# ON $(\sigma, \tau)$ DERIVATIONS WITH MODULE VALUES

M. Soytürk

#### Abstract

Let R be a ring,  $X \neq (0)$  an R-bi-module,  $d: R \to Xa(\sigma, \tau)$ - derivation with module value such that  $d\sigma = \sigma d, d\tau = \tau d$  and  $U \neq (0)$  an ideal of R. Furthermore the following properties are also satisfied.

For 
$$x \in X$$
,  $a \in R$   $xRa = 0$  implies  $x = 0$  or  $a = 0 \dots (G_1)$   
For  $a \in R$ ,  $x \in X$   $aRx = 0$  implies  $a = 0$  or  $x = 0 \dots (G_2)$ 

In this paper we have proved the following results; (1) If  $(G_1)$  (or  $(G_2)$ ) is satisfied and for  $a \in R$ , d(U)a = 0 (or ad(U) = 0) then d = 0 or a = 0 (2) If  $(G_1)$  is satisfied and  $[X,U] \subset C(X)$  or  $[X,U]_{\sigma,\tau} \subset C_{\sigma,\tau}(X)$  then R is commutative (3) Let X be a2-torsion free R-bi module,  $d_1:R \to Xa(\sigma,\tau)$ -derivation,  $d_2:R \to R$  a derivation such that  $d_2(U) \subset U$ . If  $(G_1)$  is satisfied and  $d_1d_2(U) = 0$  then  $d_1 = 0$  or  $d_2 = 0$  (4) Let X be a2-torsion free R-bi-module. If  $(G_1)$  and  $(G_2)$  are satisfied and for  $a \in U$ ,  $[d(U), a]_{\sigma,\tau} \subset C_{\sigma,\tau}(X)$  then  $a \in Z$  or d = 0.

### 1. Introduction

Let R be a ring, X be a left R-module and  $d: R \to X$  an additive mapping. The definition of left derivation was given in [2] as fallows.

$$d(xy) = xd(y) + yd(x)$$
, for all  $x, y \in R$ 

Let X be an R-bi-module,  $d:R\to X$  an additive mapping and  $\sigma,\tau$  automorphisms of R. d is called  $(\sigma,\tau)$ -derivation with module value, if for all  $x,y\in R$ 

$$d(xy) = d(x)\sigma(y) + \tau(x)d(y)$$

The following results have been proved in ([6], [8], [1]) respectively.

(1) If Char  $R \neq 2$  and  $d \neq o$  is a derivation of R such that  $d(R) \subset Z$  then R is commutative. (2) If  $a \in R$  and ad(R) = 0 then a = 0 or d = 0 (3) If  $d \neq 0$  is a  $(\sigma, \tau)$ -derivation of R,  $a \in R$  and  $[d(R), a]_{\sigma, \tau} \subset C_{\sigma, \tau}$  then  $a \in Z$ .

In this paper we have generalized the above resits for a  $(\sigma, \tau)$ - derivation with module value of R and an ideal of R.

Throughout R will represent a ring, X, R-bi module, U a nonzero ideal of R,  $C(X) = \{x \in X | xr = rx, \forall r \in R\}$  and  $C_{\sigma,\tau}(X) = \{x \in X | x\sigma(r) = \tau(r)x, \forall r \in R\}$ . Further  $d: R \to X$  will represent  $a(\sigma, \tau)$ -derivation and  $\sigma, \tau$  automorphisms of R such that  $d\sigma = \sigma d$ ,  $d\tau = \tau d$ . We shall often use the relations,

$$\begin{split} [xy,z]_{\sigma,\tau} &= x[y,z]_{\sigma,\tau} + [x,\tau(z)]y = x[y,\sigma(z)] + [x,z]_{\sigma,\tau}y \\ [[x,y],z] &= [x,[y,z]] + [y,[z,x]] \\ [[x,y]_{\sigma,\tau},z]_{\sigma,\tau} &= [x,[y,z]]_{\sigma,\tau} + [[x,z]_{\sigma,\tau},y]_{\sigma,\tau} \end{split}$$

Let us consider the follolwing properties.

