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Abstract

We show how it is possible to put different stability types such as Routh- Hurwitz
and Schur-Cohn on common grounds by establishing direct links between them. In
the process, we obtain natural and elegant extensions of both Pascal’s rule and the
binomial theorem, which prove useful in establishing our main results.
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1. Introduction

A linear system of differential equations is said to be Routh-Hurwitz(Schur- Cohn)
stable if and only if all of its eigenvalues lie in the left half of the complex plane (within the
unit circle). The problem of locating the eigenvalues of a system of differential equations
has fascinated mathematicians for decades, and the literature is full of ingenious methods,
analyses of these methods, and discussions of their merits. Over the last Forty years or so
they had tremendous impact on various areas of control theory. In case of real systems,
the theory of stability is well developed. These are results which mathematicians and
engineers are familiar with and they can be readily applied to theoretical problems in
differential equations and linear algebra as much as to practical problems in electrical
engineering and electronics, see for example [4], [6], [11] and [13] to mention just a few.
The case of complex coeflicients has received much less attention in the past, but recently
a flurry of results has been reported, among many others see [1], [2], [5], [7], [9] and [14].
AMany fresh attempts were made to put stability criteria of different natures such as Routh-
Hurwitz and Schur-Cohn on common grounds, by invoking the intimate relationships that
might prevail between these various stability types, for some very recent works in this
direction see [3]. [ 8], [10] and [12].

This paper is basically a contribution to the mainstream of bringing together these
two important types of stability. It is structured as follows: In section 2 we give the
necessary definitions and notations. In section 3 natural extensions of Pascal’s rule and
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the binomial theorem are obtained which are then applied in section 4 to prove the main
results.

2. Definitions and Notations

By induction, define the following sequence of sets:

for all n > 1, where for any positive integer j, z; is a real or complex number.
A j-subset of Z(™ is a set consisting of j elements of AL having different
subscripts. C](»"') denotes the set of all j-subsets of Z(™).

H1<k< (7;) where (?) is the binomial coefficient, let P;,?) be the product

of all j elements of the k** subset of C’;m

()

Let Sj(»") = Z P](:) forj=1,...... ,n, and Sé") =1foraln>1
k=1
Forany 7 =1,...... ,n,let w; = 23 which is equivalent to z; = % Similarly,
let W) = {wy,way...,...,wy}, and let D;n) be the set of all j-subsets of W) . If

1<k< (?) ,QEZ). denotes the product of all j elements of the k** subset of Dj(-n)

n

A given linear system of differential equations is said to be Routh- Hurwitz (Schur-
Cohn) stable if and only if all its eigenvalues lie in the left-half plane (inside the unit
circle).

If Ais an n x n real or complex matrix, and X(¢) is an n- dimensional column
vector function of t,let X’ = A-X be a system of differential equations, with eigenvalues
21522y e nn ,2n. Then the characteristic polynomial of this system may be written in
both factored and expanded forms as follows:

f(z) =1lj=1 (2 = 25) = X"j_g a;2"7 where ag = 1 by definition. Similarly if X’ = B- X
is a system with eigenvalues wi,wa,...... ,wy, (where wj is related to z; of the previous
system by w; = Z—:), then its characteristic polynomial is
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n n
g(w) = [J(w-w;) = > bjw" I, with by = 1.
J=1 j=0 '

3. Basic Results

The following results are needed later.

Lemma 3.1 S](-n) + 5;71)1 “Zpl = S](.nﬂ) forall =1,...... 1.

Proof. If 1 <j<mn,let C = Cj(f)l X {zn+1} be the cartesian product of the two sets
C?y and {z,41}.

It {@}i(_z - 1>

in a one-to- one correspondence with the set ¥ = {qﬁl U{znt1}i=1,...... , (j ﬁ 1) },

is the family of all subsets forming C'j(-T_L)1 , then it is clear that C' is

and card C = card® = <
X.

