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ON A DIFFERENTIAL ANALOG OF THE PRIME-RADICAL AND
PROPERTIES OF THE LATTICE OF RADICAL DIFFERENTIAL
IDEALS IN ASSOCIATIVE DIFFERENTIAL RINGS

D. Hadjiev & F. Callialp

Abstract

In this paper we prove the following results: (1) For any assosiative differential
ring with the unit we introduce a differential analog of the prime-radical and describe
it; (2) any maximal differential ideal of a Ritt algebra is prime; (3) The lattice of
radical differential ideals satisfies the condition of infinite M- distributivity.

0. Introduction

Let K be an associative differential ring with the unit. (i.e d- ring). Denote by
L4(K) the set of all differential ideals (d- ideals) of K. Consider in Ly(K) the relation
of the inclusion of d- ideals and the operation of the multiplication of ideals. Then Lq4(K)
is a complete lattice with the operation multiplication and it is an integral l-monoid. ([1],
ch. XIV).

A d-ideal H is called maximal if H # K,H C B C K,B € Ly(K) implies that
H=Bo B=K.

A d-ideal H € Ly(K),H # K will be called d-prime if B.C C H,B,C € L4(K)
implies that BC H or C C K.

For B € L4(K),B # K, denote by rq(B) the intersection of all d-prime d-ideals
containing B. A d-ideal B will be called d-radical if B = rq(B). Denote by Lq(K)"
the lattice of d-radical d-ideals of K. We include K in L4(K)" as the biggest element.

Our main results are the following:

i) For any d-ring K we introduce a differential analog Ny of the prime radical of
a ring and describe Ny. '

ii) Any maximal d-ideal of a Ritt algebra is a prime ideal.

iii) The lattice Ly(K)" satisfies the following condition:

AN (VierBt) = Vier(A N By)
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for any A, By € Ly(K)",t € T. In particular, Ly(K)" is distributive.
The part of our results annonced in [2]. Further we use notions and notations of
the book [4].

1. A Differential Analog of the Prime-Radical

Proposition 1.1 For any d-ring K, there exists a mazimal d- ideal of K .

The proof of this proposition is standart.

Corollary 1.2 For any d-ideal B of a d-ring K, there exists a mazrimal d-ideal C of
K such that BCC.

Proposition 1.3 Any maximal d-ideal of a d-ring K is d-prime.
Proof. First we note that Lq(K) is an integral l-monoid. ([1], ch. XIV). Therefore

(BVC)-A=B-AVC-A, A-(BVC)=A-BVA-C, A-K=A=K-A (1)

for any A, B,C € Ly4(K).
Let H be a maximal d-ideal of K and B-C C H for some B,C € Lg(K). If
B ¢ H then BV H = K. Using the properties (1), we obtain

C=KC=(BVH).C=B.CVHCCH. (2)
Thus BC H or C C H, that is H is d-prime. O

For an element = of a d-ring, denote by [x] the smallest d-ideal containing z.
Let N be the set of non-negative integers. Let K be a d-ring and d be a differen-
tiation operation in K. For ¢ € K and n € N put a(® = a,a(®*D) = da(™ .

Proposition 1.4 For a d-ideal H of a d-ring, H # K, the following statements are
equivalent:
(1) H is d-prime.
(2) For a,b € K the condition [a] - [b] C H implies that a € H or b€ H.
(3) For a,b € K the conditions o™ Kb™ C H,¥Ym,n € N imply that a € H or b€ H.
(4) For a,b € K the conditions aKb™ C H,¥n € N imply that a € H or be H.
Proof. (1) = (2) is obviously.

We prove that (2) = (1). Suppose that H satisfies the (2), A,B € Ly(K),A-B C
H.If AZ H and B Z H then there exists a € A and b € B such that a ¢ H,b & H.
Thence [a][b] C AB C H. It is a contradiction. Thus (2) => (1) and (1) = (2).
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Denote by 3 the supremum of ideals of a ring K. We prove that (2) = (3).
From the

[ = > Kad"™K, [b)=> Kb"K

meN neN

we obtain

[a]b] = )  Ka™Kb"MEK.
m,neN

Thence (2) <= (3).

The implication (3) = (4) is obviously too.