If 
$$x \in X$$
,  $a \in R$   $xRa = 0$  then  $x = 0$  or  $a = 0 \dots (G_1)$   
If  $a \in X$ ,  $x \in R$   $aRx = 0$  then  $a = 0$  or  $x = 0 \dots (G_1)$ 

#### 2. Results

**Lemma 1.** [3, Remark 5] let R be a ring and  $X \neq (0)$  an R-bi-module. (i) If  $(G_1)$  is satisfied (or  $(G_2)$ ) then R is prime. (ii) If  $(G_1)$  is satisfied (or  $(G_2)$ ) and X is 2-torsion free R bi-module then R is too.

**Lemma 2** Let R be a ring,  $a \in R, X \neq (0)$  an R-bi- module and  $U \neq (0)$  an ideal of R. If the condition  $(G_1)$  is satisfied (or  $(G_2)$ ) and xUa = 0 (or a Ux = 0) for all  $x \in X$  then x = 0 or a = 0.

**Proof.** Let xUa=0 for al  $x\in X$ . since U is an ideal of  $R, xRUa\subset xUa=0$  and so, xRUa=0. It gives x=0 or Ua=0 by  $(G_1)$ . since R is prime by lemma 1(i), we get a=0

**Lemma 3.** Let  $U \neq (0)$  be an ideal of  $R, X \neq (0)$  a 2- torsion free R-bi-module and  $(G_1)$  is satisfied. (i) If  $[X, U] \subset C(X)$  then R is commutative (ii) If  $[X, U]_{\sigma,\tau} \subset C_{\sigma,\tau}(X)$  then R is commutative

**Proof.** (i) Let  $[X,U] \subset C(X)$ . Then, 0 = [[x,u],v] for all  $u,v \in U,x \in X$ . Using Jacobi identity and hypothesis we obtain 0 = [[x,u],v] = [x,[u,v]] + [u,[v,x]] = [x,[u,v]] that is

$$0 = [x, [u, v]], \forall x \in X, u, v \in U \dots$$
 (1)

If we take  $xr, r \in R$  instead of x in (1) and using (1) we obtain,

$$XR[R, [U, U]] = (0) \dots \tag{2}$$

Using  $(G_1)$  in (2), since  $X \neq (0)$ , we obtain [R, [U, U]] = 0 that is  $[U, U] \subset Z$ . Thus by the [7, lemma 1.1.6] R is commutative.

(ii)  $0 = [[x,u]_{\sigma,\tau},v]_{\sigma,\tau} = [x,[u,v]]_{\sigma,\tau} + [[x,v]_{\sigma,\tau},u]_{\sigma,\tau} = [x,[u,v]]_{\sigma,\tau}$  for all  $x \in X$ ,  $u,v \in U$ . That is

$$[x, [u, v]]_{\sigma, \tau} = 0, \forall x \in X, u, v \in U \dots$$
(3)

Replacing, x by  $xr, r \in R$  in (3) we get,  $x[r, \sigma([u, v]) = 0, \forall x \in X, r \in R, u, v \in U$ . Again, if we take  $rs, s \in R$  instead of r, in the last equation we get

$$XR[R,\sigma([U,U])] = (0)\dots$$
(4)

Using  $(G_1)$  in (4)  $[U,U] \subset Z$  is obtained. Thus, R is commutative by [7, lemma 1.4] and [5, lemma 1.1.6] respectively.

**Lemma 4.** Let R be a ring,  $U \neq (0)$  an ideal of  $R, X \neq (0)$  an R-bi-modul d:  $R \rightarrow Xa(\sigma,\tau)$ -derivation and  $(G_1)$  is satisfied. (i) If d(U) = 0 then d = 0 (ii) If for  $a \in Rd(U)a = o$  then a = 0 or d = 0

**Proof.** (i) By, the hypothesis  $0 = d(ru) = d(r)\sigma(u) + \tau(r)d(u) = d(r)\sigma(u)$  for all  $u \in U, r \in R$  that is,

$$d(r)\sigma(u) = 0, \forall r \in R, u \in U$$
(5)

If we replace r by  $r\sigma^{-1}(s)$ ,  $s \in R$  in (5) we get

$$d(R)R\sigma(U) = (0) \tag{6}$$

Since  $U \neq (0)$ , using  $(G_1)$  in (6), d = 0 is obtained.