- 1) where card X denotes the number of elements of a set

Now (Cj(-n) U®) C C](.nH) and CJ(n) N® = @, since no j-subsets of Z(™ contain
Zn+1- Hence

card(C(.n) Uud) = cardC'™ + card® = [ " +(." =(" + 1 = cardC™ TV
! ’ J J—1 J 7

Therefore C’J(.”) ued = C](”+1), from which it follows automatically that SJ(") +
SJ(-T_L)1 S Zpyl = SJ(.nH) forall j=1,...... JT. O

Lemma 3.1 is an extension of the famous Pascal’s rule.

Theorem 3.1

f(z) =Y (~1) sz

Jj=0

Proof. We proceed by induction on n. z —2; = z — S{l), hence our proposition is true
for n=1.

n

Suppose f(z) = Z(—l)jS](-”)z”_j then

Jj=0
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n

(@) (2 = zngn) = D (1) SFV2" I = N (1Y Sz, but

3=0 7=0
Z(—-l)jSJ(vn)z"—jan = Z(—l)j-lSJ(-i)lz”_j“an + (—1)”5&:1) since
j=0 j=1
Sffﬁl) =S . z,41. Hence

f(2) (2= 2zng1) = Lty Z(_l)jzn—j—é—l(sgn) + SJ('Tl)lzn+l) + (_1)n+157(11—;1)

=1
n+1 A

= Z(—l)JSJ(»"H)z”_J“, by lemma 3.1 and the proof is complete.
=0

Theorem 3.1 is an extension to the well-known binomial theorem. The following is
now clear,

Corollary 3.1 S](»n) =(-1)a; and T](") = (—1)7b; forall 5=0,1...... \ 0.

The intimate relationship between Routh-Hurwitz and Schur-Cohn types of stability could
best be expressed by the following:

Theorem 3.2 The system X' = A- X is Schur-Cohn stable if and only if X' = B- X
18 Routh-Hurwitz stable.

Proof. Suppose z = if—g or equivalently w = jjri where z and w are complex numbers.

The following relationships can easily be established

w+w = 2|(sz_1_!§) and z-Z2—-1= %Z—g, from either of which it follows that |z| < 1 if
and only if Re w < 0. O

4. Routh-Hurwitz in Terms of Schur-Cohn

If r and s are non-negative integers, define:

S _ #-'—1‘)' ifSZT’
r 0- ifs<r

For technical purposes we also define:
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(:1) =1 and (_81> = 0 for any integer s > 0.

If X'=A-X and X' = B-X are the two systems defined in section 2 with their
corresponding characteristic polynomials, the

Theorem 4.1

" &G min r -1 -t
>3y e (1) (1 ) e

__ t=0s=07r=0
by, =

n

t ift<p
n—t ift>p

(5)
p QU”

k=1 pk *

forallp=1,...... ,n and where t' = {

Proof. Let 1 < p <n. By corollary 3.1 (=1)b, =)

r=1

We bring all terms Q;’i) for1 <k< (Z) to a common denominator D, = [['_, (z,+1).

Call N, the numerator, hence (—1)Pb, = g—i A typical element in the sum appearing in
N, is

‘= { H2:1(Zr —1)- ngpﬂ(zs +1) ifp<n
p II_.(z—1) ifp=n
All elements of N, can be produced from ¢, by considering all possible positions of the
p minus signs of t, into the n factors of ¢,. It is clear that the constant term in N, is

(-1)P (Z’) and

n

Dp=> (-1)a,.

r=0

Let 1 <t < p. We propose to calculate the coefficient of

(7)
n t
St( ) = Zk:l

If we consider the product of any ¢ factors choosen from the set {z. — 1,1 < r <
ptU{z;+1,p+1<s<n}if p<n and from the set {z, —1,1 <7 <n} if p=mn, this

Pt(: ) appearing in N,,. But first we note the following:

product clearly shows up in exactly Z _z of the elements forming N,. This leads to

the fact that the arrangement of the factors in such products is not significant. Therefore
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all P for 1 <k< ™) have the same coeflicient, which is that of s Hence, it
tk t t

suffices to calculate the coefficient of Pt(ln ) where naturally Pt(ln ) = | J

Next we explain our strategy in producing all terms of N, from ¢,: As a first step,
consider the terms of N, corresponding to all possible positions of the (p—t) minus signs
into the (n —t) different positions indicated in

- I Ge=1- J] Gm+1),

t

= H(ZJ

7=1 k=t+1 m=p+1
N—————
p—t
N — >
v
n—t

where we suppose ¢ < p < n. If ¢y is the coefficient of Pt(ln ) calculated among these

terms, then ¢y = (—1)P~¢ (Z::) . Thecasest<p=n,t=p<mnand t =p=n lead
to the same conclusion.