Suppose aKb™ C H for any n € N. We prove that o™ Kb™ C H for any
m,n € N.

Put 7 =m+n. If r =0 then aKb=a®Kb® C H. Thence (aKb)Vb C H and
a VKb = (aKb)Y) —aKbVbC H.

Let us assume that a™Kb(™ C H for any m,n € N,m +n < r. Thence
aW KB = (aKb)) D —a Kb+ —g KMp(") C H. Further aP Kb(r—1 = (a(l)Kb(T_l))(l)—
a VKbV C H etc. Thus (4) = (3). O

A non-empty set S C K we call a dm-system if, for any a,b € S, there exists
neN and r € K such that arb™ € S.

From the property (4) of d-prime d-ideals in the proposition 1.4 we obtain the
following

Proposition 1.5 A d-ideal H of a d-ring K,H # K, is d- prime iff K \ H is a
dm-system.

A d-ideal B in a d-ring K we call d-semiprime if, for any d- ideal C of K,C? C B
implies that C C B.

A d-prime d-ideal is d-semiprime.

Proposition 1.6 For any d-ideal B of the d-ring K, the following statements are
equivalent:

(1) B is d-semiprime.

(2) For a € K, the condition [a]* C B implies that a € B.

(3) For a € K, the conditions a{™ Ka™ C B,V € N, imply that a € B.

(4) For a € K, the conditions aKa™ C B,Vn € N, imply that a € B.

The proof of this proposition is analoguosly to the proof of the proposition 1.4.

A set S C K we call dn-system if for any a € S, there exist n € N and r € K
such that ara™ € S.
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Remark The definitions of a dm-system and a dn-system are differential analog of the
definitions of a m-system and a n-system in ([4], §10).

Proposition 1.7 A d-ideal B C K is d-semiprime iff K \ B is a dn-system.

The proof is obviously.
Let z € K. Every sequence {zg,T1,...,Tn,...}, where zg = ,x,41 € [T,]?, we
call a dn-sequence of the element x.

Lemma 1.8 Let S be a dn-system of a d-rign K and let x € S. Then there exists a
dn-sequence {xo,Ta,...,Tpn,...} €S of the element x.

Proof. Put zog = x. For S is a dn-system there exists n € N and ry € K such that
zorozt™ € Sy. Put z; = xofrowg"). Then z; € [z0]?. Let us assume that there exists a

set {xo,...,Tm} C S such that z;1 € [z;]* for any ¢ < m. Then there exist ¢ € N and

rm € K such that xmrm:vgg) €S.Put zpyy = xmrmxgg). Then T,11 € [xm]?. O

Theorem 1.9 For any d-ideal H of a d-ring K the following sets are equal.

(1) the intersection of all d-prime d-ideals containing H ;

(2) the set of s € K such that every dm-system containing s meets H ;

(3) the set of s € K such that every dn-system containing s meets H .

(4) the set of s € K such that every dn-sequence of the element s meets H .

Proof. Denote by D;(H), the set defined in the condition (i) of the theorem, i =
1,2,3,4. First we prove that D1(H) 2 Dy(H).

Let s € Dy(H) and let P be any d-prime d-ideal O H. Then K\ P is a dm-system.
If s € K\ P then s € H by the condition (2). It is a contradiction with s ¢ P,H C P.
Therefore s ¢ K\ P. Then s € P. Thence s € D1(H). Thus Dy(H) C D1(H).

Now we prove that D3(H) C D2(H). Let s € D3(H) and let S be any dm-system
containing s. For any dm-system is a dn-system, then from s € D3(H) we obtain that
S meets H. Thence s € Dy(H). Thus Ds3(H) C Do(H).

Prove that D4y(H) C D3(H). Let x € D4(H) and S be any dn-system containing
x. By lemma 1.8 there exists a dn-sequence {zg,21,...,Zn,...} C S of the element z.
For z € D4y(H) this dn-sequence {zo,z1,...,2Zp,...} meets H. Therefore S meets H.
Thence D4(H) C D3(H) .