(ii) By the hypothesis  $o=d(ru)a=d(r)\sigma(u)a+\tau(r)d(u)a=d(r)\sigma(u)$  a for all  $u\in U, r\in R$  and so

$$d(R)\sigma(U)a = 0 (7)$$

Since  $\sigma(U) \neq (0)$  an ideal  $a \in R$  using lemma 2, in (7) we get a = 0 or d = 0

If  $(G_2)$  is satisfied and  $\operatorname{ad}(U)=0$  then with same operations we obtain a=0 or d=0

**Lemma 5.** Let R be a non-commutative ring,  $X \neq (0)$  a 2- torsion-free R-bi-modul,  $U \neq (0)$  an ideal of R and  $(G_1)$  is satisfied. If  $d_1: R \to Xa(\sigma, \tau)$ -derivation,  $d_2: R \to R$  a derivation such that  $d_2(U) \subset U$  and  $d_1d_2(U) = 0$  then  $d_1 = 0$  or  $d_2 = 0$ 

**Proof.** Let  $d_1d_2(U) = 0$  Then for all  $u, v \in U$ ,  $0 = d_1d_2(uv) = d_1(d_2(u)v + ud_2(v)) = d_1d_2(u)\sigma(v) + \tau(d_2(u))d_1(v) + d_1(u)\sigma(d_2(v)) + \tau(u)d_1d_2(u) = \tau(d_2(u))d_1(v) + d_1(u)\sigma(d_2(v))$ , that is

$$\tau(d_2(u))d_1(v) + d_1(u)\sigma(d_2(v)) = 0, \forall u, v \in U$$
(8)

If we replace v by  $d_2(v)$  in (8) we get

$$d_1(U)\sigma(d_2^2(U)) = 0 (9)$$

We use Lemma 4 (ii) in (9) to get  $d_1=0$  or  $d_2^2(U)=0$  If  $d_2^2(U)=0$  then  $d_2=0$ , by [4, Theorem 1]

**Lemma 6.** Let R be a non-commutative ring,  $X \neq (0)$  a 2- torsion-free R-bi-module,  $U \neq (0)$  an ideal of R and  $(G_1)$  is satisfied. If  $d: R \to Xa(\sigma, \tau)$ -derivation,  $a \in R$  and  $[d(U), a]_{\sigma, \tau} = 0$  than  $a \in Z$  or d = 0

**Proof.** Let  $[d(U), a]_{\sigma, \tau} = 0$  Then for all  $u, v \in U$ ,

$$0 = [d(uv), a]_{\sigma,\tau} = [d(u)\sigma(v) + \tau(u)d(v), a]_{\sigma,\tau}$$

$$= d(u)[\sigma(v), \sigma(a)] + [d(u), a]_{\sigma,\tau}\sigma(v) + \tau(u)[d(v), a]_{\sigma,\tau} + [\tau(u), \tau(a)]d(v)$$

$$= d(u)\sigma([v, a]) + \tau([u, a])d(v).$$
 From the last equation we obtain

$$d(u)\sigma([v,a]) + \tau([u,a])d(v) = 0, \forall u, v \in U$$
(10)

If we replace u by au in (10) we obtain

$$d(a)\sigma(U)\sigma[U,a] = 0 \tag{11}$$

Using Lemma 2 in (11) we obtain d(a) = 0 or [U, a] = 0. If [U, a] = 0 then  $a \in Z$  by [7, lemma 1.4]. Let d(a) = 0. Then,  $d([u, a]) = [d(u), a]_{\sigma,\tau} - [d(a), u]_{\sigma,\tau} = 0$  for all  $u \in U$  and so

$$d([u,a]) = 0, \forall u \in U \tag{12}$$

Taking vw,  $w \in U$  instead of v in (10) we get

$$d(u)\sigma(v)\sigma([w,a]) + \tau([u,a])\tau(v)d(w) = 0, \forall u, v, w \in U$$
(13)