Next we go back to t, and consider the block of (p — ¢+ 1) minus signs appearing
in the product [[%_,(zx — 1) of ¢, which we shift one step to the right to get to the

position:

p+1
H(zj—l )-(ze+1). ] (e —1)- H (zm + 1). (1)
k=t+1 m=p-+2
p—t+1

n—t
Then consider the terms which arise from all possible positions of the (p —t + 1) minus

signs into the (n —t) factors shown in (1). If ¢; is the coefficient of Pt(ln ) calculated
_ (1t n—t
among these terms, then ¢; = (—1) (p it 1) .
In general if 1 < s < ¢, shift the block of (p — ¢ + s) minus signs of the product
[Ti—i—s;1(zx — 1) one step to the right to obtain the position

t—s p+1
H(zj — 1) (2t—s41 + 1). H (zx — 1) H (zm +1). (2)
Jj=1 k=t—s+2 m=p+2
N———
p—t+s

n—t4+s—1

Let ¢y be the coefficient of Pl(t") calculated among the terms of N, which correspond
to all possible positions of the (p —t + s) minus signs into the (n —t + s — 1) different
positions shown in (2).
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r—1 p—t+r
We proceed by induction on s. Our claim is-true when s = 1. Suppose it is true
for s where 1 < s <t. In t,, we move the (p —t+ s+ 1) minus signs appearing in the
product []%_, .(zx — 1) one step to the right. So we are in the position:

We claim that ¢ =Y o_ (—1)P~*" (S B 1) ( n-t ) for all 5,1 <s<t.

t—s—1 p+1 n
II G-1-Gt1)- [ @G-D- J] Gn+D. (3)
j=1 k=t—s+1 m=p+2
p—t+s+1
n—‘;—}—s
p+1 p+1
Since H (2t — 1) = (2t—s541 — 1) - H (2k—1), the product
k=t—s+1 k=t—s+2
p+1
H (zx—1) corresponds to shifting in ¢, the (p — t + s) minus signs showing
k=t—s+2
P
up in the product H (zk—1) one step to the right to get the position already shown
k=t—s+1

in (2). If ¢, as defined above, then by our induction assumption

=S () ()

p+1

Once this done, we go back to H (z,—1) in (3) and shift the(p—¢+s+1) minus signs
k=t—s+1

one further step to the right to get the position:

t—s—1 p+2 n
Il G-V -G+ -G+ [I @G-D. [[ Gut1 @
Jj=1 k=t—s+2 m=p+3
p—t+s+1
n—tIs~1

Call ¢/ the coefficient of Pt(ln ) calculated among the terms of NV, corresponding to all
possible positions of the (p — ¢ + s + 1) minus signs into the (n — ¢+ s — 1) different
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positions shown in (4). If we compare (4) to (2), we realize that in (4) we are dealing with
the product 217 —t- s+0(zk — 1) whereas in (2) we dealt with [J2F;_ S+2(Zk —1). therefore
we may obtain ¢, by replacing p+1 by p+2 or equivalently p by p+1 in ¢,;. Therefore

/o - _1\p—t+r+1 s—1 n—t
CS*;( b (r—1> (p—t+7’+1)

It is clear that cs41 = ¢5 + ¢,. Hence

o e () (ot o3 (1) (3
e () (e () ()
+ Sii(—l)p_t+r+l( j:i ) ( Z:;+T+1 )+(_1)P—t+s+1( z:i ) ( ;::+s+1 )
r=1

St (3) (53 P [ )] ()

—t+s+1 S n—t
+ (P (s)(p—t+s+1)
. s—1 s—1 s e .
Since ( . >+ (r—l) = <r> and by shifting indices, we get

s+1
_ _q\yp—t+r [ S n—t . .
Csy1 = Z( 1) ( r_1 ) ( p—t4r ) proving our claim.

