f(A) CY - F
which is a proper open set. Since f is hardly open, f~1(Y — f(A)) is dense in X. But
7YY -f(A)) = X—f"*(f(A)) and hence Int(f~1(f(A)) = ¢ It follows that Int(A) = ¢
which is a contradiction. o

Theorems 6 and 7 are reversible provided that f is surjective. Thus we have the
following characterizations for surjective hardly open functions.

Theorem 8. If f: X — Y is surjective, then the following conditions are equivalent:
(a) f is hardly open.

(b) Int(f(A)) # ¢ for all A C X having the property that Int(A) # ¢ and there exists
a nonempty closed set F CY such that F' C f(A).

(c) Int(f(A)) # ¢ for all A C X having the property that Int(A) # ¢ and there exists
a nonempty closed set F CY such that f~(F) C A.

Proof. (c¢) = (a) Theorem 6.

(a) = (b). Theorem 7.

(b) = (c). Since f is surjective, f~!(F) C A implies that F C f(A). O

The next theorem characterizes semi-continuous, surjective, hardly open functions.
Recall that a function is semi-continuous [5] provided that the inverse image of each open
set is semi-open.
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Theorem 9. If f : X — Y is a semi-condinuous surjection, then the following
conditions are equivalent :
(a) f is hardly open.
(b) If A CY contains a nonempty closed set and Int(A) = ¢, then Int(f~1(A)) = ¢
and f~1(A) contains a nonempty nowhere dense set.
Proof. (a) = (b). Let A CY such that Int(A) = ¢ and let F be a nonempty closed
set such that F' C A. Since f is semi-continuous, f~}(Y — F) is semi-open and hence
fHY = F) C Cl(Int(f~"(Y — F))). Then X — f~Y(F) C X — Int(CI(f *(F))) and
therefore Int(CI(f~'(F))) C f~Y(F) C f~!(A). Since f is hardly open, Theorem 5
implies that Int(f~'(A)) = ¢ and therefore Int(CI(f~'(F))) = ¢. Thus f~(F) is
nowhere dense and since F' # ¢ and f is surjective, f~1(F) # ¢.

(b) = (a). Follows from Theorem 5. a

4. Additional Properties

Theorem 10. Let f: X — Y be a bijective hardly open function. If Cis a closed subset
of X such that f(C) is contained in a proper open set, then f(C) is contained in proper
closed set.

Proof. Let C be a closed subset of X and V', a proper open subset of Y for which
f(C) C V. Since f is surjective, ¢ #Y —V C f(X — C). Thus f(X — C) contains a
nonempty closed set. Since Int(X —C) # ¢, Theorem 7 implies that Int(f(X —C)) # 6.
Since f is injective, f(C) CY — f(X —C) CY — Int(f(X — C)) and therefore f(C) is
contained in a proper closed set. O

The proofs of the next two theorems are straightforward and are omitted.

Theorem 11. If X = AUB and f: X — Y is a function for which both flJA: A —Y
and f|B: B —Y are hardly open, then f: X — Y is hardly open.

Theorem 12. If f : X — Y is hardly open and W is an open subset of X, then
f/W W —Y is hardly open.

The following example shows that the restriction of a hardly open function is not
in general hardly open.

Example 3.

Let X be any space with a dense set B contained in a proper open set and A, any
nonempty set disjoint from B. (For example, X = R,B = the rationals, and A= the
irrationals.) The identity mapping f : X — X is hardly open (in fact open). However,
fIA: A— X fails to be hardly open because f|;'(B) = BNA = ¢ is certainly not dense
in A.
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YOGUNLUGA BAGLI ZAYIF ACIKLIK KAVRAMLARI

Ozet

Bir fonksiyona, eger agik ve kompliman bog olmayan acik kiimeler icinde kalan
ve yogun bir kiimenin ters goriintiisii olan kiimeler o acik kiimede yogun ise, zayif
acik denir.

Bu makalede zayif agik fonksiyonlarin gesitli karakterizasyonlar: verilmistir.
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