If we take  $[w, a] \in U$  instead of w in (13) and use (12) we obtain

$$d(U)\sigma(U)\sigma([[U,a],a]) = 0$$
(14)

Using Lemma 2 in (14) we obtain d(U) = 0 or [[U, a], a] = 0 If d(U) = 0 then by lemma 4 (i) we get d = 0. Let [a, [a, U]] = 0. Since the mapping  $I_a : R \to R$  defined by  $I_a(x) = [a, x]$ , is an inner derivation and  $I_a^2(U) = 0$ . It gives  $a \in Z$  by [4, Theorem 4]. Thus we obtain d = 0 or  $a \in Z$  by (14).

**Remark** Let R be a ring,  $X \neq (0)$  an R-bi-bodule

- (i) If  $a \in R, b \in C_{\sigma,\tau}(X), ab \in C_{\sigma,\tau}(X)$  and  $(G_2)$  is satisfied then  $a \in Z$  or b = 0
- (ii) If  $a \in C_{\sigma,\tau}(X)$ ,  $ab \in C_{\sigma,\tau}(X)$  and  $(G_1)$  is satisfied then a = 0 or  $b \in Z$

**Proof.** (i) Since  $b, ab \in C_{\sigma,\tau}(X)$ , for all  $r \in R, 0 = ab\sigma(r) - \tau(r)ab = a\tau(r)b - \tau(r)ab = [a, \tau(r)]b$  that is,

$$[a, \tau(r)]b = 0 \tag{15}$$

If we replace r by  $rs, s \in R$  in (15) we get [a, R]Rb = 0. Thus  $a \in Z$  or b = 0 by  $(G_2)$  (ii) We denote this as in (i)

**Theorem 7.** Let R be a non-commutative ring,  $U \neq (0)$  an ideal of  $R, X \neq (0)a2$ -torsion-free R-bi-module and  $(G_1), (G_2)$  are satisfied. If  $a \in U$  and  $d: R \to X$  is a  $(\sigma, \tau)$ - derivation such that  $[d(U), a]_{\sigma, \tau} \subset C_{\sigma, \tau}(X)$  then  $a \in Z$  or d = 0

**Proof.** By the hypothesis we obtained,  $C_{\sigma,\tau}(X)\ni [d(a^2),a]_{\sigma,\tau}=[d(a)\sigma(a)+\tau(a)d(a),a]_{\sigma,\tau}=[d(a),a]_{\sigma,\tau}\sigma(a)+\tau(a)[d(a),a]_{\sigma,\tau}$ . Since  $[d(a),a]_{\sigma,\tau}\in C_{\sigma\tau}(X)$  this implies that  $[d(a),a]_{\sigma,\tau}\sigma(a)=\tau(a)[d(a)]_{\sigma\tau}$  and so from above we get  $2\tau(a)[d(a),a]_{\sigma,\tau}\in C_{\sigma\tau}(X)$ . On the other hand X was 2-torsion free and so we obtain  $\tau(a)[d(a),a]_{\sigma,\tau}\in C_{\sigma\tau}(X)$ . This implies that  $a\in Z$  or  $[d(a),a]_{\sigma\tau}=0$  by Remark (i). If  $[d(a),a]_{\sigma,\tau}=0$ , then  $C_{\sigma,\tau}(X)\ni [d([a,u]),a]_{\sigma,\tau}=[[d(a),u]_{\sigma,\tau},a]_{\sigma,\tau}-[[d(u),a]_{\sigma,\tau},a]_{\sigma,\tau}=[[d(a),u]_{\sigma,\tau},a]_{\sigma,\tau}$  for all  $u\in U$  that is

$$[[d(a), u]_{\sigma,\tau}, a]_{\sigma,\tau} \in C_{\sigma,\tau}(X), \text{ for all } \in U$$
(16)