=1
The coefficient of S (n) is therefore

Yo = ot () ey () (570 )

s=0 s=1r

-y () (000 )

5=0r=0

Now let p+ 1 <t < n and reconsider
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n

to=[1G -0 [ G+ J] Gm+1), (5)

j=1 k=p+1 m=t+1

t—p

t
where we suppose t < n.

Again we propose to calculate the coefficient of Sf”). First consider all terms
of N, arising from all possible positions of the (¢ — p) plus signs into the ¢ different
positions shown in (5). Let ¢, be the coefficient of Pt(ln ) calculated among these terms,
then ¢f, = ( ; _ ) . If t =n, we are clearly lead to the same conclusion.

In general if 1 < s <n—t,in (5) above we shift the block of (t —p+ s) plus signs
of the product Hf;; +1(2x + 1) one step to the left to get:

p—1 t+s—1 n
G -0 J] Ge+D) - (zes -1 J[ Gm+1). (6)
j=1 k=p m=t+s+1
L. t_p+s -
t4s—1

If ¢, is the coefficient of Pt(ln ) calculated among all terms of NV, corresopnding to
all possible positions of the (t — p + s) plus signs into the (¢t + s — 1) different po-
sitions shown in (6). By an induction similar to the previous one, we show that

;S oy s—1 t B
c,=>,_,(-1) (T_1>(t_p+r>foralls,lgsgn t.

The coefficient of S{™ is therefore

S50 () (e )

So if (—=1)Pb, = —gf, then

P t s
_ Cypetr (5=1) [ n—t (n)
R 3T (S I G T

t=0 s=0 r=0
n n—t s
oy [ s—1 t (n)
+ Z (=1) (r—l)(t—p+r>5t ’
t=p+1 s=0r=0
Easy to see how b, can be brought to the form stated in the theorem. O
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5. Schur-cohn in Terms of Routh-Hurwitz

The converse of theorem 4.1 states the following:

Theorem 5.1 If t' as defined before, then

n ! s max r s—1 n— t/
Zt:o Zizo Zr:o(_l) ax(pit)tnt (r - 1) ( ) by

lp—t|+r
an_p B Z:‘L:O br

forallp=0,1...... ,n—1
Proof. Suppose 1 < p<n-—1, then

(o)

n— _¢lm) _ (n)
(_1) pan—P - Sn—p - Z P(n—p)k
k=1
From both sides of this relation we cancel out the factor (—1)"~? and we bring all terms
in the right-hand side to a common denominator D; = []'_,(w, — 1). cal N} the

numerator. Hence a,_, = g—z. It is clear that Dj = (—1)">."_(b,. A typical element

in the sum appearing in N, is

This element is entirely similar to ¢, of theorem 4.1 except that the w's replace the 2’s.
Therefore,

t=0 s=0r=
p n—t s
rf{ $— 1 t ()
+tzp;rls_or_0(—l) (T_1><t—p—|-r> ¢, and
n t’ s __1\max(p,t)+n+r s—1 n—t
Qp—p = Zn b (7)
=0T
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for 1<p<n-—1.

Then

Let Nj be the numerator of the right-hand side of (7) corresponding to p = 0.

n n—t s
[ n tdntr [ S 1 t :
N, = (-1) +;§§)(—1) <r— 1) ( b )bt, which reduces to
N = ()" 4+ D (=1 = D (=1)" "y, and
t=1 t=0

n n +1
—1)a, = S0 — = ()" T (% . Theref
(=1)"a Sy, tl;Ilzt (-1) H( . erefore

W, —
t=1 t

io(=1'b 3R (1)
(_1)71 Z?:O bT Z:«L:o br '

an =

We conclude that relation (7) covers the case p = 0 and the proof is complete O

(1]
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BINOM THEOREMININ BiR GENELLESTIiRMESI VE STABILITE
TEORISINE UYGULAMALARI

Ozet

Bu makalede Routh-Hurwitz ve Schur-Cohn gibi degigik stabilite tipleri daha
genig bir gercevede ele ahimp aralarindaki iligkiler ortaya konmustur.
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