Now we prove that D;(M) C Dy(H). Let = € D1(H). Assume that z is not in
D4(H). Then there exists a dn-sequence X = {zo,1,...,2Zp,...} of the element x such
that XN H = @. Then Y is not empty as H € ). We introduce in ) the partial order
by the relation of the inclusion of d-ideals. Let {By,t € T'} be a chain in ). We put

B = UtETBt'
Then B is a d-ideal and
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BNnX= (UETBT) NX = UteT(Bt NX =40.

Therefore we can apply Zorn’s lemma to the set >  so there exists a maximal
element P of ) . We are going to show that P is d-prime.

First, P is proper as = & P.

Let A1,As € Ly(K), Ay € P,Ay € P,but A; - Ao C P. Then PV A; # P and
PV Ay # P. By the maximality of P in > we have PV A; ¢ > and PV Ay ¢ Y.
Therefore there exists natural numbers m and ¢ such that z,, € PV A;,2, € PV A;.
Then

[l‘m] g PVA],[.’Z‘Q] Q PVAQ.

Thence

Tyl € [CL’m]2 CPVA, Tgt1 € [.l‘q]z CPVA,.

Continuing in this manner we find that

Lon+t epPv A17 Lg+t epPv A2

for all natural numbers ¢t. We put n = max(m,q). Then

Ty, € PV A, x, € PV As.

Thence

Tp1 € [2a]2 C(PV APV Ay) CPV A A,

But 2,41 € P. Thence A; - A2 ¢ P. Therefore P is d-prime. Thus there exists
a d-prime d-ideal P such that z ¢ P and =z ¢ Dy(H). It is a contradiction. Thus
Dy(H) C Dy(H). |

For any d-ideal H of a d-ring K denote by Ny(H) the set Di(H) = Ds(H) =
Ds(H) = D4(H) of the theorem 1.9.

Remark The equality D;(H) = Dy(H) is a differential analog of the theorem 10.7 in
[5]. The equality D;(H) = D4(H) is a differential analog of the proposition 1 in ([6], §
3.2).
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Theorem 1.10 For any d-ideal B of a d-ring K the following proporties are equivalent:
(1) B is a d-semiprime d-ideal.
(2) B is an intersection of d-prime d-ideals.
(3) B = Na(B).
Proof. (3) = (2). Let B = Ny4(B). Then by the theorem 1.9, B is an intersection of
d-prime d-ideals.

(2) = (1) is clear as the intersection of any family of d- prime d-ideals is d-
semiprime.

(1) = (3). Let B be a d-semiprime d-ideal. We prove that N4(B) C B.

Let x ¢ B. Then S = K\ B is a dn-system containing z. By the lemma 1.8 there

exists a dn-sequence {xg,x1,...,Zn,...} € S of the element . Then by the condition
(4) of the theorem 1.9 = ¢ N4(B). Thus N4(B) C B. O

Remark This theorem is a differential analog of the theorem 10.11 in [5].

For any d-ring K we put Ng = Ny4(0).

An element z of a d-ring K will be called d-nilpotent, if [z]® = 0 for some
n € N. denote by Ng the set of d- nilpotent elements of a d-ring K.

Denote by N9 the set of nilpotents elemnts of a ring K. From the theorem 1.9 we

obtain that Ng C N; C NY.
Proposition 1.11 For any d-ring K, Ng(K/N4) =0.

The proof is standard.

1.12 For any d-ring K the set NO is a d-ideal of K .

Proof. Let z € N° a,b € K and [z]" = 0 for some n. From 0 C [azb] C [x], we have
0 C [azb]™ C [z]® = 0. Thence azb € NJ.
Let z,y € NJ. Then [z]™ = [y]") = 0 for some m,n € N and

0C [z+y] Cla]V[yl

Let z € [z] V [y]. Working in K/[y] and lifting to K, we obtain that [z]™ C [y]. Thence
[[z2]"]™ =0. Thus z +y € Nj.

Let € NJ. Then [z]" = 0 for some n and d(z) € [z]. From 0 C [d(z)] C [z], we
obtain [d(z)]™ = 0. Thus Nj is a d-ideal of K. O

Theorem 1.13 Assume that a d-ring K satisfies ascending chain condition for d-ideals.
Then:
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(1) Na = Nj
(2) Ng is nilpotent.
Proof. By the inclusion Nc‘l) C Ny, we must prove that Ny C NC?.