If we replace u by au in (17) and use  $[d(a), a]_{\sigma,\tau} = 0$  we get

$$\tau(a)[[d(a), u]_{\sigma, \tau}, a]_{\sigma, \tau} \in C_{\sigma, \tau}(X), \forall u \in U$$
(17)

This implies that  $a \in Z$  or  $[[d(a), u]_{\sigma,\tau}, a]_{\sigma,\tau} = 0, \forall u \in U$ , by Remark (i). Let  $[[d(a), u]_{\sigma,\tau}, a]_{\sigma,\tau} = 0, \forall u \in U$ . Then  $0 = [[d(a), u]_{\sigma,\tau}, a]_{\sigma,\tau} = [d(a), [u, a]]_{\sigma,\tau} + [[d(a), a]_{\sigma,\tau}, u]_{\sigma,\tau}[d(a), [u, a]]_{\sigma,\tau}$ , for all  $u \in U$  and so,

$$[d(a), [a, U]]_{\sigma, \tau} = 0$$
 (18)

Since  $I_a: R \to R$  defined by  $I_a(x) = [a,x]$  is an inner derivation such that  $I_a(U) \subset U$  and  $I_{d(a)}: R \to X$ , defined by  $r \to [d(a),r]_{\sigma,\tau}, \forall r \in R$  is a  $(\sigma,\tau)$ - derivation with module value, (18) becomes  $I_{d(a)}I_a(U) = 0$ . It gives  $I_{d(a)} = 0$  or  $I_a = 0$  by lemma 5, that is  $a \in Z$  or  $d(a) \in C_{\sigma,\tau}(X)$ . If  $d(a) \in C_{\sigma,\tau}(X)$ ,  $C_{\sigma,\tau}(X) \ni [d(au),a]_{\sigma,\tau} = [d(a)\sigma(u) + \tau(a)d(u),a]_{\sigma,\tau} = d(a)\sigma([u,a]) + \tau(a)[d(u),a]_{\sigma,\tau}$  for all  $u \in U$  that is

$$d(a)\sigma([u,a]) + \tau(a)[d(u),a]_{\sigma,\tau} \in C_{\sigma,\tau}(X), \forall u \in U$$
(19)

Using the definition of  $C_{\sigma,\tau}(X)$  in (19) we get  $0 = [d(a)\sigma([u,a]) + \tau(a)[d(u),a]_{\sigma,\tau},a]_{\sigma,\tau}$ =  $d(a)\sigma([[u,a],a]) + [d(a),a]_{\sigma,\tau}\sigma([u,a]) + \tau(a)[[d(u),a]_{\sigma,\tau},a]_{\sigma,\tau} = d(a)\sigma([[u,a],a])$ , for all  $u \in U$ . This implies that,  $d(a)\sigma([[u,a],a]) = 0$ . If we use that  $d(a) \in C_{\sigma,\tau}(X)$  and  $\sigma: R \to R$  is onto we obtain

$$d(a)R\sigma([u,a],a]) = 0 (20)$$

Using  $(G_1)$  in (20) we obtain d(a) = 0 or [a, [a, u]] = 0. If [a, [a, u]] = 0; then since  $I_a : R \to R$ , defined by,  $I_a(x) = [a, x]$  is an inner derivation and  $I_a^2(U) = 0$  by the last equation and so  $a \in Z$  by [4, Theorem 4]. If d(a) = 0; then we obtain, by (19),

$$\tau(a)[d(u), a]_{\sigma, \tau} \in C_{\sigma, \tau}(X), \forall u \in U$$
(21)

If we apply remark (i) to (21) we obtain,  $a \in Z$  or  $[d(U), a]_{\sigma,\tau} = 0$ . If  $[d(U), a]_{\sigma,\tau} = 0$ ; then we get  $a \in Z$  or d = 0 by lemma 6. Consequently  $a \in Z$  or d = 0 is obtained.  $\square$ 

**Result 8** Let  $0 \neq d : R \to X$  be a  $(\sigma, \tau)$ - derivation,  $X \neq (0)$  a 2-torsion-free R-bimodule and  $(G_1)$  is satisfied. If  $[d(U), U]_{\sigma, \tau} = 0$  then R is commutative.