Let x is not d-nilpotent. Then [z|™ # 0 for all natural numbers n. We are going
to show that there exists a d-prime d-ideal P such that [z] € P. Then we obtain that
& P.

We prove a more general following a0

Lemma Assume that a d-ring K satisfies the ascending chain condition for d-ideals and
A is not nilpotent d-ideal of K. Then there exists d-prime d-ideal P such that AL P.

Proof. Denote by > the set of d-ideals H of K such that

A"g¢ H

for all natureal numbers m. It is obviously that [0] € ). Therefore ) is not empty.
Introduce in ) the usual partial order. Let {H,t € T'} be a chain in ). Put

H - UteTHt.

Then there exist ¢ = ¢, that H = Hy, as a d-ring K satisfies ascending chain condition
for d-ideals. We can apply Zorn’s lemma to the set Y . Therefore there exists a maximal
element P of ). First P is proper as A Z P.

Let a,b€ Ly(K),a € P,bZ P. The PVa# P,PVb# P. By the maximality of
P, we have PVa ¢ > ,PVb¢ > . Therefore A™ C PVa, A" C PVb for some m,n.
Thence A™™" C (PVa).(PVb)CPVab.

This means that PV a.b ¢ > . Thence a.b € P. Therefore P is d-prime and
A P. The lemma is proved.

For A = [z], by lemma there exists a d-prime d-ideal P such that [z] € P. Thence
r ¢ P. Thus N¢ = Ny.

If the d-ideal N, is not nilpotent then by lemma there exists a d- prime d-ideal P
such that Ny € P. But Ng C P for all d-prime d-ideals P. It is a contradiction. Thus
Ny is nilpotent. O

Now we consider a connection between d-prime d-ideals and prime ideals.
Note that there exists a d-ring K and its maximal d-ideal H such that H is not
prime ideal.

Example Let k be a field of the characteristic 2 and e is a unit of k. Consider the

k-algebra K with the following basis over k : e,w,w? = 0,w # 0. Then K = {z|z =
y+zw,y,z € k}.
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Introduce the differentiation operation d on K in the following way:

If re K and v =y + zw,y,z € k, put de = d(y + zw) = 2. Then K is a d-
ring. All the ideals of the ring K are following: {0}, K, Kw. The ideals {0} and K are
d-ideals. but the ideal Kw is not d-ideal as dw = e ¢ Kw. Therefore d-ideal {0} is a
maximal d-ideal of the d- ring K and it is not prime.

Theorem 1.14 Any mazimal d-ideal of a Ritt algebra is a prime ideal.
Proof. Let H be a maximal d-ideal of K and r(H) be radical of H. (i.e. r(H) is the
intersection of all prime ideals of K containing H)

Let e be an unit of K. If r(H) = K then e = e® € H for some n. This is a
contradiction with the H # K.

Therefore r(H) # K. By lemma 1.8 in [3], 7(H) is a d-ideal of a Ritt algebra K.
Thence r(H) = H by the maximality H in Lg(K). Therefore any maximal d-ideal of a
Ritt algebra K is a radical ideal of the ring K.

By the theorem 2.1 in [4], the d-ideal H is an intersection of some set {A;,t € T}
of prime d-ideals A; of a Ritt algbera K:

H = NyerAs.

Then H C A;,Vt € T. Thence H = A;,Vt € T as H is a maximal d-ideal of K. Thus
H is a prime ideal. O

Proposition 1.15 Let K be a Ritt algebra. Then the nil- radical N° of K is a d-ideal
and it is an intersection of prime d- ideals of K.

Proof. Consider the ideal {0} of K. By the lemma 1.8 in [4] the radical of {0} is a
d-ideal of K. By the theorem 2.1 in [4], N° is an intersection of prime d-ideals of K .

a

Proposition 1.16 Let K be a Ritt algebra. Assume that K satisfies the ascending chain
condition for ideals. Then N} = Ny = N°.

Proof. In this case the nil-radical N° of K is nilpotent. Therefore (N°)" = 0 for some
n.