**Proof.** Let  $[d(U), U]_{\sigma,\tau} = 0$ . using Lemma 6 we obtain  $U \subset Z$  and so R is commutative by [5,lemma 1.1.6].

**Results 9** Let  $0 \neq d : R \to X$  a  $(\sigma, \tau)$ - derivation  $X \neq (0)$  a 2-torsion-free R-bi-module and  $(G_1), (G_2)$  are satisfied. If  $[d(U), U]_{\sigma, \tau} \subset C_{\sigma, \tau}(X)$  then R is commutative

**Proof.** Let  $[d(U), U]_{\sigma,\tau} \subset C_{\sigma,\tau}(X)$ , then  $U \subset Z$  by Theorem 7 and so R is commutative by [5,lemma 1.1.6]

#### References

- [1] Aydın N., Kaya K.: Some generalizations in Prime rings with  $(\sigma, \tau)$ -Derivations. Doğa-Tr-J.of Math. 16 (1992), 106-115.
- [2] Bresar M., Vukman J.: On left Derivations and Related Mapping. Proc. Amer. Soc. Vol 110, No 1 (1991) 7-16.
- [3] Bresar M., Vukman J.: Jordan  $(\theta, \varphi)$ -Derivations. To appear in Glasnic Mathematica.
- [4] Bergen j., Herstein I. N., Kerr, J. W.: Lie ideals and derivations of prime rings. Journal of Algebra, 71, (1981) 259-267.
- [5] Herstein I. N.: Rings with Involution Univ. Chicago. Pres. Chicago, 1976.
- [6] Herstein I. N.: A note on derivations II. Canad. Math. bull. 22(4), (1979, 509-511
- [7] Kandamar H., Kaya K.: Lie ideals and  $(\sigma, \tau)$ -derivation in prime rings. Hacettepe Bull of Natural Sciences and engineering Vol 21 (1992) 29-33.
- [8] Posner E.: derivations in Prime rings. Proc. Amer. Math. Soc. 8 (1957) 1093-1100.

## MODÜL DEĞERLİ $(\sigma, \tau)$ -TÜREVLER ÜZERİNE

### Özet

R bir halka,  $X \neq (0)$  bir R-bi-modül,  $U \neq (0)$ , R'nin bir ideali  $\sigma, \tau$  R nin iki otomorfizmi ve  $d: R \to X d\sigma = \sigma d$ ,  $d\tau = \tau d$  olacak şekilde bir modül değerli  $(\sigma, \tau)$  türevi olsun. Ayrıca:  $a \in R, x \in X$  ler için

$$xRa = 0$$
 ise  $x = 0$  veya  $a = 0 \dots (G_1)$   
 $aRx = 0$  ise  $a = 0$  veya  $x = 0 \dots (G_1)$ 

özellikleri bulunsun. Bu makalede aşağıdaki sonuçlar ispatlanmıştır.

- (1)  $(G_1)$  özelliği var ve d(U)a = 0 ise a = 0 veya d = 0 dır.
- (2)  $(G_1)$  özelliği var ve  $[X, U]_{\sigma,\tau} \subset C_{\sigma,\tau}(X)$  ise R komütatiftir.
- (3)  $(G_1)(G_2)$  özellikleri var olsun.  $X \neq (0)$ , 2-torsion-free R-bi-modül ve  $a \in U[d(U),a]_{\sigma,\tau} \subset C_{\sigma,\tau}(X)$  ise  $a \in Z$  veya d=0.

Muharrem SOYTÜRK Cumhuriyet University Fen-Ede. Fak. Mat Bol. 58140-Sivas-TURKEY Received 15.3.1995