Let x € N°. By the proposition 1.15, N° is a d-ideal. Therefore [z] C N° and
[z]® = 0. Therefore z € N$. Thus NJ = N°. O
From this proposition, we obtain the following immediately
Corollary 1.17 Let K be a noetherian Ritt algebra. Then any d-radical d-ideal of K is

radical.
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Proposition 1.18 Let K be a Ritt algebra. Assume that K satisfies the descending
chain condition for ideals. Then any d-prime d-ideal of K is prime.

Proof. By the corollary 1.17 any d-prime d-ideal H is an intersection of finite prime
d-ideals:

H=Hn...NnH,

Put Hy = H,N...NH,. Then H1H) C H; N H, = H. Thence we obtain H; C H or
Hj, C H (as H is d-prime). Let Hy C H. If Hy # H then H = Hi N H, C Hy. It is
a contradiction. Therefore H = Hy or H = Hj. In the case H = H), continuing in this
manner we obtain that H = H; for some i. O

2. Properties of the lattice L (K)"

Let B € L4(K) and B # K. The corollary 1.2 and the proposition 1. 3 show that
there exists a d-prime d-ideal C such that B C C. Therefore a d-radical r4(B) exists
forany B € Lqy(K), B # K.

Proposition 2.1 For any A, B € Ly(K) the following properties are hold:
(i) ACra(A),

(1) ra(A) = ra(ra(4)),

(iii) if AC B then rq(A) C rq(B),

The proof is obviously.

Proposition 2.2 The lattice Ly(K)" are complete.

A proof follows from the proposition 2.1 and the corollary of the theorem 4 in ([1],
ch V, § 1).

Denote the lattice operations on L4(K) by “N” and “+”, on Lg(K)" by “A” and
“ v 2 R

Proposition 2.3 For any A,B € L4(K),C,D € Lqg(K)",Cy € Lg(K)",t € T the
following statements are hold:

(1) ra(A.B) = rq(AN'B) =r4(A) Arqe(B),

(2) ra(A+ B) = rq(ra(A) +r4(B)),

(8) CAND =rq4(C+ D),

(4) NterCt = NerCht.
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Theorem 2.4 The lattice Ly(K)" satisfies the following condition:

AN (VierBt) = Vier (AN By) (3)
for any A,B; € Lq(K)".
In particular, the lattice Lq(K)" is distributive.
Proof. Let A, B, € Ly(K)",t € T. Then
A.By C A.(VierBy)
for all ¢ € T'. Thence

VieT (ABt) C A-(VtETBt)- (4)

Now we shall prove the inverse inequality.

If Vier(A.B) = (K) then from (3) we obtain A.(VierB:)) = K.

Therefore the equality (2) is true in this case.

Let Vier(A.By) # K. Then there exists a family {Q,,v € S} of d-prime d-ideals
such that

Vier (A.By) = NuesQy
Let @ be an element of the family {Q,,v € S}. Then:

AB CQ

for any t € T. Thence A C Q or B; C Q. In the case A C @ we have

A.(VeerBy) C A C Q.
Let AZ Q. Then B; C Q for all t € T. Thence

VierB: C Q

and

A-(\/tETBt) - \/tETBt - Q

Therefore

A.(VierB:) € Q

for any Q € {Q,,v € S}.
Thence
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A.(VierBt) € MuesQy = Vier(A.By).

Remark 1. The distributivity of the lattice of radical ideals for commutative rings was
obtained in [3].

Remark 2. Denote by My(K) the set of maximal d-ideals of K. For A € Ly(K)
denote by R4(A) the intersection of all maximal d-ideals containing A.

Denote by Lq(K)F the lattice of d-ideals A € Ly(K) such that A = R4(A). An

analog of the theorem 2.4 is true for the lattice Ly(K)%.

O
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ASOSYATiF piFERENSiYEL_ HALKALARDA DiFjERENsiYEL
RADIKAL IDEALLER LATIiSININ OZELLIKLERI VE ASAL
RADIKALIN DIFERENSIYEL ANALOJISi

Ozet

Bu calismada elde edilen temel sonuglar: (1) Birimli herhangi bir diferensiyel
halkada, asal radikalin diferensiyel analojisini tamimlamak ve karakterize etmek, (2)
Ritt cebirinin herhangi bir maksimal difrensiyel ideali asaldir, (3) Radikal diferensiyel
idealler latisi sonsuz N-distribiitif kogulunu saglar.
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